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Ribosome biogenesis is the fine-tuned, essential process that generates mature riboso-
mal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of
ribosome biogenesis continue to be discovered in higher eukaryotes. While many known
regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs
(miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory
layer controlling ribosome production. Here, we summarize work uncovering non-coding
RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to
diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or
lncRNAs are involved in phenotypic or pathological disease outcomes caused by
impaired ribosome production, as in the ribosomopathies, or by increased ribosome pro-
duction, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribo-
some biogenesis will be discovered, which will be followed by an effort to establish
connections between disease pathologies and the molecular mechanisms of this add-
itional layer of ribosome biogenesis control.

Introduction
Ribosome biogenesis is the essential, complex, and tightly regulated process in which large and
small ribosomal subunits are assembled. This process accounts for the majority of energy usage in
a eukaryotic cell (reviewed in [1,2]). Throughout this process, the co-ordinated effort of all three
RNA polymerases (RNAPI, II, III), ∼80 ribosomal proteins (RPs), and over 200 assembly factors
(AFs) is required (Figure 1). Ribosome biogenesis starts in the nucleolus when RNAPI engages
tandemly repeated ribosomal DNA (rDNA) arrays to transcribe the polycistronic precursor riboso-
mal RNA (rRNA). In humans, this 47S pre-rRNA is processed to generate the mature 18S, 5.8S,
and 28S rRNAs, which are modified by C/D and H/ACA box small nucleolar ribonucleoproteins
(snoRNPs) to undergo 20-O-methylation and pseudouridylation, respectively. The mature rRNAs
are assembled with the RNAPIII-transcribed 5S rRNA and RPs to form the 40S (18S and small
RPs) and 60S ribosomal subunits (28S, 5.8S, 5S, and large RPs) that translate messenger RNAs
(mRNAs) into polypeptides in the cytoplasm. More in-depth regulation of ribosome biogenesis
continues to be discovered, including regulation by micro and long non-coding RNAs (Figure 1;
Tables 1 and 2).

miRNAs and ribosome biogenesis
Canonical microRNA biogenesis and target regulation
MicroRNAs (miRNAs or miRs) are a class of short (∼21 nucleotide, nt) non-coding RNAs (ncRNAs)
that post-transcriptionally regulate mRNA stability and translatability. Canonical miRNA biogenesis is
well-studied; typically, a primary miRNA (pri-miRNA) transcript is synthesized by RNAPII from a
miRNA gene and then undergoes two processing steps before being loaded into the Argonaute
protein (AGO) to form an active RNA-induced silencing complex (RISC) (Figure 2A). The active
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silencing complex binds mRNA transcripts at a site usually within the 30UTR of the targets. Based on the
degree of miRNA:mRNA complementarity, RISC can induce transcript destabilization or translational repres-
sion (low complementarity) or transcript cleavage (high complementarity) (Figure 2B), thereby down-
regulating target expression post-transcriptionally [3,4].

Figure 1. Ribosome biogenesis is regulated at multiple steps by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).

The pre-rRNA is transcribed by RNAPI (red) and the 5S rRNA is transcribed by RNAPIII (blue). Pre-rRNA is processed in a series of

steps to remove the external and internal transcribed spacer sequences (50 ETS and 30 ETS; ITS1 and ITS2). The rRNAs are

assembled with ribosomal proteins (RPs) with assistance from assembly factors (AFs) to make the mature 40S ribosomal subunit (in

red; 18S rRNA) and 60S ribosomal subunit (in blue; 28S, 5.8S and 5S rRNAs) to translate mRNAs in the cytoplasm. Control by the

indicated miRNAs (left) and lncRNAs (right) can activate (green pointed arrow) or inhibit (red bar-headed arrow) specific steps in

ribosome biogenesis.
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Table 1. MicroRNAs and microRNA machineries involved in ribosome biogenesis Part 1 of 2

MicroRNA

Ribosome
biogenesis steps
controlled

Regulation
of ribosome
biogenesis

mRNA
targets Molecular function

Associated
phenotypes or
diseases Ref.

miR-504 pre-rRNA
transcription

Negative TP53 miR-504 is a mirtron of
FGF13 that targets TP53,
derepressing transcription of
FGF13 and dampening
pre-rRNA synthesis. TP53
protein represses
transcription of miR-504 and
FGF13. FGF13 represses
pre-rRNA transcription in the
nucleolus, which may mitigate
oncogene-associated
proteotoxic stress.

Cancer (Figures 1 and 3A)
[25]

miR-24,
miR-130a,
miR-145

pre-rRNA
transcription, RP
gene transcription
(indirectly via MYC
down-regulation)

Negative MYC RPL5, RPL11, and RPS14
facilitate miRNA-mediated
translational repression of
MYC mRNA.

Cancer (Figure 3B) [29-32]

Let-7 family pre-rRNA
transcription, RP
gene transcription
(indirectly via MYC
down-regulation)

Negative MYC, HRAS RPL22 knockdown
up-regulates LIN28B and
decreases mature levels of
Let-7 miRNA paralogs,
unsilencing MYC and HRAS
oncogenes.

Cancer, Diamond–
Blackfan anemia

[33]

miR-7641 RP gene
transcription

Negative RPS16,
TNFS10; other
RPs indirectly

Inhibition of miR-7641
sensitizes cancer cells,
improving doxorubicin
apoptotic response.
miR-7641 mimic reduces
levels of RPS16 directly and 8
other RPs indirectly.

