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A B S T R A C T   

Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over 
development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in 
modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and 
Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently- 
developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, 
despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics 
derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 
youth and young adults (ages 12–30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, 
and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined 
mean white matter values, white matter tracts, white matter voxels, and connections in structural brain net
works. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize 
neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL- 
derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi- 
shell imaging data and contemporary modeling techniques confer important advantages for studies of 
neurodevelopment.   

1. Introduction 

Diffusion-weighted imaging (DWI) has informed our understanding 
of both local tissue (Basser and Pierpaoli, 1996; Koh and Padhani, 2006; 
Svolos et al., 2014) and distributed network properties of the brain in 
vivo (Sporns et al., 2005; Gollo et al., 2018). DWI has proven to be 
particularly useful for studying neurodevelopment, and has provided 
critical evidence of the protracted maturation of white matter from in
fancy into adulthood (Lebel et al., 2008; Schmithorst and Yuan, 2010; 

Asato et al., 2010; Larsen et al., 2018; Jalbrzikowski et al., 2017). Recent 
studies have leveraged tools from network neuroscience and established 
that structural networks reconfigure in development to promote effi
cient communication (Hagmann et al., 2010; Fan et al., 2011; Grayson 
et al., 2014; Baum et al., 2017; Uddin et al., 2011; Baker et al., 2015; 
Bassett et al., 2018; Huang et al., 2015). 

Most DWI studies have used single b-value diffusion acquisitions 
(“single shell”) and applied a diffusion tensor imaging (DTI) model to 
characterize observed diffusion patterns as indices of neuronal 
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microstructure (Lebel and Deoni, 2018; Lebel et al., 2017). While 
valuable, these studies may have been limited by certain characteristics 
of the diffusion tensor model and single-shell imaging sequences. In 
practice, metrics derived from the diffusion tensor model underestimate 
diffusion restriction in voxels within crossing fibers (Jeurissen et al., 
2013; Jones and Cercignani, 2010; Volz et al., 2018; De Santis et al., 
2014) and are systematically impacted by in-scanner motion, which is 
often prominent in children (Yendiki et al., 2014; Ling et al., 2012; Baum 
et al., 2018; Roalf et al., 2016). More recently, a new generation of 
models have been developed to leverage multiple b-values (“multi-
shell”). Although it is unknown if these new models ameliorate the po
tential impact of motion or other artifacts, they do offer promising 
advances in characterizing white matter. When systematically varied 
over a DWI acquisition, the differential tissue responses elicited by 
different b-values can be used to model more detailed features of the 
cellular environment (Stanisz et al., 1997; Clark et al., 2002; Assaf and 
Basser, 2005). These models can be broadly separated into “tissue” and 
“signal” models (Alexander et al., 2017; Ferizi et al., 2017): tissue 
models attempt to classify signal attributable to different components of 
biological tissues, while signal models model the diffusion process 
directly and do not attempt to delineate tissue composition. 

Although several tissue models were foundational for tissue 
modeling of diffusion images (Assaf and Basser, 2005; Alexander et al., 
2010), Neurite Orientation Dispersion and Density Imaging has become 
the most widely used (NODDI; Zhang et al., 2012). NODDI provides 
estimates of the directional distribution of neurites (axons and den
drites) as well as compartmental volume fractions. Volume fractions 
convey the proportion of volume posited to be intracellular, extracel
lular and isotropic in each voxel based on the estimated contributions of 
these compartments to the diffusion signal. In contrast to DTI metrics, 
NODDI estimates separate parameters for the directional spread of water 
diffusion and the degree of microstructural restriction of water diffusion. 
This distinction allows more specific tissue properties to be discerned, 
like fiber direction coherence and intracellular volume fraction. As such, 
NODDI provides an advance in disambiguating properties of putative 
cellular microstructure over DTI (Chang et al., 2015; Eaton-Rosen et al., 
2015; Mah et al., 2017; Zhang et al., 2012; Kodiweera et al., 2016; 
Timmers et al., 2016). These differences may have particular importance 
for developmental studies as recent work suggests that NODDI may be 
more sensitive to brain development than DTI (Chang et al., 2015; Genc 
et al., 2017; Nazeri et al., 2015; Mah et al., 2017; Ota et al., 2017). 
However, it remains unclear as to how useful NODDI-based measures 
are for studies of brain networks, or how they are impacted by 
in-scanner motion. 

In contrast to tissue-based models like NODDI, “signal” based 
methods remain agnostic to tissue composition when characterizing the 
intra-voxel diffusion process. Two recently-introduced techniques which 
model the intra-voxel diffusion process are Mean Apparent Propagator 
MRI (MAP-MRI; €Ozarslan et al., 2013) and Laplacian-regularized 
MAP-MRI (MAPL; Fick et al., 2016a). Laplacian regularization makes 
MAPL more resilient to noisy data, which is a particularly important 
issue in studies of brain development. Notably, signal-based models 
estimate water molecule displacement patterns without a priori as
sumptions about the underlying tissue environment (€Ozarslan et al., 
2013; Karmacharya et al., 2018). In contrast to the accumulating 
number of studies using NODDI to investigate brain development, MAPL 
has not previously been used in studies of brain maturation. Further
more, like NODDI, it remains unknown how in-scanner motion may 
impact MAPL-based measures. 

