Skip to main content
. 2020 Jan 17;4(2):1006–1016. doi: 10.1093/tas/txaa007

Table 3.

The results of three experiments comparing the weight of feed removed and measured on a calibrated scale (control) and the measured weight reported by the automated feeding system (feeder)

Experiment 1 Experiment 2 Experiment 3
Control Feeder Control Feeder Control Feeder
Paired t-test for overall relative bias
Number of observations 713 713 151 151 212 212
Mean, g 206.65 206.46 194.14 194.48 194.27 191.84
SD, g 150.09 148.65 132.25 132.74 134.61 133.44
SE, g 5.62 5.57 10.76 10.80 9.25 9.16
Mean bias, g ± SE 0.198 ± 0.515 0.344 ± 0.423 2.425 ± 1.515
95% CI for mean −0.814, 1.209 −1.181, 0.492 −0.562, 5.411
P-value 0.701 0.417 0.111
Bland–Altman plot analysis, difference = control − feeder
Mean difference, bias −1.805 0.383 0.723
95% CI for mean difference −3.525, −0.08557 −1.104, 1.869 −4.54, 5.986
Slope difference vs. average, ± s.e. 0.0097 ± 0.0034 −0.003742 ± 0.0032 0.00881 ± 0.0114
95% CI for slope 0.002946, 0.01645 −0.01007, 0.002587 −0.01362, 0.03125
P-value 0.005 0.245 0.439
Limits of agreement
Lower 95% limit, slope in brackets −11.442 (−0.01792) −6.684 (−0.004925) −11.835 (−0.01439)
Upper 95% limit, slope in brackets 7.831 (0.03731) 7.449 (−0.002558) 13.280 (0.03202)
Geometric mean functional regression, x = control, y = feeder
Constant, mean bias 1.792 ± 0.8686 −0.3831 ± 0.7542 −0.7311 ± 2.655
95% CI for constant 0.08703, 3.497 −1.873, 1.107 −5.966, 4.503
Slope 0.9904 ± 0.0034 1.0037± 0.0032 0.9913 ± 0.0112
95% CI for slope 0.9837, 0.9970 0.9974, 1.010 0.9691, 1.013
P-value 0.005 0.246 0.438
Correlation and reproducibility
Correlation coefficient, r 0.9958 0.9992 0.9865
P-value <0.001 <0.001 <0.001
Lin’s concordance correlation coefficient 0.9958 0.9992 0.9863
95% CI 0.9951, 0.9963 0.9989, 0.9994 0.9821, 0.9895
Bias correction factor; Cb 1.0000 1.0000 0.9998