Cancer (Figure 1) [36]

miR-7 (Chinese
hamster ovary
cells)

pre-rRNA
transcription and
processing
(indirectly via Akt
pathway)

Negative Possible direct
targets:
STRN3, CALU,
CNN3, BMS1,
among others

miR-7 depletion in Chinese
hamster ovary (CHO) cells
unleashes cell proliferation
and antibody production via
derepression of the Akt
pathway and ribosome
biogenesis.

miR-7 depletion
increases
proliferation and
antibody
production

(Figure 1) [42]

miR-424-5p pre-rRNA
transcription

Negative POLR1A,
UBTF, RRN3,
SMAD7,
CDC25A

Ribosome-related
miR-424-5p targets including
POLR1A and UBTF were
found by Ago2 pulldown.
miR-424-5p overexpression
reduces muscle size in mice.

COPD,
sarcopenia,
muscle loss in ICU
and aortic surgery
patients

(Figure 1) [49]

miR-595 60S assembly;
induces nucleolar
stress response

Negative RPL27A miR-595 reduces RPL27A
levels, inducing TP53
activation, nucleolar structural
disruption, and blockade of
erythroid proliferation and
differentiation. Conversely,
RPL27A overexpression leads
to enhanced proliferation.

Myelodysplasia (Figure 1) [47]

miR-145,
miR-146a

Effects on ribosome
biogenesis unclear;

Unclear TIRAP, TRAF6 Codepletion of miR-145 and
miR-146a activates the innate
immune response via IL-6

5q- syndrome
ribosomopathy
(myelodysplasia)

[46]

Continued
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Noncanonical miRNA sources
While most miRNAs originate from independently transcribed miRNA genes, many noncanonical miRNA
sources have been discovered. Mature miRNAs can be processed out of endogenously transcribed intron lariats
(mirtrons), short hairpin RNAs (shRNAs), transfer RNAs (tRNAs), and small nuclear and nucleolar RNAs (sn-
and snoRNAs) [3]. Notably, miRNA-like molecules interchangeably called small rDNA-derived RNAs or
rRNA-hosted miRNA analogs (srRNAs or rmiRNAs) derive from precursor and mature rRNAs through poorly
understood mechanisms (Figure 2C) [5,6]. srRNA/rmiRNA generation is likely not due to random degradation
but rather controlled processing that creates stable srRNA products, and may be Drosha-dependent or inde-
pendent [6–8]. Functionally, rmiRNAs have been shown to bind AGO proteins and are implicated in the regu-
lation of various metabolic and developmental pathways. srRNAs in fly and human cells associate with AGO
complexes [7]. Differential hepatic srRNA expression was observed in diabetic mice, and specific srRNAs were

Table 1. MicroRNAs and microRNA machineries involved in ribosome biogenesis Part 2 of 2

MicroRNA

Ribosome
biogenesis steps
controlled

Regulation
of ribosome
biogenesis

mRNA
targets Molecular function

Associated
phenotypes or
diseases Ref.

miRNAs associated
with ribosomopathy

and phenocopies 5q-
syndrome at the cellular level,
leading to thrombocytosis
and megakaryopoesis.

Zebrafish miRs
(dre-miR-125c,
dre-miR-140*,
dre-miR-2191,
dre-miR-30b,
dre-miR-459*)

Effects on ribosome
biogenesis unclear;
miRNAs associated
with ribosomopathy

Unclear Unidentified miRs associated with a
RPL5-deficient zebrafish
model of Diamond–Blackfan
anemia were identified
bioinformatically.

Zebrafish model of
Diamond–Blackfan
anemia

[48]

miR-369-3p,
Let-7, miRcxcr-4
(synthetic)

Translational
efficiency

Positive TNF, HMGA2,
CX synthetic
transcript

MicroRNAs can induce
translation of targets by
binding 30 UTR AU-rich
elements (AREs). Requisite
FXR1 interacts with AGO2 to
mediate increased translation
efficiency. The
translation-activating
FXR1a-associated miRNP
binds the 30UTR of targets
with shortened poly(A) tails.

Activation of
translation of
ARE-containing
mRNAs

(Figure 1,
translation-activating
miRNAs) [52,54]

miR-10a Translational
efficiency

Positive RPS: 2, 6, 16,
18, 20
RPL: 9, 13A,
15, 23

miR-10a directly binds RP
mRNA downstream of 50TOP
motif in 50 UTR.
Overexpressing miR-10a
increases mature rRNA levels,
protein synthesis, and 3T3
cell proliferation, while
inhibiting miR-10a has an
opposite effect.

Increased RP
levels and global
translation

(Figures 1 and 3C)
[55]

Dicer and Drosha Translational
efficiency

Positive Senescent cells have lower
translation, though mRNA
levels do not change
significantly. Dicer and Drosha
expression is lower in
senescent cells, and Dicer/
Drosha knockdown
recapitulates translation
down-regulation and mRNA
changes observed in
senescent cells.

Cellular
senescence

[102]
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found to modulate transcription of regulators of gluconeogenesis in mouse hepatoma cells [7]. Several human
rmiRNAs were predicted to target stress- and cancer-related pathways [6], and differential rmiRNA expression
has been observed upon heat stress in rice [9] and wheat [10]. In zebrafish, rmiRNAs mapping to the 18S and
28S rRNAs were found to be critical for early embryogenesis [8] and blood vessel formation [11], respectively.
Additionally, differential spatiotemporal transcription of rDNA sequence variants may also alter rmiRNA
expression [8,12]. Novel rRNA-derived miRNAs exemplify the emerging connection between miRNAs and
ribosome biogenesis, underscoring how diverse cellular processes can be modulated by miRNAs that interact
with ribosome production.

Figure 2. Biogenesis and function of microRNAs (miRNAs).

