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Multimodal determinants of phase-locked
dynamics across deep-superficial hippocampal
sublayers during theta oscillations
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Theta oscillations play a major role in temporarily defining the hippocampal rate code by

translating behavioral sequences into neuronal representations. However, mechanisms

constraining phase timing and cell-type-specific phase preference are unknown. Here, we

employ computational models tuned with evolutionary algorithms to evaluate phase pre-

ference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any

particular memory task. We applied unbiased and hypothesis-free approaches to identify

effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase

preference. We found that perisomatic inhibition delivered by complementary populations of

basket cells interacts with input pathways to shape phase-locked specificity of deep and

superficial pyramidal cells. Somatodendritic integration of fluctuating glutamatergic inputs

defined cycle-by-cycle by unsupervised methods demonstrated that firing selection is

tuneable across sublayers. Our data identify different mechanisms of phase-locking selec-

tivity that are instrumental for flexible dynamical representations of theta sequences.
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Interaction between internally generated neuronal activity and
sensory inputs shapes information processing in the brain1,2,
but similar processes occur at higher-order cortices3. At the

core of the declarative memory system, the hippocampus acts to
integrate behavior and self-generated neuronal sequences in
abstract representations4–8. While rodents move around in space,
hippocampal firing is coordinated by the theta rhythm (4–12 Hz).
One mechanism determining translation of behavioral sequences
into neuronal sequences is theta phase precession9,10, which
occurs during place field crossing. Hence, cells representing
specific locations ahead and behind the subject become assembled
to earlier and late cells along theta sequences4. Independently of
experience, hippocampal pyramidal cells and interneurons fire at
preferred theta phases11–13 and remain locked under the influ-
ence of the internal state14,15. It is believed that behavioral theta
sequences evolve from the transformation of these internal
activity patterns into experience-dependent codes16,17. However,
integrative mechanisms constraining theta phase timing and their
dynamical changes during cognitive operations are unknown.

The CA1 region is considered high in the hierarchy of the
entorhinal-hippocampal declarative memory system18. Tradi-
tionally viewed as a single layered structure, recent evidence has
disclosed an exquisite laminar organization across deep and
superficial CA1 pyramidal sublayers19,20. Deep pyramidal cells
(closer to the stratum oriens) are more influenced by sensory
landmarks while the place fields of superficial cells (closer to the
stratum radiatum) appear more context-modulated and
abstract21–23. In tasks with strong memory demands, such as
delayed alternation tasks, firing of deep and superficial CA1 cells
can be segregated across theta phases24,25 and deep cells phase
shift specifically during rapid eye movement (REM) sleep26. Such
a heterogeneous activity indicates that the way different inputs
fuse into the existing dynamics may be biased by intrinsic, bio-
physical, and microcircuit factors. The mechanisms of this high-
dimensional integration are unknown.

Here we aim to study factors underlying the internal theta
phase preference in the dorsal CA1 using a combination of single-
cell and multisite electrophysiological techniques, together with
evolutionary computational models. We derive a set of predic-
tions and fill some experimental gaps by exploiting cell-type-
specific opto/chemogenetic interventions and unsupervised clus-
tering of theta cycles. We propose that selective phase-locked
firing is internally organized in different preferred phases (or
firing reservoirs) across deep and superficial CA1 pyramidal cells
to build flexible hippocampal codes.

Results
Bimodal distribution of theta phase preference across CA1. To
evaluate sublayer-specific neuronal firing we habituated mice to
alternate freely between running and immobility in head-fixed
conditions (Supplementary Fig. 1). We targeted single CA1 pyr-
amidal neurons juxtacellularly and used linear silicon probe
arrays to record extracellular theta oscillations (Fig. 1a, b).
Although individual cells tended to fire consistently at specific
phases (Fig. 1b), we found a characteristic bimodality at the
population level (Fig. 1c; n= 12 cells from 12 mice; Rayleigh test
p < 0.05 for all cells included; mean vector length 0.22 ± 0.03). For
individual cells, preferred firing phases were skewed towards the
peak (180°) or the trough (0° or 360°) of theta measured at the
stratum pyramidale (SP). Single pyramidal cells recorded using
similar juxtacellular approaches from rats moving in a familiar
open field depicted comparable features (n= 28 cells from 28
rats; Fig. 1d, e; mean vector length 0.35 ± 0.15, Raleigh test p <
0.05; not significantly different as compared with head-fixed
mice). At the population level, bimodality was not dependent on

the state (awake versus REM sleep) or on the type of theta
(running vs. attentional, whisking, or grooming theta; Supple-
mentary Fig. 2A–E), even though some cells shifted phase across
conditions, as previously reported26 (Fig. 1f).

