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ABSTRACT

Cardiac alternans is a beat-to-beat alternation of the action potential duration (APD), which has been implicated as a possible cause of
ventricular fibrillation. Previous studies have shown that alternans can originate via a period doubling bifurcation caused by the nonlinear
dependence of the APD on the previous diastolic interval. In this case, it has been demonstrated that alternans can be eliminated by applying
feedback control on the pacing cycle length. However, studies have shown that alternans can also originate due to unstable calcium (Ca)
cycling in cardiac myocytes. In this study, we explore the effectiveness of APD feedback control to suppress alternans when the underlying
instability is due to unstable Ca cycling. In particular, we explore the role of the bi-directional coupling between Ca and voltage and determine
the effectiveness of feedback control under a wide range of conditions. We also analyze the applicability of feedback control on a coupled two
cell system and show that APD control induces spatially out-of-phase alternans. We analyze the onset and the necessary conditions for the
emergence of these out-of-phase patterns and assess the effectiveness of feedback control to suppress Ca driven alternans in a multi-cellular
system.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005191

Cardiac alternans is a heart rhythm disorder where the electrical
response of the heart alternates from beat to beat. Detection of
alternans is believed to underlie a wide range of cardiac arryth-
mias, and treatment strategies have been proposed which seek
to eliminate alternans. One approach to eliminate alternans is
to apply feedback control where the pacing rate is perturbed at
each beat in order to eliminate the alternating response. However,
alternans can occur due to a variety of subcellular mechanisms,
and it is unclear if feedback control will be effective. In this study,
we explore the effectiveness of feedback control when the under-
lying instability for cardiac alternans is due to calcium cycling.
This work will guide experimentalists on how to design feedback
control strategies that can be applied to cardiac cells under a wide
range of physiological conditions.

INTRODUCTION

It is well known that when a cardiac cell is rapidly paced it
undergoes a period doubling bifurcation to alternans where the
action potential duration (APD) alternates in a long-short-long
pattern.1–3 This phenomenon has traditionally been explained by the
restitution relation An+1 = f(Dn), where An+1 is the APD at beat

n + 1 and Dn is the diastolic interval (DI) at beat n. Given this
approximate nonlinear mapping, it is then straightforward to show
that when the slope of the restitution curve is larger than one, a
period doubling bifurcation to alternans will occur. While this the-
ory has been shown to apply in some cell types, it is now established
that there are alternative mechanisms for alternans. In particular,
it is well known that APD alternans can also occur due to unsta-
ble Ca cycling.4 In this case, alternans originates from intracellular
Ca cycling where Ca is released periodically from the sarcoplas-
mic reticulum (SR) and then pumped back into the SR during the
relaxation phase. However, Ca cycling is bi-directionally coupled to
membrane currents mainly via the L-type Ca current (LCC) which
inactivates in a Ca dependent manner, and the sodium–calcium
exchanger (NCX) which supplies an inward current that increases
in magnitude with the Ca released in the cell. Thus, when the action
potential (AP) is unclamped, it is difficult to determine the under-
lying mechanism that drives the instability of alternans. Numerous
studies have explored the dynamics of voltage and Ca alternans
and found that the source of the instability depends on cell type
and physiological conditions.5–7 However, it is generally difficult to
pinpoint which mechanism drives alternans since Ca and voltage are
bi-directionally coupled.
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The detection of alternans in heart patients reveals an underly-
ing nonlinear instability that may be fundamental to the induction
of cardiac arrhythmias.8 As a result, several groups have applied real
time control in order to suppress alternans.9–12 In these studies, the
APD is measured on alternate beats and the cell is paced at beat n
with a cycle length (Tn) given by

Tn = T + g(An − An−1), (1)

where T is the basic cycle length and g is the gain of the feedback.
This control scheme can be applied to the standard restitution based
map to show that the amplitude of alternans can be eliminated for
a sufficiently large gain parameter g. Several experimental studies
have shown that this approach is effective in suppressing alternans
under a range of experimental conditions.10,11,13 Also, recent theo-
retical studies have explored the effectiveness of feedback control
when the restitution relation gives an incomplete description of the
beat-to-beat dynamics, i.e., in the presence of memory effects.14,15

However, it is unclear whether this control scheme is effective when
applied to a cardiac cell where the underlying instability is driven
specifically by unstable Ca cycling.

In an elegant experimental study, Gaeta et al.5 demonstrated
that applying feedback control to a cardiac cell can induce spa-
tially discordant alternans of subcellular Ca. They found that when
the feedback gain g exceeded a critical threshold, then APD alter-
nans was controlled, while the Ca release within two halves of the
cell alternated out of phase. Later, Gaeta et al.16 argued that this
out-of-phase pattern occurred because feedback control modified
the bi-directional coupling between Ca and voltage. This result was
based on previous work showing that if the bi-directional coupling
been Ca and voltage is negative, where a large (small) Ca transient
shortened (prolonged) the APD, then a Turing-like pattern form-
ing instability can drive Ca alternans out of phase.17,18 Thus, they
argued that feedback control applied to a cell with positive coupling,
where a large (small) Ca transient corresponds to a long (short)
APD, induced negative coupling, and thus unmasked the pattern
forming instability. However, this study did not analyze the system

stability, and, therefore, it is still not understood how much gain g is
necessary to induce the spatially out-of-phase patterns observed.

In this study, we develop a general theory of feedback con-
trol applied to a physiologically motivated nonlinear map describing
both Ca and voltage dynamics. In this approach, we account for
nonlinear instabilities that can originate due to APD restitution, Ca
cycling, or a combination of both. More importantly, we analyze
the critical role of the bidirectional coupling between Ca and volt-
age that is mediated by Ca sensitive membrane currents that dictate
the APD. We analyze the full parameter space of the system and pro-
vide quantitative criteria for the effectiveness of feedback control in
the case where Ca cycling is the primary driver for alternans. We
also analyze a system of coupled cells in order to quantify a crite-
rion for the formation of spatially out-of-phase alternans of Ca when
feedback control is applied.