(A) Canonical generation and activation of cellular miRNAs. In most cases, a primary miRNA transcript (pri-miRNA) containing the

mature miRNA sequence is synthesized by RNAPII from a miRNA gene. Nuclear processing of the pri-miRNA by a microprocessor

complex containing Drosha and DGCR8 results in a trimmed intermediate precursor hairpin (pre-miRNA), which is exported to the

cytoplasm for secondary processing by Dicer endonuclease to generate the mature miRNA duplex. Argonaute (AGO) protein binds

the miRNA duplex to form an active RNA-induced silencing complex (RISC), retaining the ‘guide’ strand and expelling the

‘passenger’ strand (miRNA*) for degradation. Guide strand choice depends on conformational energetics of loading the mature

duplex into Argonaute. (B) miRNA-mediated post-transcriptional mRNA regulation depends on target complementarity. The active

silencing complex is targeted to mRNA transcripts via complementary hybridization with the 6-base seed region of the loaded

miRNA guide, usually at a site within the 30UTR of the targets downstream of the coding sequence (brown). Based on the degree

of miRNA:mRNA complementarity, RISC can induce translational repression, transcript destabilization, or transcript cleavage,

thereby down-regulating target expression post-transcriptionally. Low complementarity causes mRNA poly(A) deadenylation and

reduces translation efficiency, while high complementarity can trigger endonucleolytic target degradation (slicing). (C) rRNA-hosted

miRNAs are stably generated and control diverse cellular processes and outcomes. Small rDNA-derived RNAs or rRNA-hosted

miRNA analogs (srRNAs or rmiRNAs) are produced from functional (18S and 28S) and nonfunctional (50 ETS) regions of the 47S

pre-rRNA transcript. The mechanisms for rmiRNA production are poorly understood, but are not likely to be due to random

degradation. Mature rmiRNAs have been observed to control diverse developmental, metabolic, and stress pathways.
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Nucleolar miRNAs
Dozens of miRNAs are stably enriched in the nucleolus in a variety of human and mammalian cell lines, and
their localization is resistant to RNAPI transcription inhibition or other cellular and nucleolar stresses [13–15].
These nucleolar miRNAs may have diverse noncanonical biological roles including direct regulation of riboso-
mal subunit formation [16] or rRNA synthesis [17], the protected formation of pre-silenced miRNA:mRNA
pairs away from the crowded and competitive cytoplasm [18], mediation of a defensive response to exogenous
genetic material [14], or even targeting for deactivation by nucleolar deaminase editing [13]. These initial
observations warrant additional follow-up to better define the identities and roles of nucleolar miRNAs. For a
more extensive discussion of miRNAs localized to the nucleolus, we refer the reader to a brief review by
Catalanotto et al. [19].

Direct down-regulation of miRNA targets in ribosome biogenesis
A growing cadre of disease-associated miRNAs have been shown to control components, subprocesses, or regu-
lators of ribosome biogenesis (Figure 1, Table 1). Dysregulation of miRNA expression correlates with the pro-
gression of many types of cancer [20,21], and the link between cancer and ribosome biogenesis is
well-established [22]. We review recent publications that consider (1) direct interplay among cancer, ribosome
biogenesis and miRNAs holistically and (2) miRNAs regulators of ribosome biogenesis in ribosomopathies and
in chronic obstructive pulmonary disease (COPD).

Upstream control of ribosome biogenesis via miRNA-mediated control of TP53, MYC,
and oncogenesis
The well-studied cancer switches TP53 and MYC sit as regulatory endpoints of several miRNAs [23] and are
intimately connected with ribosome biogenesis [22,24]. A genetic circuit encompassing hsa-miR-504, the nucle-
olar protein isoform FGF13 1A, and genome guardian TP53 attenuates ribosome biogenesis in a manner pro-
moting cell survival in models of oncogenic escape (Figures 1 and 3A) [25]. miR-504 is an FGF13 mirtron that
targets TP53, although constitutive transcription of the FGF13/MIR504 locus itself is negatively regulated by
TP53 via understudied mechanisms. Concerted up-regulation of FGF13 1A and miR-504 represses pre-rRNA
transcription and TP53 translation, in turn attenuating global protein synthesis, oncogenic proteotoxic and oxi-
dative stress, and tumor cell apoptosis.
Several RPs are necessary for miRNA-mediated regulation of the MYC oncogene, which itself controls tran-

scription of rDNA, RPs, AFs, and translation initiation factors [24]. uL5 (RPL11), uL18 (RPL5), and uS11
(RPS14), which stabilize TP53 in the nucleolar stress response [26–28], have been shown to escort the armed
RISC complex to MYC transcripts for silencing by hsa-miR-24 [29,30] or hsa-miR-145 (Figure 3B) [31]. UV
irradiation also induces uL5-guided MYC repression by hsa-miR-130a [32]. Via LIN28B, eL22 (RPL22) indir-
ectly controls maturation of hsa-miR-let-7 family paralogs [33] that repress MYC, KRAS, HMGA1 and
HMGA2, and other oncogenes [34,35].
Additionally, miRNAs affecting cancer treatment outcomes or oncogene expression have links with ribosome

biogenesis. hsa-miR-7641 has been shown to repress uS9 (RPS16) directly and eight other RPs indirectly, and
miR-7641 depletion sensitized breast and colon cancer cells to doxorubicin-induced apoptosis (Figure 1) [36].
The tumor suppressor hsa-miR-7-5p, which has been reported to target oncogenic EGFR, BCL2 [37], RELA
(p65) [38], among others [39–41], may also play a role in down-regulating ribosome biogenesis. Depletion of
the miR-7 homolog in Chinese hamster ovary (CHO) cells unleashed cell proliferation and antibody produc-
tion, correlating with derepression of ribosomal assembly factor BMS1 and Akt pathway activators STRN3 and
Ezrin (Figure 1) [42]. Overall, miRNAs can fine-tune the balance between proliferation and oncogenesis by
modulating upstream regulators of ribosome biogenesis such as TP53 and MYC, as well as other oncogenes,
RPs, and AFs downstream of pre-rRNA transcription.

