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thorax, which make the pressure necessary to maintain a

steady pulse noticeably lower.5 Dilated/aneurysmal major ves-

sels may have the potential risk of rupture during CPR in chil-

dren, especially emaciated children, as in this case.
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Hemodynamic Monitoring Options in COVID-19
To the Editor:

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), an RNA betacoronavirus, is a novel respiratory patho-

gen whose ominous progression has been implicated in disease

that ranges from respiratory failure and acute respiratory distress

syndrome (ARDS) to multi-organ dysfunction.1,2 Among the

most susceptible populations at risk for severe infection are

patients with cardiovascular comorbidities, such as hyperten-

sion, diabetes mellitus, coronary artery disease, and cardiomyop-

athy, who have a higher representation among nonsurvivors.2,3

Although pulmonary pathophysiologic processes undoubtedly
underlie the perilous coronavirus disease 2019 (COVID-19)

course, the emergence of cardiac injury later in the disease could

have major implications for outcomes. Markers of myocardial

injury, such as troponin and N-terminal pro-brain natriuretic pep-

tide (NT-proBNP), have been shown to increase rapidly in nonsur-

vivors.2,3 Although cardiovascular disease appears to predispose

some patients to COVID-19�related myocardial injury, acute

myopericarditis in the absence of prior disease has also been

described, even without signs of interstitial pneumonia.4 ARDS

mechanical ventilation with high positive end-expiratory pressure

(PEEP), along with the presence of intravascular thrombosis in the

setting of sepsis-induced coagulopathy, could increase susceptibil-

ity to pulmonary hypertension, right heart dysfunction, and end-

organ (eg, kidney) hypoperfusion.5 The risk of cardiovascular and

renal injury in conjunction with the importance of conservative

fluid management as a key tenet of ARDS treatment justifies the

need for judicious monitoring of intravascular volume status in the

COVID-19 cohort.6 We reflect on the clinical utility of select popu-

lar hemodynamic monitoring devices and suggest that the pulmo-

nary artery catheter (PAC) shows empirical promise as a validated

tool that maximizes monitoring capabilities and minimizes expen-

diture of hospital resources.

It is difficult to estimate intravascular volume with current

standard- of- care monitors, which could delay the timely iden-

tification of end-organ hypoperfusion and increase the risk of

morbidity and mortality. Pulmonary artery catheters (PACs)

can measure right atrial or ventricular pressures, pulmonary

arterial pressures, and continuous mixed venous oxygen satu-

ration (SvO2), in addition to having the capabilities to estimate

systemic vascular resistance (SVR) and pulmonary vascular

resistance (PVR), as well as cardiac output (CO) (Table 1).7

Together, these parameters could provide valuable information

about volume status and cardiac function. Patients afflicted

with pulmonary hypertension or right- heart dysfunction sec-

ondary to coagulopathy could benefit from PAC-based man-

agement of discordant right and left ventricular failure under

the guidance of PVR, right ventricular ejection fraction

(RVEF), and SvO2.
5,8 High PVR, low RVEF, and low SvO2,

for instance, might suggest a need for inotropes. Furthermore,

accurate estimations of stroke volume could also help avert

pre-renal kidney injury. However, we recognize that PA cathe-

terization is not without its limitations and risks. High intratho-

racic pressures in the setting of a high PEEP strategy to

improve oxygenation in ARDS could lead to overestimation of

left ventricular volumes based on PA diastolic pressures. High

PEEP could also theoretically increase the risk of PA perfora-

tion, one of the most feared complications of PAC use. In addi-

tion, the effectiveness of PAC-derived data in significantly

altering clinical outcomes still remains equivocal.9 Neverthe-

less, we propose that the PAC maximizes resource use in the

COVID-19 ICU arena by providing continuous assessments of

intravascular volume and cardiac function while limiting staff

exposure and personal protective equipment (PPE) usage.

The past 3 decades have seen the emergence of alternative

devices to PACs, which are thought to provide similar hemody-

namic information in a minimally invasive manner. Minimally

invasive technologies can use principles of transpulmonary
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Table 1

Technologies Available for Hemodynamic Monitoring in COVID-19 Patients

Monitoring Device Measurement Method Parameters Major Advantages Major Disadvantages

PAC Thermodilution Measurements: right atrial

and ventricular pressures,

PAP, PCWP, SvO2

(continuously with

specialized PACs)

Calculations: CO, SVR,

PVR, RVEF

Provides numerous variables

to gauge volume status and

cardiac function; minimizes

expenditure of hospital

resources; reliable in ARDS

management

High PEEP could lead to

overestimation of LV

volume by increasing

PADP; invasive monitor

with risk of PA perforation;

equivocal effectiveness in

altering clinical outcomes

PiCCO TPTD, pulse wave analysis CO, SV, SVV, PPV

Volumetric assessments:

GEDV, EVLW, PVPI

Continuous, accurate CO

relative to PAC; provides

volumetric measures of

preload (GEDV) and

pulmonary edema (EVLW,

PVPI); associated with

favorable ARDS outcomes

Invasive monitor that requires

CVC and arterial catheter*

LiDCO Transpulmonary lithium dye

dilution, pulse wave

analysis

CO, SV, SVV, PPV Continuous, accurate CO

relative to PAC; requires

arterial catheter without the

need for CVC

Unreliable with use of muscle

relaxants; not yet examined

in ARDS management*

FloTrac Pulse wave analysis CO, SV, SVV, PPV Easy-to-use, operator-

independent system

Accuracy of CO remains

equivocal, especially in the

setting of low SVR; SVV is

poorly predictive of volume

responsiveness*

NICOM Thoracic bioreactance CO, SV, SVV Continuous, accurate CO that

correlates with fluid

responsiveness, irrespective

of hemodynamic instability

or arrhythmias;

noninvasive device that

uses electrodes

Not yet examined in ARDS

management

Esophageal Doppler Doppler ultrasound in the

esophagus at 45˚ relative to

the descending aorta

CO, SV Accurate assessment of CO

and fluid responsiveness;

provides invaluable

information about preload,

afterload, and contractility

Expertise required because

improper positioning of the

esophageal probe can

underestimate CO

Echocardiography

(transthoracic,

transesophageal)