A NONLINEAR MAP MODEL FOR VOLTAGE AND Ca

DYNAMICS

The basic architecture of local Ca signaling is illustrated in
Fig. 1(a). Here, Ca is released from the sarcoplasmic reticulum (SR)
at a dyadic junction (dashed rectangle), where LCC channels are in
close proximity to a ryanodine receptor (RyR) cluster. Ca released
from the junction then diffuses into the cytosol and is then pumped
back into the SR.19 In this study, we follow Romero et al.20 and
assume that the cell is spatially uniform and develop a beat-to-beat
map of the key variables describing voltage and Ca. The key variables
describing Ca cycling and voltage are shown in Fig. 1(b), where the
cell is paced at a cycle length Tn at beat n. To account for Ca cycling,
we keep track of the SR load at the beginning of beat n, which is
denoted as xn−1. We also keep track of the Ca concentration out-
side the SR, denoted as ci

n−1, before Ca is released following the AP
upstroke. Once Ca is released into the cytosol, the Ca concentration
rises and peaks at c

p
n−1, which is referred to as the peak of the Ca

transient. Now, during the AP, LCCs open in the cell and deliver Ca
in the thousands of dyadic junctions in the cell. The amount of Ca

FIG. 1. (a) Illustration of the basic
architecture of Ca signaling in cardiac
myocytes. Here, LCC open and inject Ca
into the vicinity of an RyR cluster that
induces Ca release from the SR. The Ca
released into the cell then diffuses and
gets pumped back into the SR via uptake
pumps. The sodium–Ca exchanger (NCX)
regulates the local Ca concentration and
couples Ca release to the membrane volt-
age. (b) Illustration of the beat-to-beat
map describing voltage and Ca in a car-
diac myocyte. The key variables are the
APD (An), the diastolic interval Dn, the
pacing period Tn, the SR load xn, the dias-
tolic Ca concentration cin−1, and the peak

of the Ca transient c
p

n−1.
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release by sparks depends on the total LCC current, denoted as ICa,
which itself is sensitive to the diastolic interval on the previous beat
Dn−1. To capture these functional relationships, we say that at beat
n, the total amount of Ca released into the cell is

Rn = rP(xn−1, Dn−1)xn−1, (2)

where r is a proportionality constant, and where P(x, D) gives the SR
load and DI dependence of the total number of Ca sparks recruited
at that beat. Here, we have included a factor xn−1 since the local
spark amplitude itself should increase in proportion to the SR load.
To develop the beat-to-beat map, we first note that Ca release from
the SR occurs much faster (∼ 10 ms) than the typical pacing cycle
length (∼ 500 ms). Thus, the peak of the Ca transient at beat n is
determined by the amount of Ca released so that c

p
n−1 = ci

n−1 + Rn.
Now, once Ca is released in the cell, it has to be pumped back into
the SR via the sarcoplasmic reticulum Ca-ATPase (SERCA) pump.19

The amount of Ca pumped by SERCA in one beat is roughly propor-
tional to the cytosolic Ca which can be parameterized by the peak of
the Ca transient on that beat (c

p
n−1). Also, the amount of Ca pumped

is roughly proportional to the amount of time before the next Ca
release event. Thus, the total uptake at beat n can be modeled as

Un = aTnc
p
n−1, (3)

where a is a constant and Tn is the pacing period. Here, we note
that since the amount of Ca pumped back into the SR cannot exceed
the amount in the cytosol, then we require that aTn < 1. Also, for
simplicity we will assume conservation of total Ca so that xn−1 +
ci

n−1 = 1. Therefore, we can write

Un = aTn(1 − xn−1 + Rn), (4)

and the beat-to-beat evolution of the SR load is given by

xn = xn−1 − Rn + Un. (5)

To couple Ca and voltage, we use the fact that the APD is
dependent on the Ca sensitive membrane currents ICa, and the
sodium–calcium exchanger current, denoted as INCX. On the one
hand, ICa decreases as more Ca is released into the cell because LCCs
inactivate in a Ca dependent manner so that the APD will tend to
shorten as Ca release is increased. Also, inward INCX increases with
Ca release so that more Ca release prolongs the APD.19 Which effect
dominates is determined by the cell type and physiological condi-
tions so that the effect of Ca on APD will be taken to be a variable.
To model this effect, we use

An = F(Dn−1) + γ Rn, (6)

where γ is a parameter that determines the sign of the coupling
between Ca and voltage. Thus, if the effect of INCX dominates over
ICa, then the system is said to be in the positive coupling regime
and γ > 0. Likewise, if Ca induced inactivation of ICa is the dom-
inant feedback mechanism, then the coupling is designated as neg-
ative coupling, and γ < 0. Here, the function F(D) represents the
standard restitution approximation which describes how the APD
depends on the previous DI.

NONLINEAR DYNAMICS OF THE TWO VARIABLE MAP

Stability analysis

To analyze the nonlinear dynamics of the two variable map, we
compute the stability of the periodic fixed point where

(

δxn+1

δAn+1

)

=
(

Jcc Jcv

Jvc Jvv

) (

δxn

δAn

)

(7)

and where the Jacobian matrix elements are given by

Jcc = β(1 − Rx), (8)

Jcv = βRD, (9)

Jvv = −(FD + γ RD), (10)

Jvc = γ Rx, (11)

where β = 1 − aT. Here, we denote FD = ∂F/∂D, RD = ∂R/∂D,
Rx = ∂R/∂x, and where the partial derivatives are evaluated at the
periodic fixed point. The alternans’ instability is determined by the
most negative eigenvalue given by