MicroRNA dysregulation in ribosomopathies
Ribosomopathies are diseases of impaired ribosome biogenesis that result in tissue-specific defects in affected
patients. Interruption of particular ribosome biogenesis subprocesses have been shown to cause a wide range of
clinical presentations including anemia, leukemia, neutropenia, craniofacial defects, cancer, and other diseases
of major organs [43–45]. miRNAs are involved in two classical hematological ribosomopathies, myelodysplastic
syndrome (MDS) and Diamond–Blackfan anemia (DBA). As part of the 5q- MDS deletion, hsa-miR-145 and
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hsa-miR-146a [46] are lost, while deletion of hsa-miR-595 occurs in –7/7q- MDS [47]. In murine hematopoi-
etic progenitor cells, codepletion of miR-145 and miR-146a homologs relieved repression of TIRAP and
TRAF6, activating the innate immune response via IL-6 and leading to 5q- syndrome-like thrombocytosis and
megakaryopoiesis [46]; these features were mirrored in similar experiments on patient bone marrow. miR-595
silences RPL27A resulting in TP53 activation, disruption of nucleolar architecture independent of TP53, reduc-
tion of mature 60S subunits, and blockade of erythroid proliferation and differentiation (Figure 1) [47].
RPL27A derepression enhanced proliferation in cell lines and was observed in –7/7q- MDS patients, though the
authors cite the need for further translational studies [47]. Finally, tens of miRNAs were found to be differen-
tially expressed in RP-depleted zebrafish models of the ribosomopathy DBA [48]. Potential targets of the
up-regulated miRNAs were enriched for functions in transcriptional regulation and neuronal and cellular devel-
opment. It will be of interest to reexamine other ribosomopathies for miRNAs important for pathogenesis.

Figure 3. Examples of miRNA-mediated control of ribosome biogenesis.

(A) hsa-miR-504 regulates TP53 levels and pre-rRNA transcription. miR-504 is generated from an FGF13 intron (exons in

brown, miR-504 mirtron in green) and targets TP53 transcripts. Through an uninvestigated mechanism, TP53 protein dampens

constitutive transcription of the FGF13/MIR504 locus. FGF13 up-regulation increases levels of miR-504 and the nucleolar

protein isoform FGF13 1A, repressing TP53 translation and pre-rRNA transcription. This results in attenuation of global

translation, reduction in oncogenic proteotoxic and oxidative stress, and decreased tumor cell apoptosis. (B) RPL5, RPL11,

and RPS14 enable miRNA silencing of MYC. RPL5, RPL11, and RPS14 (blue) can bind the 30UTR of MYC transcripts, and can

guide active RISC complexes (yellow) loaded with miRNAs targeting MYC (green) to the mRNA. This RP-guided,

miRNA-mediated MYC repression modulates cell cycle progression and proliferation, and attenuates ribosome biogenesis

indirectly. (C) hsa-miR-10a enhances RP translation efficiency by binding 50TOP mRNAs. miR-10a (green) was found to bind

the 50UTR of at least five small and four large RP mRNAs containing a 50TOP motif (blue), increasing their translation efficiency.

Augmented RP production enhances the cellular capacity for ribosome biogenesis and proliferation.
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miRNA regulation of ribosome biogenesis in chronic obstructive pulmonary disease
Other disease-associated miRNAs have been connected to ribosome biogenesis. COPD and intensive care unit
patients with muscle wasting exhibit elevated expression of hsa-miR-424-5p, which targets the RNAPI
pre-initiation complex factors POLR1A and UBTF (Figure 1) [49]. miR-424-5p was found to down-regulate
mature rRNA levels in myoblasts and to cause muscle atrophy in mice [49]. We hypothesize that
yet-undiscovered miRNA regulators of ribosome biogenesis may also play central roles in diseases arising from
defects in growth-sensitive biological processes, such as development and angiogenesis, that are already known
to be partially controlled by miRNAs [50,51].

Direct up-regulation of miRNA targets in ribosome biogenesis
Although miRNAs generally down-regulate the expression of their target genes, select cases have unveiled
miRNA-mediated enhancement of transcript-specific or global translation (Table 1). Both endogenous and syn-
thetic miRNAs can increase translation efficiency of target transcripts by a specialized microRNA ribonucleo-
protein (miRNP) complex that lacks the normally present repressor protein GW182/TNRC6 but contains the
RNA binder FXR1a [52–54]. hsa-miR-10a binds the 50UTR of RP transcripts harboring a 50TOP motif,
up-regulating their translation, augmenting ribosome biogenesis, and enhancing proliferation (Figures 1 and
3C) [55]. Such noncanonical translational activation is also implicated in cellular quiescence and senescence,
two paused growth states instigated by mTOR deactivation that feature diminished ribosome biogenesis
[56,57]. Translation-activating miRNAs were originally discovered in quiescent human cells [52,53], and down-
regulation of miRNA processing machinery initiates global translation reduction and induction of senescence
(Figure 1) [55]. In summary, miRNAs can also enhance ribosome biogenesis and global protein synthesis via
targeted RP up-regulation or mechanisms implicated in cellular aging.

lncRNAs and ribosome biogenesis
Long non-coding RNAs biogenesis and function
Besides the essential non-coding rRNAs, other long non-coding RNAs (lncRNAs) have been increasingly
found to possess significant roles in eukaryotic ribosome biogenesis, with some even dysregulated in disease
and proposed as therapeutic targets or biomarkers. lncRNAs are RNAs over 200 nt and without protein-coding
potential. lncRNAs are transcribed in a variety of genomic contexts: intergenic, antisense, intronic, and overlap-
ping orientations with respect to protein-coding genes [58]. This leads to their cis functions, where they regu-
late the expression of nearby genes. In addition, lncRNAs have diverse trans functions to regulate distant genes.
Recent work has established many diverse cellular roles for these non-coding portions of the genome.
lncRNAs utilize different biogenesis pathways and sequence properties to perform roles in ribosome biogenesis.