We then looked for other explanatory variables. A multivariate
analysis (Harrison–Kanji test, equivalent to a circular two-way
analysis of variance (ANOVA)) of the subset of morphologically
identified cells demonstrated statistical effects for sublayer (χ2(2)
= 10.7, p= 0.0136) and preparation (χ2(2)= 8.5, p= 0.0046; n=
10 cells from 10 mice and n= 20 cells from 20 rats) (Fig. 1g). In
general, superficial cells tended to fire closer to the theta trough
and deep cells more towards the theta peak, with sharp
differences in head-fixed conditions (Fig. 1g). The effect of the
preparation may result from inter-species differences, but also
from the influence of different input pathways in head-fixed vs.
freely moving behavior (i.e., vestibular and head-direction
signaling, optic flow, etc.)27. No differences in the local theta
could explain results (Supplementary Fig. 2F). No additional
behavioral factors were observed to explain population bimod-
ality (Supplementary Fig. 1G), suggesting it emerges from the
internal microcircuit organization across deep and superficial
sublayers.

To further confirm cell-type specificity of phase-locking
distribution we performed optogenetic tagging of deep and
superficial CA1 pyramidal cells (Fig. 1h). We used Calb1-cre mice
injected with an adeno-associated virus (AAV5) to restrict
expression of channelrhodopsin2 (ChR2) and the yellow
fluorescent protein (YFP) in a subset of superficial CA1 cells
(30% of Calbindin+ cells were YFP+), whereas deep cells were
targeted in the transgenic line Thy1-ChR2 (ref. 28) (75% of
Calbindin− cells). Using integrated micro-light-emitting diode
(LED) optoelectrodes, we exploited nanowatt blue light stimula-
tion for controlled opto-tagging of deep and superficial cells29.
Limited connectivity between CA1 pyramidal cells exclude
potential indirect excitatory effects30,31, but see ref. 32. We
successfully isolated n= 7 superficial and n= 14 deep pyramidal-
like units that were significantly theta modulated, while head-
fixed mice run (Rayleigh test p < 0.05) (Fig. 1i). Consistent with
juxtacellular data, we found significant segregation of deep and
superficial firing across theta phases (F(1,20)= 17.7, p= 0.0005;
Watson–Williams test, equivalent to a circular one-way
ANOVA), further reinforcing the idea that population bimodality
is determined by different cell-type contribution.

Thus, single-cell experimental data obtained with different
approaches and in different species demonstrate that under basal
conditions dominated by the internal dynamics, the firing of deep
and superficial CA1 pyramidal cells is segregated during theta
oscillations.

Computational models tuned with evolutionary algorithms. In
order to understand the underlying mechanisms, we implemented
a biophysically realistic model of CA1 pyramidal cells that inclu-
ded known excitatory and inhibitory inputs, using morphological
reconstructions from a public database (http://neuromorpho.org/)
and the Hodgkin–Huxley multi-compartment formalism in the
Neuron+ Python (Fig. 2a; see Methods). Our simulations were
based on a realistic full-scale model of the CA1 microcircuit able to
autonomously generate theta oscillations33.