λ = Jcc+Jvv−
√

A
2

, (12)

where A = (Jcc − Jvv)
2 + 4JcvJvc, and where the instability to alter-

nans occurs when λ < −1. The matrix elements of the Jacobian
determine how the physiological properties of the voltage and Ca
dynamics effect the instability to alternans. In particular, Jcc rep-
resents the instability of the Ca cycling system which drives the
alternans’ instability when the release vs SR load slope Rx is large.
Here, we note that when the Ca cycling system is unstable to alter-
nans, then Rx � 1, and we have Jcc < 0. On the other hand, the
term Jvv determines the voltage instability which is driven mainly
by a steep restitution slope FD > 0, so that Jvv < 0. The coupling
between voltage on Ca is dictated by the cross term Jcv = βRD. Here,
we will fix Jcv > 0 since it is known from cell electrophysiology that
Ca release increases monotonically with DI, so that RD > 0 and
β > 0 since aTn < 1. Likewise, the coupling between Ca on volt-
age is governed by the matrix element Jvc = γ Rx. In this case, since
Ca release is known to be a monotonically increasing function of
the SR load, then Rx > 0, so that the sign of Jvc is dictated by γ . As
shown previously,21 this two variable map can be classified into three
main regimes. These are (i) the Ca driven regime, where Jcc � Jvv,
i.e., Jcc is more negative than Jvv, (ii) the voltage driven regime, where
Jvv � Jcc, and (iii) the quasi-periodic regime, where A < 0 so that the
leading eigenvalue is complex. Quasiperiodicity has been observed
experimentally,22 but it is rare given the more stringent requirement
imposed. In this study, we will focus on the case where Ca cycling
is the dominant instability so that Jcc � Jvv. In this case, it is use-
ful to consider the limit where the bi-directional coupling is weak
compared to the Ca cycling instability (|JcvJvc| � J2

cc), and the most
negative eigenvalue can be well approximated as

λ ≈ Jcc − JcvJvc
|Jcc| . (13)

This expression demonstrates how the Ca cycling instability
is perturbed by the bi-directional coupling terms Jcv and Jvc in the
limit of weak coupling. Here, we note that since cell electrophysi-
ology requires that Jcv > 0, then the perturbation to the instability
threshold is determined by the sign of Jvc = γ Rx.
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STABILITY ANALYSIS OF FEEDBACK CONTROL

To apply feedback control, we apply Eq. (1) so that the DI can
be written as

Dn−1 = T + (g − 1)An−1 − gAn−2. (14)

To simplify further the beat-to-beat mapping, we introduce an
auxiliary variable un−1 = An−2, so that our two variable map with
feedback control is governed by a three variable mapping. To the
first order in g, the Jacobian reads

Ĵ =





Jcc + gacc Jcv + gacv gacu

Jvc Jvv + gavv −gavv

0 1 0



 , (15)

where

acc = γ hRx, (16)

acv = −βRD − hs − h, (17)

avv = s, (18)

acu = βRD, (19)

and where s = FD + γ RD, h = ac∗, and c∗ = 1 − x∗ + R(D∗, x∗).
Here, x∗ and D∗ denote the SR load and DI at the fixed point,
respectively, and where c∗ is the peak of the Ca transient.

To determine the effect of feedback control on the stability of
the leading eigenvalue, we will apply perturbation theory to the char-
acteristic polynomial of the Jacobian. We find that to the first order
in g the most negative eigenvalue can be expanded in the form

λ(g) = λ + 0g + · · · + O(g2), (20)

where λ is the eigenvalue in the absence of control, given by Eq. (12),
and where

0 = (b2λ2+b1λ+b0)

−λ
√

A
, (21)

with

b2 = acc + avv, (22)

b1 = acvJvc − accJvv + JvvJcc + Jvv, (23)

b0 = JcvJvc − JvvJcc. (24)

Thus, for small gain g, the effect of control on the coupled
system is dictated by the magnitude and sign of the coefficient 0.

Physiological interpretation

In order to understand the effect of feedback control on the sys-
tem dynamics, it is necessary to interpret the terms that contribute to
the quantity 0. First, we note that feedback control is applied when
the system is unstable and |λ| > 1 so that the leading order term in
the numerator of Eq. (21) is determined by the coefficient

b2 = γ RD + γ hRx + FD. (25)

To interpret the physiological origin of each term, we note that
feedback control modifies the cycle length Tn from beat to beat. This
perturbation of cycle length can affect the Ca cycling system in two

distinct ways. First, changes in Tn have a direct effect on the Ca
release on the next beat since release depends on DI via the term
Rn(xn, Dn). This effect modifies the system instability via the term
γ RD. A second independent mechanism is that Tn determines how
long SERCA can pump Ca back into the SR, and, therefore, perturbs
the SR load at the next beat. This effect is captured by the term γ hRx.
Finally, feedback control also perturbs the voltage dynamics which
is driven by the restitution slope FD. Thus, these three effects con-
tribute to the term b2 and determine whether or not APD feedback
control can suppress or enhance Ca alternans. Here, we should point
out that numerically the terms b1 and b0 can, under specific condi-
tions, dominate the expression for 0. In this case, the effectiveness of
feedback control does not have a direct physiological interpretation
and it will be advantageous to simply evaluate 0 numerically.

To simplify further, we will first consider the Ca dominated
regime where Jcc � Jvv and where the voltage instability is small
|Jvv| � 1. In this regime, we will assume a relatively flat restitu-
tion so that FD � 1, so that the effectiveness of control is dictated
by the leading terms in Eq. (25) so that 0 ∝ γ . Thus, for positive
coupling (γ > 0), feedback control with g > 0 will stabilize the lead-
ing eigenvector and suppress alternans with an effect proportional
to γ . However, for negative coupling (γ < 0), control with g > 0
is destabilizing and will promote a faster alternans’ growth rate. In
this regime, it is necessary to apply a feedback gain, where g < 0.
Finally, we also mention that in the case when Ca cycling is stable,
the dynamical instability is driven by the restitution slope 0 ∝ FD

so that control is stabilizing for g > 0 independently of the coupling
between Ca and voltage.