Here, we sought to describe the relationships between three diffusion 
models, brain development, and in-scanner motion. We evaluated how 
diffusion metrics from DTI, NODDI, and MAPL are associated with both 
age and in-scanner motion in a sample of 120 youth and young adults 
who completed multi-shell diffusion imaging. Importantly, we included 
DTI metrics derived from solely the b ¼ 800 shell (to more closely match 
a traditional DTI scan), as well as the full multi-shell scheme. Statistical 

associations were examined across multiple scales of analysis, including 
global white matter values, tract values, edges in structural brain net
works, and individual voxels. As described below, we present new evi
dence that multi-shell diffusion data can be leveraged to provide 
important advantages for studies of the developing brain. 

2. Methods 

2.1. Participant characteristics 

After quality assurance (section 2.3), we studied 120 participants 
between the ages of 12 and 30 years old (M ¼ 21.27, SD ¼ 3.36, 68 
females). Potential participants were excluded due to metallic implants, 
claustrophobia, pregnancy, acute intoxication, as well as significant 
medical and/or developmental conditions that could impact brain 
function. Parental consent and assent was obtained for minors partici
pating in the study (n ¼ 21; 18 after quality assurance). All protocols 
were approved by the University of Pennsylvania’s Institutional Review 
Board. 

2.2. Image acquisition 

All participants were imaged on a 3-Tesla Siemens MAGNETOM 
Prisma with a T1-weighted structural and diffusion-weighted scan. Our 
structural scan was a 3 min 28 s MPRAGE sequence with 0.9 � 0.9 � 1.0 
mm3 resolution (TR ¼1810 ms, TE ¼3.45 ms, inversion time ¼1100 ms, 
flip angle ¼ 9 degrees, acceleration factor ¼ 2). Our DWI sequence was a 
single-shot, multiband, multi-shell acquisition protocol (TR ¼3027 ms, 
TE ¼82.80 ms, flip angle ¼ 78 degrees, voxel size ¼ 1.5 mm3 isotropic, 
FOV ¼ 210 mm, acquisition time ¼6 min 12 s, multi-band GRAPPA 
acceleration factor ¼ 4, phase-encoding direction ¼ anterior to poste
rior) with 3 diffusion-weighted shells at b ¼ 300 s/mm2 (15 volumes), b 
¼ 800 s/mm2 (30 volumes), and b ¼ 2000s/mm2 (64 volumes). The 
sequence included 9 b ¼ 0 s/mm2 scans interspersed throughout. We 
also acquired a b ¼ 0 s/mm2 reference scan with the opposite phase- 
encoding direction (posterior to anterior) to correct for phase- 
encoding direction-induced distortions. 

2.3. Pre-processing and quality assurance 

Distortions induced by phase encoding were corrected using topup 
from the FMRIB Software Library (FSL; Jenkinson et al., 2012). 
Eddy-current distortions and in-scanner movement were corrected using 
eddy from FSL version 5.0.11 with both single slice and multiband 
outlier replacement (Jenkinson et al., 2012; Andersson et al., 2016, 
2017); this processing step also rotated the initial b-vectors from our 
sequence to align with estimated subject head motions. Motion-, 
distortion-, and eddy-corrected images served as the common input to 
all diffusion modeling methods. 

Following prior work, we quantified in-scanner motion using the 
root mean squared displacement over the course of the scan (mean 
relative RMS; Baum et al., 2018; Roalf et al., 2016). To ensure robustness 
of our findings across different measurements of diffusion image quality, 
we also quantified and assessed temporal signal-to-noise ratio (tSNR). 
Mean relative RMS displacement was calculated between the inter
spersed b ¼ 0 images, while tSNR was calculated from exclusively the b 
¼ 800 shell as in prior work (Roalf et al., 2016). Both metrics were 
calculated with publicly available tools (https://www.med.upenn.edu/c 
mroi/qascripts.html). Subsequently, three participants were removed 
for high in-scanner motion (mean relative RMS � 2.95 SD above the 
mean) and one participant was removed for low signal-to-noise ratio 
(tSNR ¼ 3.47 SD below the mean). Manual inspection of all T1 images 
led to one additional participant being removed for poor T1 image 
quality. 
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2.4. Overview of diffusion metrics 

We evaluated 14 diffusion metrics from three DWI modeling tech
niques. From DTI, we calculated fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD; Basser 
et al., 1994). In accordance with previous applications of DTI to 
multi-shell data, we fit the DTI model using only the shell where 
gaussian diffusion patterns were expected (b ¼ 800; Jones and Basser, 
2004). We also fit a DTI model to the entire multi-shell dataset using an 
iteratively reweighted linear least squares estimator tensor fit (Veerart 
et al., 2013), yielding a multi-shell version of each of the same 4 diffu
sion metrics. From NODDI, we calculated orientation dispersion indices 
(ODI), the intracellular volume fraction (ICVF), and the isotropic vol
ume fraction (ISOVF; Zhang et al., 2012). From MAPL, we evaluated the 
return-to-origin (RTOP), return-to-axis (RTAP), and return-to-plane 
(RTPP) probabilities (€Ozarslan et al., 2013; Fick et al., 2016a). 