To constrain the parametric space (23 free parameters, listed in
Supplementary Table 1), we adopted genetic algorithms (GAs) to
identify values for passive, active, and synaptic conductances
resulting in realistic behavior in a given morphology34,35. To this
purpose, the effective conductance of each channel fitted by GA
was set as the product of the maximal conductance (Gmax) and a
GA factor. We tuned GA factor values in a range so that the
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model cell targets intrinsic (Fig. 2b) and synaptic experimental
responses (Fig. 2c, Supplementary Fig. 3A, and Table 2). Passive
parameters were fitted similarly (Supplementary Tables 1 and 2).
This strategy provides a set of parameter values that successfully
fit the model behavior. For instance, more than 4000 intrinsic sets
of GA factors fitted experimental somatic and dendritic responses
to current pulses (Fig. 2b; black dots), providing individuals (i.e.,
models) with some level of intrinsic heterogeneity. Similarly,
experimental synaptic responses to CA3 input stimulation were
used to fit the proportion of CA3 synapses as well as those
GABAergic synapses activated feedforwardly, providing addi-
tional heterogeneity (Fig. 2c; >5000 sets of synaptic GA factors).

Values for the remaining parameters not fitted by GA were
chosen randomly from known experimental ranges (Supplemen-
tary Table 1, Supplementary Table 2 for intrinsic parameters, and
Supplementary Table 3 for synaptic parameters).

To evaluate the space of possible GA models, we adopted the
following validation strategy. First, we fitted intrinsic parameters
to a given morphology as previously explained (e.g. n128 from the
Neuromorpho Turner archive) and propagated them to different
morphologies (n127 and n409 from the Turner archive and sup1-
I040913C2 from the Prida archive) by randomly selecting 20
intrinsic individuals (Supplementary Fig. 3B). We then validated
those individuals that successfully fitted the experimental target
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Fig. 1 Bimodal distribution of theta phase-locked firing across CA1 sublayers. a Representative example of a CA1 pyramidal cell recorded juxtacellularly
from a head-fixed running mouse. See average action potential waveform and autocorrelation at right, and morphological identification as deep cell at
bottom. Scale bar 50 µm. b Theta phase-locked firing histogram of the cell shown in a. Raw local field potential (LFP) traces and juxtacellular signals are
shown below: SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; SLM, stratum lacunosum moleculare. c Theta phase firing histogram from
single cells recorded in awake head-fixed mice, ranked according to their preferred phase (n= 12 cells). Individual (gray) and mean (black) theta filtered
LFP signals at top are z-scored (Z). The population histogram at bottom represents the distribution of mean preferred phases from individual cells. d Same
for single pyramidal cells recorded juxtacellularly in freely moving rats (n= 28 cells). e Individual and mean ± SD values of vector length per cells reported
before in head-fixed and freely moving conditions. No differences between groups. f Awake/REM sleep (left) and RUN/no-RUN (running vs. other motor
behavior) dependency of theta phase preference of single pyramidal cells. See legend in (g). g Multivariate analysis of morphologically identified cells
demonstrate effects per location (Harrison–Kanji test for deep-superficial location: χ2(2)= 10.7, p= 0.0136) and preparation (χ2(2)= 8.5, p= 0.0046); no
interaction (χ2(1)= 2.1, p= 0.148). Phase preferred data from each morphologically identified cell is depicted separately for deep and superficial cells in
both preparations. h Optogenetic tagging of single units using micro-LED optoelectrodes in two transgenic lines allowed identifying superficial (Calb1-cre
+AAV5-DIO-ChR2-YFP) and deep CA1 pyramidal cells (Thy1-ChR2). Raster at right shows response of one representative unit to 79 trials of nanowatt
blue light stimulation in a Thy1-ChR2 mouse. Bottom, ChR2 signal (white) and Calbindin immunostaining (magenta) are shown in false colors (one
confocal plane from each line). Scale bar 25 µm. i Phase-locked firing histograms from Calbindin+ superficial (n= 7 units from 3 mice) and Thy1+ deep
opto-tagged units (n= 14 units from 2 mice; statistically different Watson–Williams test, F(1,20)= 17.7, p= 0.00048. Note that bimodal distribution of
preferred theta phases can be explained by different cell-type contribution.
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across all morphologies and replaced non-valid individuals by
new random sets from the pool until the full dataset was validated
(Supplementary Fig. 3B; upper part). Next, we proceed similarly
for synaptic GA factors (Supplementary Fig. 3B; bottom). By
allowing synaptic traits to fit independently across different
morphologies we gained additional heterogeneity to be exploited
for analysis. An alternative strategy to evolve GA for fitting all
morphologies together provided less heterogeneity at higher
computational cost. Importantly, the resulting synthetic cells (i.e.,
combination of intrinsic GA factors, synaptic GA factors, and
morphology) accounted well for other non-fitted intrinsic
properties of CA1 pyramidal cells, such as spike hyper- and
after-depolarization, sags, etc. (Supplementary Fig. 3C right and
Supplementary Table 4). Similarly, we noted that for some
morphologies the GA converged spontaneously on low and high-
amplitude synaptic potentials, providing sets of synthetic cells
responding similar to CA3 stimulation than deep and superficial
CA1 cells in vivo36 (Fig. 2c and Supplementary Fig. 3D).