APPLICATION OF FEEDBACK CONTROL TO AN

EXPLICIT MAPPING MODEL

To analyze the effect of control on the Ca and voltage dynam-
ics, we will analyze an explicit 2D nonlinear map given by Eqs. (5)
and (6). Following our previous study, we will use explicit functions
that mimic known physiological dependencies.20 In particular, we
will take the probability of release to be a product

P(Dn−1, xn−1) = PCa(Dn−1) · Psr(xn−1). (26)

To model the voltage dependence of release, we follow the
approach of Qu et al.23 and use a simple functional form

PCa(D) = 1

1+e−(D−D̃)/τCa
, (27)

where τCa is the time scale of recovery of the LCC channel, and
D̃ determines the onset at which a steep diastolic dependence is
engaged. In this study, we will use this parameter to control the
steepness of the DI dependence in order to probe the map dynamics
for a range of system parameters. To model the SR load dependence,
we rely on previous experimental data showing that the amount of
Ca released in the cell increases substantially at high SR loads.24–26

To model this nonlinear dependence, we use a functional form

Psr(x) = 1

1+
(

x∗
x

)ν (28)

where the Hill coefficients ν and x∗ determine the steepness and
onset, respectively, of the SR load dependence. Finally, to model
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APD restitution, we will use the functional form

F(D) = Ao

(

1

1+e−(D−D∗)/τAPD

)

, (29)

which models the shape of the restitution curve typically measured
in cardiac cells.27 Here, τAPD sets the timescale of recovery of the APD
and D∗ determines the DI when the APD falls to half of its maximum
value A0.

In this study, we will develop two nonlinear map models
that exhibit positive and negative coupling, respectively. The model
parameters used are given in Table I. As a starting point, we will first
consider a nonlinear map model with positive Ca on voltage cou-
pling (γ > 0). In Fig. 2(a), we plot the steady state APD as a function
of the pacing period T for the case of no control (black), control with
g = 0.2 (red), and control with g = −0.05 (blue). In these simula-
tions, we observe that turning on control decreases the amplitude of
steady state APD alternans and also shifts the onset of alternans Tc to
shorter cycle lengths. Also, as expected, we find that turning on con-
trol with g < 0 enhances APD alternans, as it destabilizes the system.
In Fig. 2(b), we analyze the response of the negative coupling model.
In this case, we find that when g = 0.2 (blue), the onset for alternans
occurs at a longer cycle length Tc. Thus, the application of control in
this case destabilizes the system. However, when g = −0.2, the pres-
ence of feedback control stabilizes the system. In this case, we find
that the system is unstable to a quasi-periodic solution that emerges
at a lower cycle length than the alternans’ instability for the case
g = 0. This result is consistent with our perturbation analysis show-
ing that for γ < 0 control is stabilizing only for the negative g. Thus,
our explicit map model confirms our finding that the effectiveness
of feedback control is dependent on the sign of the bi-directional
coupling between Ca and voltage. To demonstrate this effect over
a wider range of parameters, in Fig. 3(a), we plot the steady state
amplitude of alternans 1A = |An+1 − An| as a function of the gain
parameter g for the last 10 beats after iterating the map for 1000 iter-
ations at T = 400 ms. Indeed, we find that the dependence of 1A
on the gain parameter g is crucially dependent on the sign of the
bidirectional coupling. For γ > 0, we see that control is effective
only for g > 0 (black line). On the other hand, for γ < 0 , control
is effective for g < 0 and is largely ineffective for g > 0. In Fig. 3(b),
we plot the period of alternans’ onset Tc as a function of the gain

TABLE I. Ca and voltage map model parameters.

Parameter Description Value

x∗ Threshold SR concentration 0.75
ν Hill coefficient for SR load dependence 35
r Release coefficient 0.7
a Uptake strength 10−3(ms−1)

D̃ LCC restitution parameter 100 ms
τCa LCC channel recovery time 350 ms
τAPD Restitution decay time 100 ms
Ao Restitution parameter 350 ms
D∗ Restitution parameter 50 ms
γ (positive) Ca on V coupling parameter 70 ms
γ (negative) Ca on V coupling parameter −90 ms

FIG. 2. Feedback control applied to a nonlinear map model of voltage and Ca.
(a) Positive coupling. Nonlinear map is iterated 1000 times for different pacing
periods T and the last 10 APDs are plotted. (b) Same as in (a) but using the
negative coupling model. The strength of the feedback gain applied is shown in
the inset.

parameter g. Consistent with our analysis, we find that increasing g
decreases Tc in the case, where γ > 0. Thus, control shifts the onset
of alternans to faster rates and, therefore, makes the cell more stable.
On the other hand, for γ < 0, the onset of alternans decreases with
decreasing g. Thus, the system is more stable with decreasing g.

APPLICATION OF FEEDBACK CONTROL TO A

PHYSIOLOGICALLY BASED AP MODEL

In order to test the qualitative predictions of our nonlinear
map analysis, we have also applied feedback control to a physi-
ologically detailed ionic model. The model that we implement is
the Mahajan ionic model27 which is based on experimentally mea-
sured ion currents from the rabbit myocyte. An important feature
of this model is that, at rapid pacing rates, it exhibits APD alternans
that are driven by an instability of Ca cycling. By construction, this
instability is due to a steep dependence between Ca release on SR
Ca load, which is engaged at rapid pacing rates when Ca accumu-
lates in the cell. Thus, this model naturally corresponds to the Ca
driven scenario analyzed above in our nonlinear map approach. To
analyze the coupling between Ca release and APD in the Mahajan
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FIG. 3. (a) Steady state alternans amplitude1A, plotted as a function of the gain
g, when the cell is paced at T = 400ms for 1000 beats. (b) Alternans’ onset Tc
plotted as a function of the gain g. The black (Red) line corresponds to the positive
(negative) coupling models.