Some transcripts are transcribed by RNAPI from the rDNA gene locus (Figure 4A), while others are independ-
ently transcribed by RNAPII (lincRNAs) or produced by alternative splicing of RNAPII transcripts (Figure 4B).
Ribosome biogenesis-specific lncRNA roles may be direct, modulatory, or stress response-specific. These molecu-
lar mechanisms include protein binding or sequestration, rDNA chromatin modifications, snoRNP formation,
and transcript-specific translation modulations (Table 2). Here, we discuss examples of lncRNAs that function
within the nucleolus to modulate rDNA transcription, pre-rRNA processing, and nucleolar structure as well as
lncRNAs that alter ribosome biogenesis levels and translation located outside the nucleolus.

Nucleolar lncRNAs
Long nucleolar RNA (LoNA): 1 RNA, 2 functions
LoNA is a 1.5 kb polyadenylated lncRNA that performs dual independent functions to regulate RNAPI transcrip-
tion, pre-rRNA processing, and modification (Figures 1 and 5A). LoNA was discovered by Li et al. [59] as the 4th
most abundant lncRNA present in mouse neuroblastoma cell nucleoli. Overexpression of LoNA reduces
pre-rRNA levels, mature rRNA levels, and global translation; conversely, knockdown enhances ribosome produc-
tion. Two 50-end nucleolin binding motifs sequester nucleolin from establishing rDNA euchromatin modifications
and enhancing RNAPI transcription (Figure 5A) (nucleolin functions reviewed in [60]). At the same time, LoNA
reduces pre-rRNA processing and rRNA modification by competition binding using its two 30-end C/D box
snoRNA sequences that form noncanonical C/D box snoRNPs. Additionally, LoNA levels are increased in
Alzheimer’s disease model mice, connecting a lncRNA to the pathogenesis of a neurodegenerative disease known
to have associations with nucleolar stress and reduced rRNA production [59,61,62] (reviewed in [63]).
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Table 2. lncRNAs involved in ribosome biogenesis

lncRNA(s)

Ribosome
biogenesis steps
controlled (cellular
localization)

Regulation of
ribosome
biogenesis Molecular function

Associated
phenotypes or
diseases Ref.

Long nucleolar RNA (LoNA) pre-rRNA
transcription,
processing/
modifications,
translation (nucleolar)

Negative Two 50-end nucleolin binding sites
and two 30-end C/D box snoRNA
sequences sequester nucleolin and
inhibit functional snoRNP formation
respectively.

Neurodegeneration
(Alzheimer’s disease)

(Figures 1 and 5A)
[59,61]

Promoter associated RNA
(pRNA)

pre-rRNA transcription
(nucleolar)

Negative TIP5 interacting stem loop recruits
NoRC, DNA:RNA triplex formation
recruits DNMT3b.

Embryonic stem cell
exit from pluripotency

(Figures 1 and 5B)
[66,67,69]

Promoter and pre-rRNA
antisense (PAPAS)

pre-rRNA transcription
(nucleolar)

Negative Chromatin modifications by recruiting
either suv4-20h2 or CHD4/NuRD
complexes to the rDNA under
various stress conditions.

Quiescence and
proliferation

(Figure 1) [67,71–
74]

snoRNA-ended lncRNA that
enhances pre-rRNA
transcription (SLERT)

pre-rRNA transcription
(nucleolar)

Positive H/ACA snoRNA ended for nucleolar
localization, interacts with DDX21 to
inhibit its repressive function.

Cancer (oncogenic) (Figure 1) [75]

Circular antisense lncRNA in
INK4 locus (circANRIL)

pre-rRNA processing
(nucleolar)

Negative Binds LSU processing factor PES1
to inhibit ITS2 cleavage.

Atherosclerosis,
Kawasaki disease

(Figures 1 and 5C)
[78,79]

alu-containing RNAs
(aluRNA)

nucleolar structure,
pre-rRNA transcription
(nucleolar)

Positive alu elements from spliced introns
are enriched in nucleoli and
necessary to maintain nucleolar
structure and pre-rRNA transcription
through interactions with nucleolin
and nucleophosmin.

N/A [81]

Intergenic spacer RNAs
(IGS)

nucleolar stress
response, nucleolar
structure (nucleolar
detention center)

N/A Expressed under various stress
conditions and sequester proteins
within nucleolar foci for inactivation.

Amyloidgenesis [83,103–105]

5S rRNA overlapped
transcripts (5S-OT)

5S rRNA transcription
(nuclear)

Positive Associates with 5S rDNA gene
clusters to increase 5S transcription.

Cell differentiation (Figure 1) [84]

Erythrocyte membrane
protein band 4.1 like 4A
antisense 1
(EPB41L4A-AS1)

pre-rRNA transcription
(nucleolar)

Negative Interacts with HDAC2 and NPM1 to
increase their nucleolar localization.