2.4.1. DTI metrics 
DTI assesses the directionality and magnitude of water diffusion by 

assuming a Gaussian diffusion process in each voxel. DTI utilizes a 6 
degrees of freedom symmetric tensor model that is fit to the observed 
signal. Subsequently, the primary direction of diffusion in a voxel is 
calculated by finding the largest eigenvalue of the tensor. After tensors 
are fit to a voxel, FA, MD, AD, and RD can be calculated from the cor
responding eigenvalues. While MD is the averaged sum of these eigen
values (representing the average magnitude of water diffusion), AD is 
derived from only the largest eigenvalue (representing the primary di
rection of diffusion). RD is the average of the remaining two eigen
values, both representing eigenvectors orthogonal to the primary one. 
Finally, FA evaluates the magnitude of the eigenvalue associated with 
the primary direction of diffusion relative to the remaining eigenvalues. 
Thus, FA represents the fraction of anisotropy in a voxel aligned with a 
primary direction of diffusion. As diffusion shows increasing directional 
preference, FA increases (Soares et al., 2013; Basser et al., 1994). 

All DTI metrics were calculated in MRtrix3 using an iteratively 
reweighted linear tensor fitting procedure (Tournier et al., 2012; Veerart 
et al., 2013). As mentioned, we included FA, MD, AD, and RD derived 
from a DTI fit to all of the shells, as well as the same DTI metrics derived 
from the b ¼ 800 shell only. This processing choice was made to account 
for the possibility that the utility of including more diffusion directions 
was outweighed by the non-Gaussian contribution of high b-value 
acquisitions. 

2.4.2. NODDI metrics 
NODDI estimates the directional distribution of neurites (axons and 

dendrites) in a voxel, and then matches diffusion patterns to that dis
tribution. Like DTI, this model is informed by restriction of diffusion 
unaligned with neuronal fibers, and unhindered diffusion along their 
prominent axes. Unlike DTI, the introduction of a 3D neurite distribution 
allows for modeling diffusion restriction in fiber populations with 
dispersed orientations. 

NODDI attempts to parse the diffusion signal into discrete contri
butions of cellular compartments. The total signal is set to equal the sum 
of the contributions from each compartment, such that A ¼ ð1 � VisoÞ

ðVicAicþ ð1 � VicÞAecÞþ VisoAiso, where A is the full diffusion signal, Aic, 
Aec, and Aiso are the signal attributable to the intracellular, extracellular, 
and isotropic compartments, and Viso, Vic, and Vec represent the fraction 
of tissue volume attributable to the corresponding compartments. In 
order to assign diffusion signal to one of these compartments, the 
method assumes neurites can be modeled as zero-radius cylinders, or 
sticks. NODDI then fits an estimated distribution of these sticks to a 
spherical distribution, which captures the estimated spread of neurite 
orientations. ODI measures this spread, which ranges from 0 (non- 
dispersed) to 1 (highly dispersed). Aic is calculated with respect to this 
posited orientation dispersion in any given voxel. Intracellular signal is 
estimated by comparing the spherical distribution of neurite 

orientations with the distribution of unimpeded diffusion, yielding Vic, 
or the ICVF metric. Isotropic diffusion signal is attributed to a cerebro
spinal fluid compartment, which yields the ISOVF metric (Zhang et al., 
2012). Recent advances have markedly accelerated fitting the NODDI 
model; here we calculated NODDI using AMICO, which has been shown 
to accelerate fitting the NODDI model by several orders of magnitude 
without substantially impacting accuracy (Daducci et al., 2015). 

2.4.3. MAPL metrics 
Unlike tissue-based models such as NODDI, signal-based techniques 

seek to model the diffusion process directly and do not assume the 
separability of specific tissue compartments. In contrast to DTI, MAPL is 
not limited to representing diffusion as ellipsoids, and can therefore in 
theory capture arbitrary fiber configurations. MAP-MRI characterizes 
observed DWI signal as a linear combination of angular and radial basis 
functions. Once fit to the DWI signal, analytic transforms can be directly 
applied to estimate both the 3D diffusion propagator and the angular 
diffusion orientation distribution function (€Ozarslan et al., 2013; Walter, 
1977). Building on MAP-MRI, Fick et al. (2016a) recently introduced 
Laplacian-regularized MAP-MRI (MAPL). MAPL imposes additional 
smoothness on MAP-MRI’s coefficient estimation using the norm of the 
Laplacian of the reconstructed signal. This approach effectively penal
izes model fits with physiologically improbable high local variances, 
which are more likely to be artifactual than reflective of signals of in
terest (Descoteaux et al., 2007). The authors also demonstrated that this 
method reduces error over MAP-MRI in voxels with crossing fibers (Fick 
et al., 2016a). 