model, we first note that for positive coupling the APD alternates in-
phase with the alternation of the peak Ca transient. Indeed, when the
Mahajan model exhibits alternans, a long-short-long-short sequence
of APD corresponds to a large-small-large-small sequence of Ca
transients. Thus, consistent with experimental measurements, the
Mahajan model exhibits positive Ca on voltage coupling. Now, to
explore the scenario of negative coupling, it is necessary to adjust
the Mahajan model so that a long-short-long-short sequence of APD
corresponds to a small-large-small-large Ca transient. To accom-
plish this, it is necessary to enhance the contribution of ICa to the
APD and reduce the effect of INCX, which promotes positive cou-
pling. Thus, we have reduced the conductance of INCX by a factor of
0.4. Also, we have enhanced the effect of Ca induced inactivation,
which promotes negative coupling, by shifting the threshold for Ca
induced inactivation from 3 µM to 10 µM and increasing the Hill
coefficient from 3 to 4. After these changes are implemented in the
ionic model, we find that during alternans the Ca transient and the

APD are out of phase during steady state pacing. This confirms that
these parameter changes lead to negative coupling of the cell model.

To compare to our nonlinear map model, we will first con-
sider the response of the original Mahajan model to APD feedback
control. In Fig. 4(a), we plot the steady state 1A for the last 10
beats after pacing for 400 beats at T = 200 ms (black circles). Indeed,
by construction at g = 0, the Mahajan model exhibits Ca driven
APD alternans. Alternans’ amplitude is then suppressed as control
is turned on for g > 0 and is enhanced for g < 0. Now, when the
parameters of the Mahajan model are modified so that the model
exhibits negative coupling, we find that the system response to con-
trol is altered. In Fig. 4(a) (red circles), we find that APD alternans
is indeed suppressed for g < 0. This result is similar to the map-
ping model prediction [Fig. 3(a)]. However, we find that the onset of
control where 1A = 0 occurs more abruptly in the ionic model. To
further analyze the effect of feedback control, we have also computed
the onset of alternans Tc as a function of the gain parameter g. In
Fig. 4(b), we plot Tc vs g for the Mahajan model (black squares) and
the modified model that exhibits negative coupling (red squares).
Indeed, consistent with our analysis, we find that increasing the gain
stabilizes the Mahajan model, i.e., decreases the onset of alternans

FIG. 4. Feedback control applied to a physiologically based ionic model. (a)
Steady state amplitude of APD alternans 1A vs the feedback gain g. In this sim-
ulation, the cell is paced for 100 beats at 200ms and 1A is computed using
the last two beats. (b) The onset of alternans Tc as a function of the feedback
control g.
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Tc. On the other hand, when the system exhibits negative coupling,
increasing the gain destabilizes the model. Thus, the ionic model
response to control is qualitatively similar to our mapping analy-
sis which identified the sign of Ca on voltage coupling as the key
variable that dictates the effectiveness of feedback control.

TWO ELECTRICALLY COUPLED CELLS

In this section, we will explore the response of two electri-
cally coupled cells to APD feedback control. Our two cell system
is illustrated in Fig. 5(a) where the Ca dynamics within each cell is
described by the SR load xn and yn, respectively. The two cells are
electrically coupled so that both share the same APD denoted as An.
Also, we will assume that there is no diffusion of Ca between cells
since it is known that the flow of Ca from cell to cell is negligible
on the timescale of one beat.28 The mapping model for the two cell
system is given by

xn = xn−1 − Rn(Dn−1, xn−1) + Un(Dn−1, xn−1), (30)

yn = yn−1 − Rn(Dn−1, yn−1) + Un(Dn−1, yn−1), (31)

and where the voltage of both cells evolves from beat to beat
according to

An = F(Dn−1) +
(

γ

2

)

[R(Dn−1, xn−1) + R(Dn−1, yn−1)]. (32)

Here, we have assumed that APD prolongation is proportional
to the average Ca release at both cells. After implementing feedback
control, we find that to first order in g the Jacobian of the map has

the form

J2 =







Jcc + gacc/2 gacc/2
gacc/2 Jcc + gacc/2

Jcv + gacv gacu

Jcv + gacv gacu

Jvc/2 Jvc/2
0 0

Jvv + gavv −gavv

1 0






. (33)

An analysis of the characteristic equation reveals that J2 shares
3 eigenvalues with the single cell Jacobian J given in Eq. (15).
These eigenvalues correspond to spatially homogeneous eigenvec-
tor solutions to the characteristic equation, while the fourth unique
eigenvalue is given by Jcc with the corresponding eigenvector

Ev =







1
−1

0
0






, (34)

which represents the mode where Ca cycling in both cells are out
of phase, and where |An+1 − An| = 0. Thus, APD control has no
effect on this mode and the stability is determined only by the Ca
cycling instability Jcc. Therefore, the two cell system can transition
to alternans via a spatially homogeneous mode when λ(g) < Jcc, or
alternatively, to a spatially out-of-phase mode when Jcc < λ(g). To
linear order in g, this condition is Jcc < λ + 0g, which, in the limit
where Jcc � Jvv, yields the criterion g > gc, where

gc ≈ 1
0

JcvJvc
|Jcc| . (35)

Therefore, the nonlinear map predicts that for positive cou-
pling JcvJvc > 0, spatially out-of-phase alternans in Ca will form for
a feedback gain g > gc. However, for negative coupling JcvJvc < 0,
spatially discordant alternans form providing g ≥ 0. This result is
consistent with the original study of Shiferaw and Karma,17 who

FIG. 5. (a) Illustration of two electrically
coupled cells. The variables xn and yn
describe the beat-to-beat dynamics of Ca
within each cell, and An denotes the APD
driving both cells. (b) Beat-to-beat evo-
lution of the alternans’ amplitude a(n)
for the two coupled cells in the case of
positive coupling. The two cells are ini-
tially uncoupled and paced in the absence
of control for 200 beats. Control is then
turned on with gain g = 0.2, after which
the cells are stabilized after pacing for 400
beats. At the 600th beat, the two cells
are connected and pacing is continued.
(c) Same as (b) in the case of negative
coupling. (d) Plot of the steady state cel-
l-to-cell difference1 = |x(n) − y(n)| as
a function of the gain g. Here, we have nor-
malized 1 so that the steady state value
is1 = 1. The two cell system is paced at
T = 470ms.
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showed that subcellular Ca becomes spatially out of phase under
periodic pacing (g = 0) providing the Ca on voltage coupling is neg-
ative. Also, Eq. (35) confirms the experimental findings of Gaeta
et al.5,16 who showed that the application of feedback control on
myocytes that exhibited positive coupling induced spatially out-of-
phase alternans for a gain that exceeded a critical value. In this study,
we provide, for the first time, an analytic expression for this critical
gain and its dependence on system parameters.