We next evaluated synthetic cells independently on GA fitting
by simulating theta phase-locking firing. To this purpose, we
submitted them to a biologically realistic collection of

glutamatergic and GABAergic theta-modulated inputs (Fig. 2d
and Supplementary Table 3 and references therein; 1000 cycles
per simulation and cell). Accordingly, synthetic cell behavior was
theta modulated, with notable cycle-by-cycle variations of
dendritic and somatic activity caused by small random fluctua-
tions of GABAergic and glutamatergic inputs (Fig. 2d arrowheads
and see oscillatory properties in Supplementary Table 4).
Interestingly, we noted effects of both morphologies and intrinsic
variability on firing phase distribution. For instance, a given
intrinsic individual expressed in different morphologies showed
different phase-locking preference and membrane potential
dynamics (Fig. 2e). They also exhibited variability in terms of
firing rate (Supplementary Fig. 3E), similar to real CA1 neurons26

(Fig. 1).
To understand this point better, we evaluated the effect of GA

factors by choosing only synthetic cells with realistic firing rate
values (0.01–8 Hz) in at least three out of four morphologies
(Supplementary Fig. 3E). We noted different trends of synthetic
cells to phase-lock across individuals and morphologies. For
instance, individual #10 fired at very similar theta phases when
expressed in different morphologies, whereas individual #1
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exhibited large dispersion (Fig. 2f). This is because some intrinsic
factors, such as the axial resistance and the maximal conductance
of sodium and A-type potassium channels, make synthetic cells
firing more or less reliably to dominant inputs. Consequently,
expression level of some passive and active intrinsic properties
had significant correlation with phase preference (Fig. 2f, matrix
at right).

We next evaluate the effect of morphological features on phase
preference by pooling data from all individuals in a given
morphology (Fig. 2g). In general, morphologies n409 and
n127 showed a trend for some cells with deep-like traits (firing
towards the peak) versus n128 and sup1 (a superficial cell
reconstructed in our lab) with more consistent superficial-like
firing (around the trough) (Fig. 2g). Interestingly, at the
population level, we noted a bimodal distribution of the preferred
firing phase from synthetic cells in some morphology (Supple-
mentary Fig. 3E, bottom plot; e.g., n409 and n127). Thus, we
analyzed potential interactions between morphology and intrinsic
factors using a two-way ANOVA and found statistical effects for
the following set of conductances: type A (F(23,9)= 11.3, p=
0.0.0003), type C (F(28,2)= 26.4, p= 0.037), type L calcium
channel (F(12,24)= 26.4, p= 0.037), HCN channel (F(9,28)=
2.8, p= 0.017), type M (F(11,25)= 2.2, p= 0.044) and the leak
channel (F(9,28)= 2.8, p= 0.017). Although phase preference
across morphologies did not correlate with the distribution of
glutamatergic inputs from CA3 and ECIII, we found significance
for perisomatic inhibition and the total dendritic branches (Fig.
2g right). Thus, we hypothesized that variations in the
distribution of synaptic inputs and intrinsic properties in
interaction with morphological features play key roles in
determining firing dynamics across CA1 sublayers.