MAP-MRI and MAPL allow for quantification of the likelihood that 
diffusing molecules undergo zero net displacement in one, two, or three 
dimensions. More specifically, RTOP estimates the probability of water 
molecules undergoing no net displacement in any direction. RTAP es
timates the probability that molecules undergo no net displacement 
from their primary axis of diffusion; this axis typically represents the 
average neuronal tract direction within any given voxel (Assaf and Ofer, 
2008; Basser et al., 2000). Finally, RTPP estimates the probability that 
molecules are not displaced from their original plane perpendicular to 
the primary direction of diffusion, but is not sensitive towards move
ment of molecules within that plane (€Ozarslan et al., 2013). It is 
important to note that these values reflect probabilities but are not 
scaled to reflect formal probabilities in the range of 0–1 (Fick et al., 
2016a). We fit the MAPL model with a radial order of 8, without 
anisotropic scaling, using generalized cross-validation for determining 
optimal regularization weighting. We conducted model fitting and 
generated RTOP, RTAP, and RTPP with dipy, an open-source diffusion 
imaging toolbox in Python (Fick et al., 2016a; Garyfallidis et al., 2014). 

2.5. Structural image processing 

T1 images were processed using the ANTs Cortical Thickness Pipe
line (Tustison et al., 2014). Images were bias field corrected using N4ITK 
(Tustison et al., 2010), and brains were extracted from T1 images using 
study-specific tissue priors (Avants, Tustison, Wu, et al., 2011). We 
utilized a custom young-adult template constructed via the buildtem
plateparallel procedure in ANTs (Avants et al., 2011a, 2011b). A custom 
template was used due to evidence demonstrating the utility of custom 
templates in reducing registration biases (Tustison et al., 2014). The T1 
to template affine and diffeomorphic transformations were calculated 
with the top-performing symmetric diffeomorphic normalization (SyN) 
tool in ANTs (Klein et al., 2009). The transforms between T1 and the 
initial b ¼ 0 DWI images were calculated using boundary-based regis
tration with 6 degrees of freedom (Greve and Fischl, 2009). All trans
forms were concatenated so that only one interpolation was performed. 

2.6. Network construction 

Accumulating evidence suggests that structural brain networks 
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undergo substantial maturation during youth (Hagmann et al., 2010; 
Fan et al., 2011; Grayson et al., 2014; Baum et al., 2017; Uddin et al., 
2011; Baker et al., 2015). Accordingly, in addition to analysis of sum
mary measures and scalar maps, we evaluated each measure in the 
context of structural networks. Networks were constructed using the 
Schaefer 200 cortical parcellation (Schaefer et al., 2014). The parcella
tion was warped to the custom template, and then projected back to each 
subject’s T1 and native diffusion space using the inverse of each trans
form. Whole-brain connectomes were constructed by representing each 
of the 200 regions as a network node, while deterministic tractography 
was used to create network edges. Tractography was conducted in 
Camino (Cook et al., 2006) using the Euler tracking algorithm in native 
diffusion space (Basser et al., 2000). The intersections between gray and 
1mm-dilated white matter were used as both seed regions and termi
nation points for tractography. We used voxels defined as CSF by the 
segmented T1 image as termination boundaries for streamlines. Voxels 
defined as white matter by the segmented T1 image were used as an 
inclusion mask for streamlines, ensuring that streamlines had to pass 
through white matter. Additionally, we imposed a curvature restriction 
on all streamlines. Fibers determined to curve more than 60 degrees over 
a 5 mm interval were discarded in order to mitigate the impact of noise 
on tractography (Bastiani et al., 2012). Lastly, the mean value of each 
diffusion metric was calculated along each edge in this network; these 
values were used as edge weights between nodes connected via trac
tography. As higher values of ODI and ISOVF both indicate reduced 
anisotropic diffusivity, ODI and ISOVF values were transformed as 1 – 
ODI and 1 – ISOVF for weighted structural networks. Similarly, as higher 
MD and RD also indicate reduced anisotropy, their inverse values (1/RD 
and 1/MD) were utilized for weighting structural networks. 

2.7. Statistical analyses 

In order to determine how the spatial distribution of the different 
diffusion metrics covary, we first evaluated their spatial covariance 
within subjects across white matter. Specifically, within subjects, we 
calculated the Spearman’s ρ between each diffusion metric across all 
white matter voxels. To do so, we masked native-space diffusion images, 
vectorized diffusion metric values across voxels, and correlated the 14 
vectors for each participant. Metric by metric correlations were aver
aged across all participants. 

Next, we sought to evaluate the sensitivity of each diffusion metric 
for investigating neurodevelopment across four levels of features (see 
schematic in Fig. 1). First, we evaluated age associations with mean 
diffusion metric values within a global white matter mask. Second, we 
analyzed regional effects using a common white matter atlas (Mori et al., 
2008). Third, we conducted mass-univariate voxelwise analyses within 
white matter. Finally, we evaluated associations between age and edges 
within tractography-based structural networks. 

For all analyses, age effects were estimated with penalized splines 

and generalized additive models (GAMs; Wood, 2001, 2004) in R 
(Version 3.5.1) using the mgcv package (R Core Team, 2013; Wood, 
2011). To avoid over-fitting, nonlinearity was penalized using restricted 
maximum likelihood (REML). Sex and in-scanner motion were included 
as linear covariates. For voxel and edge-level analyses, statistical sig
nificance maps were thresholded at p < 0.001 (uncorrected). In order to 
identify periods of significant neurodevelopment, we quantified the 
slope of the spline fit for age in each GAM from its derivative. We 
operationalized the window of significant age-related change as the 
period at which the 95 % confidence interval of the spline’s estimated 
slope did not include 0. These calculations were conducted with the 
gratia package in R (Simpson, 2018). 