2D and 3D imaging; pulsed

wave Doppler

CO; dynamic parameters of

volume responsiveness, ie,

respiratory variations in

venocaval size, as well as

changes in ventricular size,

LVOT, VTI, and LV filling

pressure

Detects numerous

pathophysiological states,

such as wall motion

abnormalities, LV diastolic

dysfunction, and pericardial

effusions

No continuous monitoring;

expertise required

Abbreviations: CO, cardiac output; CVC, central venous catheter; EVLW, extravascular lung water; GEDV, global end-diastolic volume; LiDCO, lithium dilution

cardiac output; LV, left ventricle; LVOT, left ventricular outflow tract; NICOM, noninvasive cardiac output monitoring; PAC, pulmonary artery catheter; PADP,

pulmonary artery diastolic pressure; PAP, pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure; PEEP, positive end-expiratory pressure;

PiCCO, pulse index contour cardiac output; PPV, pulse pressure variation; PVPI, pulmonary vascular permeability index; PVR, pulmonary vascular resistance;

RVEF, right ventricular ejection fraction; SvO2, mixed venous oxygen saturation; SV, stroke volume; SVV, stroke volume variation; SVR, systemic vascular

resistance; TPTD, transpulmonary thermodilution; VTI, velocity-time integral.

* Pulse contour analysis may be less accurate in the setting of arrhythmias, valve pathology, intracardiac shunts, and extracorporeal circulation.
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thermodilution or indicator dye dilution in addition to arterial

waveform variation analysis from arterial catheters. These mon-

itors gauge cardiac function through estimations of cardiac out-

put; they can also evaluate intravascular volume status and

likelihood of response to a fluid challenge through stroke- vol-

ume variation (SVV) and pulse- pressure variation (PPV).10

Examples include the pulse index contour cardiac output

(PiCCO), lithium dilution cardiac output (LiDCO), and FloTrac

devices (Table 1). The PiCCO system is unique in its ability to
provide volumetric assessments of preload (global end-diastolic

volume) and pulmonary edema (extravascular lung water, pul-

monary vascular permeability index).11 PiCCO guidance may

be associated with a shorter duration of respiratory support and

faster recovery of PaO2-to-FiO2 ratios in ARDS patients, per-

haps because optimization of extravascular lung water serves as

a positive prognostic factor.12,13 The LiDCO system provides

comparable CO measurements to PACs, but unlike the PiCCO,

it has not been examined in ARDS patients managed with a
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high PEEP strategy; furthermore, the LiDCO is not reliable in

the setting of muscle relaxation, given that quaternary ammo-

nium ion-based agents may interfere with the lithium sen-

sor.10,14 The FloTrac monitor has also gained popularity as an

easy-to-use, operator-independent system, but the accuracy of

FloTrac-derived CO measurements remains equivocal.15 Fur-

thermore, unlike the PiCCO and LiDCO monitors, the FloTrac

system may not be reliable in septic patients with low SVR, nor

could FloTrac-derived SVV be used for fluid optimization, as it

is poorly predictive of volume responsiveness.10

Noninvasive monitors rely on quantification of thoracic

impedance variability, ultrasound imaging, and measurement

of velocity-time integrals from Doppler signals to provide

information about CO (Table 1). The noninvasive cardiac

output monitoring (NICOM) device analyzes phase shifts in

the voltage of electrical impulses passed between electrodes

on either side of the body; it provides accurate CO values in

mechanically ventilated patients that correlate with fluid

responsiveness, irrespective of hemodynamic instability or

arrhythmias, although it has yet to be studied in the context

of ARDS management.10 Ultrasound-based technologies,

such as esophageal Doppler and echocardiography, have

mass appeal, as they are also reliable in their real-time assess-

ment of CO and fluid responsiveness.10 Transthoracic and

transesophageal echocardiography provide key information

on ventricular function and dynamic parameters of volume

responsiveness, such as respiratory variations in venocaval

size, and changes in ventricular size, left ventricular outflow

tract velocity-time integral, and left ventricular filling pres-

sure.10,16 However, these monitors are limited by their inter-

mittent nature and the need for expertise in proper ultrasound

beam alignment relative to the structures of interest or direc-

tion of blood flow. In comparison to PAC use, the application

of echocardiography to gauge intravascular fluid status would

likely result in increased traffic of healthcare workers to and

from the rooms of COVID-19 patients, along with more fre-

quent use of PPE.

The armamentarium of hemodynamic monitoring devices

should be exploited to augment therapeutic tactics for conser-

vative fluid management in a population that is vulnerable to

sustaining multi-organ injury. The PAC is a promising option

that maximizes monitoring capabilities while limiting expo-

sure of healthcare workers and depletion of highly coveted

PPE. The PiCCO may be a viable less-invasive alternative as

it has been studied in trials of ARDS patients previously,

while other monitors still have questionable accuracy and/or

applicability in ARDS management with a high PEEP strat-

egy. The COVID-19 landscape should serve as a launching

pad for randomized controlled trials to evaluate whether

device-driven management promotes beneficial patient out-

comes.
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