Cancer (tumor
suppressor)

(Figure 1) [97]

snoRNA 86 cytoplasmic 50

snoRNA capped 30

polyadenylated RNA
(snoRD86 cSPA)

pre-rRNA processing
(cytoplasmic)

Negative Product of alternative splicing of
NOP56 pre-mRNA that undergoes
nonsense mediated decay.

N/A (Figure 1) [85]

Survival associated
mitochondrial melanoma
specific oncogenic
non-coding RNA
(SAMMSON)

pre-rRNA processing
(cytoplasmic)

Positive Interacts with P32 to increase P32’s
mitochondrial localization and CARF
to increase XRN2 nucleolar
localization.

Melanoma (oncogenic) (Figure 1) [88,92]

Distal junction transcripts
(DISNOR 187, DISNOR
238)

pre-rRNA transcription
(nucleolar)

Positive Distal junction transcripts lead to
nucleolar stress response and
decreased pre-rRNA transcription
upon depletion.

N/A (Figure 1) [98]

Antisense/translation
reprogramming lncRNAs

translation
(cytoplasmic)

Both Inhibit or enhance translation of their
sense and other transcripts under
various stress inductions.

N/A Examples
(Figure 1):
BACE1-AS [106]
PYCARD-AS1
[107] treRNA [108]
Uchl1-AS1 [109]
Zeb2-NAT [110]
ZFAS1 [111]
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Other lncRNAs that modulate pre-rRNA transcription
Other lncRNAs have been implicated in the control of pre-rRNA transcription through direct roles in rDNA
chromatin modifications. Although pre-rRNA is the most highly transcribed RNA, rDNA genes can adopt
inactive, silent, or active chromatin states. Here, we focus on rDNA chromatin activity dynamics regulating

Figure 4. Biogenesis of diverse long non-coding RNAs (lncRNAs) involved in ribosome biogenesis.

(A) lncRNAs involved in ribosome biogenesis transcribed from ribosomal DNA (rDNA) gene loci. (Left) Intergenic spacer (IGS)

RNAs are transcribed by RNA polymerase I (RNAPI) under stress conditions and processed into functional RNAs. (Middle)

pre-rRNA transcription is controlled by growth factors and available energy regulated by several signaling pathways. (Right)

Promoter and pre-rRNA antisense (PAPAS) RNAs are transcribed in an antisense orientation relative to the rDNA and rDNA

promoter sequences and processed into functional RNAs. (B) lncRNAs involved in ribosome biogenesis transcribed by RNAPII

in a variety of genomic contexts. (Left) lncRNAs are transcribed by RNAPII either independently long intergenic noncoding

RNAs (lincRNAs) or via alternative splicing of other RNAPII transcripts. These RNAs can include small nucleolar RNA (snoRNA)

sequences (gray) that form mature noncanonical C/D or H/ACA box small nucleolar ribonucleoproteins (snoRNPs) or binding

motifs (blue). (Middle) RNAPII transcribes pre-mRNAs that can undergo back-splicing of exons to produce circular RNAs

(circRNAs) (green). These RNAs can then contain motifs (blue) to bind and sequester proteins (blue-gray). (Right) Antisense

lncRNAs are transcribed by RNAPII in the opposite direct of their sense transcript partners to regulate translation of specific,

usually sense, transcript mRNAs (red).
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rDNA transcription; however, it is important to note these dynamics also play an important role in genome
stability and organization (reviewed in [64,65]).
Promoter associated RNA (pRNA), is transcribed by RNAPI from the intergenic spacer (IGS) region of the

rDNA and degraded by the exosome to produce 150–300 nt molecules (Figure 4A) [66]. pRNA is required for
rDNA silencing through the recruitment of the nucleolar remodeling complex (NoRC) via direct interaction
(Figures 1 and 5B) [67]. Additionally, a 50 portion of pRNA forms a DNA:RNA triplex with the T0 regulatory
element of the rDNA promoter. While triplex formation has only been observed in vitro, it suggests that pRNA

Figure 5. Examples of molecular mechanisms of long non-coding RNAs (lncRNAs) involved in ribosome biogenesis.

(A) Long nucleolar RNA (LoNA) is a multifunctional polyadenylated lncRNA that regulates pre-rRNA transcription, modification, and processing. (Left)

It contains two nucleolin binding sequences (blue), one of which is functional to bind and inhibit nucleolin (blue) function. (Right) It contains two C/D

box small nucleolar RNA (snoRNA) sequences that are able to form noncanonical C/D box small nucleolar ribonucleoproteins (snoRNPs) (gray) to

inhibit modification and processing of the pre-rRNA. (B) pRNA is a multifunctional lncRNA that regulates ribosomal DNA (rDNA) chromatin

modifications. (Left) It forms a DNA:RNA triple helix with the T0 element of the rDNA promoter to recruit the chromatin modifier DNMT3b (brown) to

methylate CpG (black). (Right) It contains a stem-loop structure that interacts with TIP5 (gray) the large subunit of the nucleolar remodeling complex