Additionally, to compare the strength of the age effects across met
rics, we calculated an estimate of effect size. As conventional effect size 
estimates are not available for smoothed terms in GAMs, we calculated 
effect sizes with polynomial models. We calculated the difference in 
variance explained (change in R2) between a model that included mo
tion and sex terms only and a model that also included polynomial age 
terms (linear, quadratic and cubic). As such, the reduced models took 
the form of y ¼ βHead Motionþ βSex. The full polynomial models were: y ¼
βHead Motion þ βSex þ βAge þ βAge

2 þ βAge3. In both models, y was the 
diffusion metric of interest. We calculated the change in R2 (ΔR2) be
tween the full and reduced model to provide an estimate of the com
bined effect size of both linear and non-linear age terms; this was applied 
to all diffusion metrics evaluated. 

In order to estimate the vulnerability of each metric to in-scanner 
motion, we calculated the correlation of each diffusion metric with 
our measurement of head motion. In order to remove age and sex effects 
from all head motion correlations, we first regressed out the effects of 
age and sex as estimated from GAMs to obtain model residuals. These 
residuals were then correlated with head motion. We used this corre
lation coefficient to quantify the relationships between each diffusion 
metric and head motion while controlling for common sources of 
variance. 

2.8. Code availability 

All analysis code is available at: https://github.com/PennBBL/m 
ultishell_diffusion. 

3. Results 

3.1. Measures of diffusion show differential patterns of covariance 

As an initial step, we investigated the relationships between all 
diffusion metrics of interest with Spearman’s correlations within white 
matter, and averaged these correlations across participants. This 
included correlations obtained when using a multi-shell DTI fit (Fig. 2A, 
top triangle), and single-shell DTI fits (Fig. 2A, bottom triangle). As 

Fig. 1. Analytic workflow. The DTI, NODDI, 
and MAPL models were fit to the same motion-, 
distortion-, and eddy-current corrected images, 
with the exception of the single-shell DTI fit, 
which only utilized the corrected b ¼ 800 data. 
The resulting scalar maps were evaluated for 
associations with both age and data quality at 
multiple levels of analysis, including mean white 
matter values, mean values within tracts, white 
matter voxels, and network edges reconstructed 
by deterministic tractography that were 
weighted by each metric.   
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expected, metrics of diffusion restriction were highly correlated with 
each other (i.e., FA, ICVF, and RTOP), and negatively correlated with 
metrics of diffusion dispersion (i.e., MD, ODI). In contrast, measures like 
RTPP demonstrated less systemic covariation with other metrics. Multi- 
and single-shell DTI metrics were generally quite similar (Fig. 2B), with 
MD being the least similar across shell schemes (r ¼ 0.73). Next, we 
sought to understand the differential utility of these measures of diffu
sion for studies of brain development. 

3.2. Associations with age vary by diffusion measure 

We evaluated the association of each diffusion metric with age at 
multiple scales. Specifically, we examined mean white matter values, 
mean values within white matter tracts, and high-resolution voxelwise 
mass-univariate analyses. While mean white matter values were signif
icantly associated with age across all 14 diffusion metrics, metrics that 
incorporated data from multiple shells tended to yield the largest age 
effect sizes (Fig. 3A, Table 1, Fig. S1). When we examined the fitted age 
trajectories, as expected, we observed that associations with age were 
strongest at the younger end of the age range sampled and diminished 
during the transition to adulthood (Fig. 3B). For most diffusion metrics, 
the slopes of the age effects were no longer significant by the early 20’s. 
ODI, ISOVF, and ssAD were notable exceptions in that their respective 
values significantly increased across the entire age range of our sample 
(Table 1, Fig. S2). 

Tractwise analyses revealed a similar pattern of effects to whole 
brain analyses, further suggesting enhanced developmental sensitivity 
of multi-shell derived metrics (Table S1). Voxelwise analyses within 
white matter yielded more heterogenous results. While some metrics 
demonstrated only sparse associations with age, RTOP, ICVF, and MD 
derived from all of the shells displayed widespread effects encompassing 
thousands of voxels (Fig. 4). 

3.3. Estimates of network development vary according to diffusion metric 

Given that tools from network science are increasingly used to study 
the developing brain, we next evaluated associations with age within 
networks where edges were weighted by diffusion metrics. These ana
lyses yielded similar results to the voxelwise analyses described above, 
with network edges weighted by ICVF, RTPP, msMD, and RTOP dis
playing the most associations with age (Fig. 5). 

3.4. Diffusion measures are differentially impacted by data quality 

As a final step, we sought to characterize the impact of motion on all 
diffusion metrics. Evaluation of mean white matter values revealed that 
several diffusion measures were related to head motion after controlling 
for age and sex, including FA, RD, ssMD, ODI, and ISOVF (Table 2, 
Fig. 6). We observed similar patterns at the voxel level, with MAPL 
metrics and AD being least impacted by motion. Analyses of networks 
weighted by each of these values revealed relatively similar associations 
with head motion across metrics, except for ISOVF, which had 118 edges 
significantly associated with head motion. 