In order to test our prediction for the dynamics of the two cell
system, we have applied APD control to our coupled nonlinear map
system. To test the prediction of the stability analysis, it is necessary
to study the beat-to-beat dynamics near the periodic fixed point.
Thus, our procedure is to first apply feedback control to stabilize
two uncoupled cells. Once this is achieved, we then electrically cou-
ple the cells and then determine the subsequent time evolution of the
coupled 2 cell system. In order to keep track of the alternans phase,
we measure the beat-to-beat amplitude of alternans given by

a(n) = (−1)n(x(n) − x(n − 1)). (36)

This measure ensures that if the two cells are out of phase, then
the corresponding alternans amplitude a(n) will have an opposite
sign. To proceed, our protocol is to first pace two independent cells
to alternans for 200 beats. Once alternans are fully developed, we
apply control for 400 beats until alternans is stabilized, after which
the two cells are electrically coupled and the system is paced for an
additional 600 beats. Also, since both cells are identical, it is neces-
sary to add a small perturbation to the SR load to assess whether the
spatially out-of-phase mode will grow or not. Thus, on the 600th
beat, we set xn → xn + δ and yn → yn − δ, where δ = 10−3. This
protocol is applied in Fig. 5(b), where we pace the positive coupling
model from Fig. 2(a) at T = 470 ms. After 200 beats, we apply con-
trol with g = 0.2 so that both cells are stabilized. At beat n = 600,
both cells are connected electrically and we observe that the alter-
nans amplitude of both cells begins to grow to an out-of-phase
steady state. Thus, electrical coupling amplifies the small SR load
difference and drives the coupled cells so that they alternate out
of phase. In Fig. 5(c), we repeat the same simulation for the nega-
tive coupling case shown in Fig. 2(b). Here, we apply control with
g = −0.2 to stabilize the two independent cells after which they
are connected. As in the positive coupling case, once the cells are
connected, the two cells evolve to an out-of-phase steady state pat-
tern. In order to assess how the steady state depends on the gain
parameter g, we have repeated the simulation shown in Figs. 5(b)
and 5(c) for a range of gain g. In these simulations, we vary the
gain g after electrical coupling at beat n = 600. To measure the
relative phase, we compute the difference in SR load of the two
cells at steady state 1 = |x(n) − y(n)|, so that 1 = 0 if the cou-
pled cells are synchronized and 1 > 0 if they are out of phase. In
Fig. 5(d), we plot 1 vs g for the positive (black line) and negative
(red line) coupling cases. Indeed, we find that for γ > 0, there is
a critical gc after which both cells are out of phase. On the other
hand, for γ < 0, the cells are out of phase for any gain g ≥ 0. This
result confirms Eq. (35) which shows that the onset for spatially out-
of-phase alternans is proportional to the sign of the bi-directional
coupling.

THE MULTICELLULAR SYSTEM

The generalization of our two cell analysis to the case of many
cells is straightforward. In the case with N electrically coupled cells,
the Jacobian has the dimension N + 2 and has the form

Jn =



















Jcc + gacc

N

gacc

N
· · · Jcv + gacv gacu

gacc

N
Jcc + gacc

N
· · · Jcv + gacv gacu

...
...

. . .
...

...
Jvc
N

Jvc
N

· · · Jvv + gavv −gavv

0 0 · · · 1 0



















. (37)

To determine the eigenvectors of this matrix, we first note that
the spatially homogeneous mode, where the eigenvector Ev has equal
components, will have the same eigenvalues as the single cell Jaco-
bian J. Thus, for the spatially homogeneous solution, the dominant
eigenvalue is simply the single cell eigenvalue λ(g) given in Eq. (12).
To search for non-homogeneous solutions, we look for solutions Ev,
where vi = 0 for i ≥ N + 1. Then, we have

JnEv =























Jccv1 + g

N

N
∑

i=1

vi

Jccv2 + g

N

N
∑

i=1

vi

...
0
0























, (38)

so that if
∑

i vi = 0, then Ev is an eigenvector of Jn with eigen-
value λ = Jcc. Thus, all solutions of this form satisfy the eigenvalue
equation and have a growth rate that depends only on the Ca cycling
instability. Thus, these solutions will grow faster than the spatially
homogeneous state providing Jcc < λ(g). Therefore, in a multicellu-
lar system, the conditions for spatially out-of-phase patterns to form
is identical to the two cell case and is given by g ≥ gc. However, in
the multicellular system, there is a multitude of solutions which sat-
isfy the condition

∑

i=1,N vi = 0. Thus, the spatial solution that is
observed at steady state will be determined by the initial conditions.