(NoRC) (brown) to promote H3K9me3 histone methylations (red), remove H4ac acetylation modifications (blue), and cause a nucleosome shift to

block rDNA promoter access. (C) circANRIL (green) binds PeBoW complex (PES1, BOP1, WDR12,) (green/blue) to inhibit pre-rRNA processing of

internal transcribed spacer 2 (ITS2) through 47S homology domain (black).
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recruits the DNA methyltransferase DNMT3b to further establish repressive chromatin marks by CpG methyla-
tion at this element (Figure 5B) [68]. pRNA’s function is also necessary for exit from pluripotency in embry-
onic stem cells [69] and was speculated to be important for maintaining genomic stability [70].
There are many IGS transcripts that regulate rDNA chromatin modifications, including promoter and

pre-rRNA antisense transcripts (PAPAS) (Figures 1 and 4A). These transcripts inactivate pre-rRNA transcrip-
tion upon a variety of stressors, including density arrest and serum deprivation that lead to H4K20me3 modifi-
cations at the rDNA promoter [71]. Additionally, hypo-osmotic, hypotonic, and heat shock stressors promote
nucleosome remodeling and deacetylase (NuRD) complex recruitment and H4ac inhibition by a similarly pro-
posed DNA:RNA triplex formation as that as pRNA at the rDNA promoter [72–74].
Pre-rRNA transcription modulation also occurs beyond the chromatin level by a snoRNA-ended lncRNA that

enhances pre-rRNA transcription (SLERT) (Figure 1). Both of its ends bear H/ACA snoRNA sequences that are
essential for its nucleolar localization [75]. Additionally, there is a 143-nt internal sequence that interacts with
DDX21, an RNA helicase that forms rings around multiple RNAPI complexes to inhibit pre-rRNA transcription.
This interaction relieves suppression and increases pre-rRNA transcription [75]. DDX21 is also important for
pre-rRNA processing steps [76], but SLERT’s role in pre-rRNA processing has not yet been explored.

Circular antisense non-coding RNA in the INK4 locus (circANRIL), a long non-coding
circular RNA that inhibits pre-rRNA processing
Only a few lncRNAs have been reported to modulate pre-rRNA processing, but similarly to LoNA and SLERT,
these lncRNAs modulate pre-rRNA processing via sequestration mechanisms. circANRIL binds and sequesters
PES1, a member of the PES1, BOP1, WDR12 (PeBoW) complex that is essential for large subunit processing
through internal transcribed spacer 2 (ITS2) cleavage [77]. PES1 binds circANRIL at a 47S pre-rRNA hom-
ology domain bearing sequence identities across the pre-rRNA primary transcript (Figure 5C) [78]. This inter-
action most likely inhibits PeBoW complex formation and PES1 interaction with the pre-rRNA, leading to
nucleolar stress (Figure 1). Identification of other lncRNAs with pre-rRNA homology could provide competi-
tion regulation like circANRIL, which is proposed to be present in sufficient amounts in cells to modulate ribo-
some production. This anti-proliferative function is supported by observations of lower circANRIL abundance
in childhood systemic vasculitis (Kawasaki disease) patients [79] and association with a higher risk of athero-
sclerosis in a human cohort [78].

lncRNAs in nucleolar structure maintenance
RNAPII transcription inhibition disrupts nucleolar structure, indicating a possible function of RNAPII tran-
scripts within the nucleolus [80]. Caudron-Herger et al. [81] recently identified RNAPII alu-repeat transcripts
that are partially responsible for maintaining nucleolar structure. These 100–300 nt RNAs are spliced from
introns and enriched in the nucleolus. They interact with nucleolin and nucleophosmin to enhance RNAPI
transcription and support nucleolar structure [81]. These RNAs provide a possible mechanism for the coordin-
ation of RNAPI and RNAPII transcription, particularly since alu elements represent a large portion (∼10%) of
the human genome [82].
Some nucleolar lncRNAs are not directly involved in ribosome biogenesis, but arise under different stress con-

ditions and are associated with the nucleolar stress response. This stress response elicits outputs to inhibit ribo-
some synthesis and induce apoptosis. These lncRNAs include multiple IGS RNAs that are transcribed by RNAPI
(Figure 4A) and form foci within the nucleolus under stress conditions, termed ‘nucleolar detention centers.’
These lncRNAs sequester and inactivate proteins within these detention centers. Establishment of this remodeled
nucleolus is thought to be important for stress-induced transcriptional inactivation [83] (reviewed in [65]).

Non-nucleolar lncRNAs
5S rRNA transcription regulation by a lncRNA
While transcription of the polycistronic 47S pre-rRNA by RNAPI occurs within the nucleolus, the 5S rRNA is
transcribed in the nucleoplasm by RNAPIII. 5S overlapping transcript (5S-OT) regulates this important extra-
nucleolar transcription step (Figure 1). 5S-OT is transcribed by RNAPII and is complementary to the 5S
rRNA. Its depletion leads to decreases in the production of 5S rRNAs through undiscovered cis-acting mechan-
isms [84].
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lncRNAs that sequester processing factors outside the nucleolus
snoRNA sequences in lncRNAs can be utilized in other unique ways to modulate ribosome biogenesis levels.
This includes an orphan C/D box snoRNA, snoRD86 within an intron of the NOP56 pre-mRNA.
Upon increased levels of NOP56 and snoRNPs, this intronic snoRNA is able to bind and sequester C/D box
snoRNPs to inhibit splicing of the NOP56 pre-mRNA. This ultimately ends in nonsense-mediated decay of the
unspliced transcript, containing snoRD86, termed snoRD86 cytoplasmic 50 snoRNA capped 30 polyadenylated
RNA (cSPA) (Figure 1) [85]. It will be of interest to determine the extent to which splicing feedback regulation
occurs for intronic snoRNAs in other ribosome biogenesis factor pre-mRNAs.
While ribosome biogenesis is generally increased in cancer (reviewed in [86]), synchronization of this