4. Discussion 

Our findings suggest that diffusion models leveraging multi-shell 
data have important advantages for studying the developing brain. 
These advantages include increased sensitivity to developmental effects 
and reduced impact of in-scanner motion. Benefits of multi-shell data 
were present at multiple scales, including mean white matter values, 
white matter tracts, voxelwise analyses, and network edges. The context, 
implications, and limitations of these results are discussed below. 

4.1. Metrics derived from multi-shell data demonstrate superior sensitivity 
to brain development 

In our dataset, diffusion models that leveraged the full multi-shell 

Fig. 2. Measures of diffusion are differentially related. A. Average Spearman’s correlations between diffusion metrics in white matter. The top triangle depicts 
correlations derived from multi-shell DTI fitting, and the bottom triangle reflects correlations derived from single-shell fits. In the corresponding sampling schemes, 
the distance of each dot from the center of the sphere represents the b-value of a single volume, and the angle represents its b-vector. B. Average correlations between 
single and multi-shell DTI metrics. FA ¼ fractional anisotropy, MD ¼ mean diffusivity, AD ¼ axial diffusivity, RD ¼ radial diffusivity, ICVF ¼ intracellular volume 
fraction, ODI ¼ orientation dispersion index, ISOVF ¼ isotropic volume fraction, RTOP ¼ return-to-origin probability, RTAP ¼ return-to-axis probability, RTPP ¼
return-to-plane probability. 
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acquisition had strong associations with age. For some metrics, stronger 
age associations were present despite relatively high correlations with 
equivalent single-shell metrics (Fig. 2B). This discrepancy implies that 
the unique diffusion patterns captured by multi-shell measures may 
drive associations with age. Specifically, the “slow” diffusion elicited by 

higher b-values (Stanisz et al., 1997) may change more with age than 
water diffusion patterns observed at b-values typically used in 
single-shell sequences. Indeed, additional recent evidence also suggests 
that high b-value diffusion images may be more sensitive to age effects in 
many white matter tracts (Genc et al., 2020). Some metrics, like RTPP, 

Fig. 3. Diffusion models leveraging 
multi-shell data show variable associa
tions with age in white matter. A. 
Change in R2 after the addition of 
linear, quadratic, and cubic age terms 
for each diffusion metric. Models 
included head motion and sex as linear 
covariates. B. Relationships between 
mean white matter values and age, after 
controlling for sex and data quality. 
GAMs were leveraged to more precisely 
estimate linear and non-linear effects as 
one spline. The derivative of these 
splines, representing the estimated rate 
of change, are depicted below the x- 
axis. Shaded area indicates where the 
confidence interval of the slope does not 
include 0.   
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were robustly related to age but not highly correlated with other met
rics. Because RTPP may capture specific white matter properties, it 
could be particularly useful as a complementary measure in studies 
using multiple diffusion metrics to characterize microstructure (Cham
berland et al., 2019). 

The similar neurodevelopmental patterns observed across the ma
jority of diffusion metrics implicate a common pattern of microstruc
tural changes that plateau in the early 20’s. Prior work has strongly 
suggested continued myelination throughout adolescence and into 
adulthood (Lebel et al., 2008; Asato et al., 2010), and persistent mye
lination may, at least in part, explain developmental effects observed 
here. However, other important neurobiological factors can affect 
diffusion properties independent of myelination. Among other factors, 
increased axonal packing may also contribute to restricted diffusion over 
neurodevelopment (Neil et al., 2002; Beaulieu, 2002). 

In contrast to NODDI, MAPL, and DTI metrics derived from all shells, 
single-shell DTI metrics tended to demonstrate fewer age associations 
across all analyses. Although these metrics were calculated from less 
diffusion directions than their multi-shell counterparts, DTI-based neu
rodevelopmental inquiries have effectively characterized microstructure 
with far fewer sampling directions (Lebel et al., 2008). It is important to 
consider that the diffusion tensor model does not explicitly account for 
the non-gaussianity of water diffusion that is common at higher 
b-values. While our estimates of single-shell DTI, NODDI, and MAPL 
values aligned with previous literature (Lebel et al., 2008; Zhang et al., 
2012; Fick et al., 2016a), the combination of high b-value data and the 
DTI model likely produced the relatively low values of multi-shell DTI 
metrics. Despite limitations of using the DTI model with multi-shell data, 
most DTI-derived metrics fit using all shells demonstrated substantial 
associations with age, particularly MD. This indicates that complete 
fulfillment of the assumptions of gaussian diffusion underlying the 
diffusion tensor model may not be necessary for probing broad, albeit 
potentially non-specific, developmental effects. 