DISCUSSION

In this study, we have analyzed the effectiveness of APD feed-
back control applied to cardiac cells where the period doubling
instability is driven primarily by Ca cycling. Our main finding is
that the essential variable that determines control is the sign of the
coupling between Ca and voltage. Effectively, if a large (small) Ca
transient induces a long (short) APD, then the system exhibits pos-
itive coupling, and control with the positive gain g is effective in
suppressing alternans. On the other hand, if a large (small) Ca tran-
sient induces a short (long) APD, then the cell is said to exhibit
negative coupling, and it is necessary to apply control with g < 0.
In this case, the application of feedback control with g > 0 is desta-
bilizing and will enhance rather than suppress APD alternans. These
findings are confirmed using a physiologically based nonlinear map
that describes voltage and Ca, along with a detailed ionic model.
Consistent with our simplified nonlinear map model, we find that
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it is the bi-directional coupling between Ca and voltage that dictates
the effectiveness of feedback control in this system.

In the second part of this study, we explored the effectiveness
of APD control to suppress alternans in an electrically coupled two
cell system. In this case, we find that the application of control
can induce spatially out-of-phase alternans where one cell alter-
nates with a large-small-large-small Ca transient and the coupled
cell alternates with a small-large-small-large sequence. When this
occurs, we find that APD alternans amplitude is zero and that the
stability of the out-of-phase mode is dictated only by the instabil-
ity of the Ca cycling system (Jcc). Our analysis shows that there is
the critical gc after which the spatially out-of-phase mode is unsta-
ble, and, therefore, dictates the steady state dynamics of the two
cell system. Furthermore, we find that gc ∝ γ so that for γ < 0,
spatially out-of-phase alternans emerge in the case, where g ≥ 0.
This result is consistent with the work of Shiferaw and Karma17

who demonstrated a pattern forming instability of subcellular Ca
in cardiac myocytes exhibiting negative coupling (JcvJvc < 0). How-
ever, in that study, the cell was divided further into sarcomeres,
where each sarcomere was treated as an independent unit and Ca
was allowed to diffuse across sarcomeres. In that case, spatially
out-of-phase subcellular alternans were found to develop in the
cell from the spatially homogeneous solution in the presence of a
small noise amplitude. Here, we note that when Ca is allowed to
diffuse between sarcomeres, the spatially out-of-phase regions will
be joined by a smooth interface where the amplitude of alternans
crosses a zero point referred to as a node. Here, we point out that
while the underlying dynamics will drive two sarcomeres out of
phase, Ca diffusion will also tend to synchronize their dynamics.
Thus, in the presence of Ca diffusion, we expect that the growth of
the spatially out-of-phase mode decreases with an increasing num-
ber of nodes. This result is consistent with the results of Shiferaw
and Karma, who showed that the growth rate of a pattern with
wave number q > 0 has the form �(q) = δ − DCaq

2, where DCa is
the diffusion coefficient of the subcellular Ca. From this perspec-
tive, the condition for a pattern forming instability is that δ > 0,
along with the condition that δ > �(0), which is the requirement
that the spatially out-of-phase state is more unstable than the spa-
tially homogeneous mode. Consequently, it is straightforward to
show that this condition is equivalent to the condition JcvJvc ≤ 0,
and Jcc < −1, i.e., the case of negative coupling and unstable Ca
cycling.

In the case of positive coupling with γ > 0, there is a criti-
cal gc > 0 after which the spatially out-of-phase mode is unstable
and dominates the steady state behavior. This critical threshold
corresponds to the necessary gain such that the spatially out-of-
phase solutions grow at a faster rate than the homogeneous solution.
This condition is given by Jcc < λ(g), which occurs as the gain is
increased above gc. This result is consistent with the experimental
work of Gaeta et al.5 who showed that spatially discordant alter-
nans of Ca emerge in cardiac myocytes when control is applied
to a Guinea pig ventricular myocyte. They found that at a critical
gain, subcellular Ca in two or three regions of the cell exhibited
out-of-phase alternans. This finding is consistent with our analysis
showing that there is a critical gain after which spatially out-of-
phase alternans develop from the spatially homogeneous periodic
solution.

ACKNOWLEDGMENTS

This work was supported by the National Heart, Lung, and
Blood Institute Grant No. RO1HL119095 (Y.S.).

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
1J. B. Nolasco and R. W. Dahlen, “A graphic method for the study of alternation
in cardiac action potentials,” J. Appl. Physiol. 25, 191–196 (1968).
2J. N. Weiss, A. Karma, Y. Shiferaw, P.-S. Chen, A. Garfinkel, and Z. Qu, “From
pulsus to pulseless: The saga of cardiac alternans,” Circ. Res. 98, 1244–1253
(2006).
3B. Surawicz and C. Fisch, “Cardiac alternans: Diverse mechanisms and clinical
manifestations,” J. Am. Coll. Cardiol. 20, 483–499 (1992).
4E. Chudin, J. Goldhaber, A. Garfinkel, J. Weiss, and B. Kogan, “Intracellular Ca2+