process with mitochondrial ribosome production is also necessary for cancer cell fitness [87,88]. Survival asso-
ciated mitochondrial melanoma specific oncogenic non-coding RNA (SAMMSON) is another example of a
lncRNA that binds ribosome biogenesis factors to fine-tune ribosome biogenesis in melanoma cells for syn-
chronization of mitochondrial and nucleolar ribosome production (Figure 1). SAMMSON binds p32, a protein
essential for mitoribosome formation [89], and increases its mitochondrial localization [88]. Furthermore,
SAMMSON increases the nucleolar localization of XRN2, an exonuclease necessary for pre-rRNA processing
[90]. It performs this latter task by binding CARF, a negative regulator of XRN2 [91], that normally increases
its nucleoplasmic localization [92]. SAMMSON’s presence increases nucleolar and mitochondrial ribosome syn-
thesis, while its depletion leads to aberrant pre-rRNA processing intermediates. SAMMSON expression has
only been reported in cancer cells; however, it is possibly expressed during embryonic development, since p32
is essential for development [89].
snoRD86 cSPA and SAMMSON utilize binding sequences to sequester RNA binding proteins from performing

their functions in pre-rRNA processing. While it is not yet clear how these lncRNAs function in normal cellular
metabolism, their study has revealed a mechanism for how ribosome biogenesis can be controlled from outside
the nucleolus. Nevertheless, the presence of snoRNA sequences within lncRNAs might not always lead to direct
roles in ribosome biogenesis modulation. Prader–Willi Syndrome deletion region (15q11-q13) transcribes several
SPAs and snolncRNAs that have no current identified function in ribosome biogenesis (reviewed in [93]).

Translation modulation by lncRNAs
Although lncRNAs have been increasingly observed to be translated into micro peptides (reviewed in [94]),
there is a lncRNA subcellular localization system (lncSLdb) that identified 300 lncRNAs associated with mature
ribosomes in the cytoplasm through extensive literature mining [95]. This indicates possible lncRNA regulation
of final ribosome maturation steps or translation efficiency if not translated into micro peptides. As of now,
there are cases of the latter being studied (reviewed in [96]) (see examples in Figure 1 and Table 2).

Future developments of miRNAs and lncRNAs in ribosome
biogenesis
Studies continue to emerge and implicate novel nucleolar miRNAs and lncRNAs in ribosome biogenesis regu-
lation. Although canonical miRNA-mediated translational repression occurs in the cytoplasm, new roles have
been revealed for miRNAs localized to the nucleolus including regulation of RNAPI and subunit assembly,
defense against exogenous nucleic acids, and precise control of miRNA stability and target recognition. The
lncRNA erythrocyte membrane protein band 4.1 Like 4A antisense 1 (EPB41L4A-AS1) was identified as a pos-
sible regulator of glycolysis and glutaminolysis in cancer. Yet, it interacts with HDAC2 and NPM1 to increase
their nucleolar localization [97], raising the question: does EPB41L4A-AS1 expression down-regulate RNAPI
transcription if HDAC2 is able to establish heterochromatin marks on the rDNA (Figure 1)? Additionally,
lncRNAs expressed from the distal flanking junction of the rDNA (DISNOR 187 and 238) have been recently
discovered. Depletion of these leads to decreased pre-rRNA transcription [98], suggesting a functional role of
these lncRNAs in the transcription of the rDNA (Figure 1). Further study of nucleolar miRNAs and lncRNAs
will illuminate how ncRNAs other than rRNA shape the dynamic landscape of the nucleolus.
Both miRNAs and lncRNAs play important roles in cancer and development, but to date only miRNAs have

been associated with ribosomopathies, such as myelodysplasia and DBA. However, one study identified candi-
date miRNAs and lncRNAs that have altered expression in a DBA zebrafish model compared with wildtype
[48]. Continued work will help elucidate new ncRNAs that play a role in ribosomopathy pathogenesis and
disease-related nucleolar stress responses.
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Published bioinformatic databases may contain more miRNAs and lncRNAs that are candidates for ribosome
biogenesis regulation based on their localization and links to disease. RNALocate notes 79 nucleolar human
miRNAs, plus 448 nucleolar and 190 ribosome-associated human lncRNAs on top of the lncRNAs in lncSLdb
[99]. lncATLAS identified 28 lncRNAs that were enriched in the nucleolus compared with the nucleoplasm by sub-
cellular fractionation followed by RNA-seq in K652 cells [100]. In addition to LoNA, Li et al. [59] also identified
several other nucleolar localized lncRNAs by a similar RNA-seq method. It would be of interest to extend these
experiments to look for conserved nucleolar miRNAs and lncRNAs across cell types and species. The mammal
ncRNA-disease repository (MNDR) database, which catalogs ncRNAs linked to diseases, may provide clues about
novel miRNA and lncRNA regulators of ribosome biogenesis based on their involvement in ribosomopathies or
otherwise growth-sensitive diseases [101]. Together, bioinformatic databases bearing localization and disease
linkage data about miRNAs and lncRNAs can help reveal novel ncRNA regulators of ribosome biogenesis.

Perspectives
• miRNAs and lncRNAs play diverse roles in the regulation of ribosome biogenesis, forming an

additional dense layer of control over cellular growth and translational output. In diseases
where ribosome biogenesis is implicated, such as cancer and various ribosomopathies, these
ncRNAs comprise another conduit by which biochemical defects become the basis of
medical pathogenesis.

• miRNAs and lncRNAs modulate core ribosome biogenesis processes including RNAPI
pre-rRNA transcription, pre-rRNA processing, and ribosome assembly as well as nucleolar
structural maintenance and global translation.

• Future discovery of novel ncRNA regulators of ribosome biogenesis and of expanded regulatory
roles for known ncRNAs will be aided by (1) experimental inspection of specific steps in ribosome
biogenesis and (2) bioinformatic databases containing localization and disease linkage data.
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