These results move beyond previous findings in several respects. To 
our knowledge, this is the first study to demonstrate that MAPL-derived 
metrics are highly sensitive to brain development in youth. RTOP, 
RTAP, and RTPP likely reflect multifaceted aspects of water diffusion 
becoming more restricted as the brain develops. Age-related changes in 
RTOP likely reflect aggregate water restriction from developmental 
factors like myelination and axonal packing (Aung et al., 2013; Beaulieu, 
2002; Feldman et al., 2010; Neil et al., 2002), as RTOP is equally sen
sitive to water movement in all directions in all voxels. However, the 
neurodevelopmental effects that RTAP and RTPP track may reflect more 

specific fiber geometry in addition to generalized diffusion restriction. 
RTAP tracks water displacement from the principal axis of diffusion in a 
voxel. In white matter voxels with unidirectional fiber populations, 
RTAP is thought to correspond to cross-sectional area of 
cylindrically-shaped cellular compartments. Conversely, RTPP tracks 
water displacement from the plane that is perpendicular to that prin
cipal axis of diffusion and may correspond to the length of cellular 
compartments along that axis (€Ozarslan et al., 2013). However, like DTI 
(Volz et al., 2018; Jeurissen et al., 2013; Wheeler-Kingshott and 

Table 1 
Statistical relationships between mean white matter values and age for each 
metric. The second and third columns contains the F-statistic and p-value 
derived from the penalized spline for age in each GAM. The fourth column 
contains change in R2 between polynomial models only accounting for sex and 
head motion effects and those that include age terms as well. The last column 
represents the age range at which the 95 % confidence interval for the estimated 
age effect does not include 0 in each GAM.  

Metric FAge pAge ΔR2 Age Spline Slope CI 6¼ 0 

msFA 4.24 0.034 0.116 12.7� 21.3 
msMD 14.04 1.20 � 10� 5 0.222 12.7� 22.9 
msAD 14.37 2.07 � 10� 5 0.184 12.7� 23.8 
msRD 10.33 2.16 � 10� 4 0.193 12.7� 22.4 
ssFA 4.91 0.018 0.136 12.7� 21.4 
ssMD 6.12 0.001 0.123 12.7� 22.2 
ssAD 6.57 0.012 0.061 NA 
ssRD 5.83 0.010 0.139 12.7� 21.9 
ICVF 18.23 3.41 � 10� 7 0.246 12.7� 23.0 
ODI 5.66 0.019 0.060 NA 
ISOVF 5.55 0.020 0.057 NA 
RTOP 15.20 2.77 � 10� 6 0.247 12.7� 22.4 
RTAP 13.17 1.64 � 10� 5 0.223 12.7� 22.4 
RTPP 13.87 1.01 � 10� 5 0.204 12.7� 22.6  

Fig. 4. Regional patterns of neurodevelopment are differentially associated 
with diffusion metrics. A. Number of voxels related to age (threshold of p <
0.001, uncorrected). B. The 7 diffusion metrics yielding the most voxels asso
ciated with age. Voxel color depicts age effect sizes (ΔR2) at each voxel. Note 
that the color bar only extends to 0.15 for equitable contrast across metrics, but 
many voxels demonstrated higher changes in R2 (msMDmax ¼ 0.44, ICVFmax ¼

0.30, RTOPmax ¼ 0.59). 
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Cercignani, 2009) and NODDI (Farooq et al., 2016), the neurobiological 
interpretation of MAPL metrics changes in voxels with crossing fibers. 
Efforts to explicitly model crossing fibers will undoubtedly play a role in 
disambiguating the relationship between diffusion metrics and fiber 
properties (Volz et al., 2018; Farooq et al., 2016; Raffelt et al., 2015). 

Second, our results demonstrate that multi-shell measures of struc
tural brain network connectivity, such as ICVF and RTPP, are more 
strongly associated with age than traditional FA-weighted networks. 
This result builds upon prior studies, which have shown that ICVF 
derived from NODDI is more strongly associated with age than tradi
tional measures such as FA (Chang et al., 2015; Genc et al., 2017; Ota 
et al., 2017), and that weighting streamlines with DTI and NODDI 
metrics may offer complementary information (Deligianni et al., 2016). 

As previous developmental studies have indicated, these advantages 
may be driven by greater biological specificity from multi-shell models 
(Chang et al., 2015; Eaton-Rosen et al., 2015; Mah et al., 2017; Timmers 
et al., 2016). Overall, the age associations we have presented across 
analyses emphasize the utility of multi-shell data for studying brain 
development. These advantages of multi-shell data likely stem from the 
ability to successfully capture differential tissue responses across 
b-values and the evolution of complex white matter architecture during 
development (Jeurissen et al., 2013; Volz et al., 2018). 

Fig. 5. Scalar-weighted structural networks show differential associations with age. A. Number of edges that displayed significant associations with age while 
controlling for sex and head motion. B. Associations between age and selected structural networks; thickness of edges is scaled to their transformed p-values, with 
lower p-values depicted by thicker edges. 
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4.2. MAPL metrics are less impacted by head motion than NODDI and 
DTI 

As children are more likely to move during scanning than adults, 
motion artifact remains a major concern for studies of brain develop
ment (Theys et al., 2014; Satterthwaite et al., 2012; Satterthwaite et al., 
2013; Fair et al., 2012). For diffusion imaging and other sequences, the 
primary determinant of scan quality for diffusion imaging is in-scanner 

head motion (Yendiki et al., 2014; Ling et al., 2012). Importantly, higher 
in-scanner motion was associated with reduced mean white matter FA, 
and increased MD, RD, ODI, and ISOVF while accounting for age. This 
finding aligns with prior reports of in-scanner motion systematically 
impacting DTI metrics (Yendiki et al., 2014; Ling et al., 2012; Roalf 
et al., 2016; Baum et al., 2018). 