dynamics and the stability of ventricular tachycardia,” Biophys. J. 77, 2930–2941
(1999).
5S. A. Gaeta, G. Bub, G. W. Abbott, and D. J. Christini, “Dynamical mechanism
for subcellular alternans in cardiac myocytes,” Circ. Res. 105, 335–342 (2009).
6W. Groenendaal, F. A. Ortega, T. Krogh-Madsen, and D. J. Christini, “Volt-
age and calcium dynamics both underlie cellular alternans in cardiac myocytes,”
Biophys. J. 106, 2222–2232 (2014).
7P. N. Jordan and D. J. Christini, “Characterizing the contribution of voltage-
and calcium-dependent coupling to action potential stability: Implications for
repolarization alternans,” Am. J. Physiol. Heart Circ. Physiol. 293, H2109–H2118
(2007).
8A. K. Gehi, R. H. Stein, L. D. Metz, and J. A. Gomes, “Microvolt T-wave alternans
for the risk stratification of ventricular tachyarrhythmic events: A meta-analysis,”
J. Am. Coll. Cardiol. 46, 75–82 (2005).
9K. Hall, D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette,
“Dynamic control of cardiac alternans,” Phys. Rev. Lett. 78, 4518 (1997).
10D. J. Christini, M. L. Riccio, C. A. Culianu, J. J. Fox, A. Karma, and R. F.
Gilmour, Jr., “Control of electrical alternans in canine cardiac Purkinje fibers,”
Phys. Rev. Lett. 96, 104101 (2006).
11G. M. Hall and D. J. Gauthier, “Experimental control of cardiac muscle alter-
nans,” Phys. Rev. Lett. 88, 198102 (2002).
12E. G. Tolkacheva, M. M. Romeo, M. Guerraty, and D. J. Gauthier, “Condi-
tion for alternans and its control in a two-dimensional mapping model of paced
cardiac dynamics,” Phys. Rev. E 69, 031904 (2004).
13K. Kulkarni, S. W. Lee, R. Kluck, and E. G. Tolkacheva, “Real-time closed
loop diastolic interval control prevents cardiac alternans in isolated whole rabbit
hearts,” Ann. Biomed. Eng. 46, 555–566 (2018).
14J. Landaw and Z. Qu, “Control of voltage-driven instabilities in cardiac
myocytes with memory,” Chaos 28, 113122 (2018).
15N. F. Otani, “Theory of the development of alternans in the heart during
controlled diastolic interval pacing,” Chaos 27, 093935 (2017).
16S. A. Gaeta, T. Krogh-Madsen, and D. J. Christini, “Feedback-control induced
pattern formation in cardiac myocytes: A mathematical modeling study,” J. Theor.
Biol. 266, 408–418 (2010).
17Y. Shiferaw and A. Karma, “Turing instability mediated by voltage and calcium
diffusion in paced cardiac cells,” Proc. Natl. Acad. Sci. U.S.A. 103, 5670–5675
(2006).
18D. Sato, Y. Shiferaw, A. Garfinkel, J. N. Weiss, Z. Qu, and A. Karma, “Spa-
tially discordant alternans in cardiac tissue: Role of calcium cycling,” Circ. Res.
99, 520–527 (2006).
19D. Bers, Excitation-Contraction Coupling and Cardiac Contractile Force
(Springer Science & Business Media, 2001).
20L. Romero, E. Alvarez-Lacalle, and Y. Shiferaw, “Stochastic coupled map model
of subcellular calcium cycling in cardiac cells,” Chaos 29, 023125 (2019).
21Y. Shiferaw, D. Sato, and A. Karma, “Coupled dynamics of voltage and calcium
in paced cardiac cells,” Phys. Rev. E 71, 021903 (2005).

Chaos 30, 053106 (2020); doi: 10.1063/5.0005191 30, 053106-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1152/jappl.1968.25.2.191
https://doi.org/10.1161/01.RES.0000224540.97431.f0
https://doi.org/10.1016/0735-1097(92)90122-4
https://doi.org/10.1016/S0006-3495(99)77126-2
https://doi.org/10.1161/CIRCRESAHA.109.197590
https://doi.org/10.1016/j.bpj.2014.03.048
https://doi.org/10.1152/ajpheart.00609.2007
https://doi.org/10.1016/j.jacc.2005.03.059
https://doi.org/10.1103/PhysRevLett.78.4518
https://doi.org/10.1103/PhysRevLett.96.104101
https://doi.org/10.1103/PhysRevLett.88.198102
https://doi.org/10.1103/PhysRevE.69.031904
https://doi.org/10.1007/s10439-018-1981-2
https://doi.org/10.1063/1.5040854
https://doi.org/10.1063/1.5003250
https://doi.org/10.1016/j.jtbi.2010.06.041
https://doi.org/10.1073/pnas.0511061103
https://doi.org/10.1161/01.RES.0000240542.03986.e7
https://doi.org/10.1063/1.5063462
https://doi.org/10.1103/PhysRevE.71.021903


Chaos ARTICLE scitation.org/journal/cha

22R. Gilmour, Jr., N. Otani, and M. Watanabe, “Memory and complex dynamics
in cardiac Purkinje fibers,” Am. J. Physiol. Heart Circ. Physiol. 272, H1826–H1832
(1997).
23Z. Qu, Y. Shiferaw, and J. N. Weiss, “Nonlinear dynamics of cardiac excitation-
contraction coupling: An iterated map study,” Phys. Rev. E 75, 011927 (2007).
24M. E. Diaz, S. C. O’Neill, and D. A. Eisner, “Sarcoplasmic reticulum calcium
content fluctuation is the key to cardiac alternans,” Circ. Res. 94, 650–656 (2004).
25Y. Shiferaw, M. A. Watanabe, A. Garfinkel, J. N. Weiss, and A. Karma,
“Model of intracellular calcium cycling in ventricular myocytes,” Biophys. J. 85,
3666–3686 (2003).

26J. Bassani, W. Yuan, and D. M. Bers, “Fractional SR Ca release is regulated by
trigger Ca and SR Ca content in cardiac myocytes,” Am. J. Physiol. Cell Physiol.
268, C1313–C1319 (1995).
27A. Mahajan, Y. Shiferaw, D. Sato, A. Baher, R. Olcese, L. H. Xie, M. J. Yang,
P. S. Chen, J. G. Restrepo, A. Karma, A. Garfinkel, Z. Qu, and J. N. Weiss, “A
rabbit ventricular action potential model replicating cardiac dynamics at rapid
heart rates,” Biophys. J. 94, 392–410 (2008).
28B. D. Stuyvers, P. A. Boyden, and H. E. T. Keurs, Calcium Waves:
Physiological Relevance in Cardiac Function (American Heart Association,
2000).

Chaos 30, 053106 (2020); doi: 10.1063/5.0005191 30, 053106-10

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1152/ajpheart.1997.272.4.H1826
https://doi.org/10.1103/PhysRevE.75.011927
https://doi.org/10.1161/01.RES.0000119923.64774.72
https://doi.org/10.1016/S0006-3495(03)74784-5
https://doi.org/10.1152/ajpcell.1995.268.5.C1313
https://doi.org/10.1529/biophysj.106.98160

	ACKNOWLEDGMENTS