However, to our knowledge there has been no prior work doc
umenting the impact of in-scanner head motion on ODI and ISOVF, or 
any measure derived from MAPL. ODI and ISOVF were both significantly 
positively correlated with in-scanner head motion. Investigators should 
consider and account for this confound when utilizing the NODDI 
model. Notably, measures derived from MAPL were minimally impacted 
by motion. This may be due to the Laplacian signal regularization in 
MAPL, which was designed to mitigate the impact of noise in DWI ac
quisitions. Especially when considered alongside the robust associations 
between MAPL-derived measures and age, noise-resistance may 
strengthen the rationale for using MAPL in studies of brain development. 

4.3. Limitations and future directions 

Several limitations should be noted. First, our results were only 
derived from one study. Replication of these results using multiple 
datasets, scanners, and acquisition schemes would strengthen evidence 
for the relative advantages of multi-shell models. Specifically, MAPL has 
typically been fit on data with b-value shells higher than 2000, raising 
the possibility that it may perform better in acquisitions with b ¼ 3000 
shells (including those used for the HCP and ABCD efforts) (€Ozarslan 
et al., 2013; Fick et al., 2016a; Casey et al., 2018). A second limitation of 
our study is the lack of cellular specificity, which is a limitation of all 
non-invasive imaging techniques. However, several ex vivo studies of 
NODDI have suggested a degree of histological correspondence (Schiling 
et al., 2018; Sato et al., 2017; Grussu et al., 2017). Notably, although 
MAPL is also sensitive to cellular-level properties, it does not use an 
explicit model of tissue compartments like NODDI. However, pre
liminary animal work has tied MAPL diffusion metrics to neurodegen
erative tissue abnormalities (Fick et al., 2016b). Third, we used 
deterministic DTI-based tractography to define streamlines, which re
sults in a sparse structural network biased towards major white matter 
tracts. While these network analyses demonstrated enhanced associa
tions with several diffusion metrics, networks constructed using 
multi-fiber tractography techniques might provide additional advan
tages (Maier-Hein et al., 2017; Reddy and Rathi, 2016; Farooq et al., 
2016; Christiaens et al., 2015; Bonilha et al., 2015). Finally, our study 
mainly included young adults and older adolescents. Studies of younger 
children would provide complementary data, as prior literature in 
younger ages has demonstrated dramatic changes in FA during child
hood and early adolescence (Lebel et al., 2008; Simmonds et al., 2014). 
Consequently, we anticipate that inclusion of younger participants could 
yield stronger FA-measured effects than those observed in our sample. 
Despite the relatively older age range of our sample, our results 
demonstrate that diffusion metrics incorporating tissue responses across 
multiple b-values are sensitive to protracted neurodevelopmental pro
cesses that single-shelled metrics may not be able to discern. 

4.4. Conclusion 

In summary, we provide novel evidence that diffusion metrics are 
differentially associated with age and motion in youth. Measures that 
are more tightly linked to brain maturation and less related to data 
quality are likely to be particularly useful for developmental studies or 
clinical samples. Through free open-access software, these advanced 
diffusion methods are relatively easy for investigators to implement 
(Alimi et al., 2018; Daducci et al., 2015; Fick et al., 2018; Garyfallidis 
et al., 2014). In the context of these results, we anticipate that 
multi-shell diffusion models will be increasingly adopted by the devel
opmental and clinical neuroscience community. 

Table 2 
Head motion and diffusion metric relations. All correlations were obtained after 
controlling for age and sex effects, and were derived from mean white matter 
values. Motion-metric relations were evaluated for statistical significance at the 
p < 0.001 level across all voxels and edges.  

Metric Global White 
Matter 
rrelRMS 

Global White 
Matter 
prelRMS 

# Voxels Related 
to motion 
(p<0.001) 

# Edges Related 
to motion 
(p<0.001) 

msFA � 0.30 7.8 � 10� 4 143 48 
msMD 0.17 0.070 116 52 
msAD � 0.07 0.452 57 49 
msRD 0.26 4.9 � 10� 3 220 51 
ssFA � 0.22 0.017 113 45 
ssMD 0.23 0.013 278 54 
ssAD 0.11 0.219 102 53 
ssRD 0.25 0.006 210 49 
ICVF 0.05 0.571 138 48 
ODI 0.40 7.7 � 10� 6 162 59 
ISOVF 0.39 1.33 � 10� 5 480 118 
RTOP � 0.03 0.726 54 42 
RTAP � 0.15 0.114 114 44 
RTPP 0.03 0.767 71 50  

Fig. 6. Mean measures of diffusion are differentially impacted by in-scanner 
motion. Selected measures displayed; see Table 2 for full results. All analyses 
control for age and sex. 
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