Major role of cell-type-dependent perisomatic inhibition. Deep
and superficial CA1 pyramidal cells are unequally innervated by
some GABAergic interneurons36,37, with about 70% difference in
the density of perisomatic contacts from PV+ (higher in deep)
and CCK+ (higher in superficial) basket cells36. We built deep-
like (blue) and superficial-like (magenta) synthetic cells by
readjusting the proportion of PV and CCK perisomatic boutons
accordingly (Fig. 3a; expressed as the percentage SP boutons
detailed in Supplementary Table 3). Such a simple manipulation
had strong consequences in theta phase-locking dynamics. Tun-
ing spikes to the theta peak or trough depended on a net phase-
specific depolarization measured at the soma, which could
advance or delay firing (Fig. 3a, membrane potential traces at
right-hand). We thus examined the effect of completely removing
GABAergic synapses and found multiple windows of opportunity
for phase-locking firing shaped by glutamatergic inputs from the
peak (ECIII) to the trough (CA3, CA2, and ECII) (Fig. 3a bot-
tom). As PV+ and CCK+ basket cells fire at opposite theta
phases11,12, a 70% reduction of synapses from one or another was
enough to bias firing in response to different glutamatergic input
pathways.

To evaluate robustness of this result across individuals and
morphologies, we unfolded the original population of synthetic
cells in deep-like and superficial-like cells (Supplementary Fig. 4A,
B; n= 48 synthetic cells; 12 individuals per morphology). A
trough-peak (TP) index captured different trends (Fig. 3b;
sublayer-like effects in a one-way ANOVA, F(2,108)= 41.9, p <
0.0001 for the total dataset). We found similar results running the
full model in supercomputer clusters of the Neuroscience
Gateway (https://www.nsgportal.org/), where theta oscillations
emerged autonomously (Supplementary Fig. 5)33. Strikingly, the
effect was dependent on the original phase preference determined
by the GA fitting and morphology. For instance, most original

individuals with morphology n128 behaved as superficial CA1
pyramidal cells (TP index > 0) and therefore the effect of
decreasing 70% PV+ boutons (making them more superficial;
magenta) was nonsignificant in contrast to the effect of
decreasing CCK+ boutons, which made them deep-like (blue,
TP index < 0; Fig. 3b, all significant paired t-tests, p < 0.0001).
This suggests that the ability of a particular interneuron to shift
firing of pyramidal cells will depend on their basal theta phase
preference. We confirmed this idea by testing the effect of 70%
reduction from all other GABAergic types and predict significant
effects of bistratified and oriens-lacunosum moleculare (OLM)
interneurons only for deep-like cells (Supplementary Fig. 4C, D).
Importantly, reducing connectivity (synaptic conductance) or the
corresponding input rate (same conductance but lower pre-
synaptic firing rate) gave comparable results in all our simula-
tions, suggesting that the mechanism could be either hardwired
or dynamically regulated.

To make more testable predictions, we simulated the effect of
fully removing PV+ basket cell inputs and confirmed that most
synthetic neurons preferentially shifted to the falling theta phase
(Supplementary Fig. 6A, n= 32 synthetic cells taken randomly
from the deep- and superficial-like pool; 8 individuals per
morphology). To test this result experimentally, we injected PV-
Cre mice with AAV to express the inhibitory designer DREADD
receptor hM4D(Gi) coupled to mCherry (n= 7 mice). As PV is
expressed in many GABAergic populations, we evaluated co-
localization of mCherry with complimentary immunohistochem-
istry and found specific expression in subsets of interneurons
(Fig. 3c). Hence, we updated our computational predictions
accordingly (Fig. 3d) and checked for effects of clozapine-N-oxide
(CNO), the specific ligand of hM4D(Gi) receptors. Given that
intraperitoneal injections compromised single-cell recordings, we
evaluated theta phase preference mostly after CNO injections. In
a subset of experiments with enough stability to guarantee
longitudinal analysis, we confirmed lower theta power (paired t-
test, t(4)= 3.9975, p= 0.016; n= 5), similar extracellular phase
reversal profiles (Supplementary Fig. 6B; no effect of vehicle
tested separately in n= 2 sessions) and significant reduction on
the firing rate of putative PV+ basket cells after CNO
(Supplementary Fig. 6C, D).

Consistent with simulations we found that single pyramidal cell
firing recorded after CNO in PV-hM4D(Gi) mice concentrated at
the falling theta phase using both juxtacellular (n= 5 pyramidal
cells) and multisite sorting methods (n= 23 putative pyramidal
cells, Fig. 3e). Phase-locked firing distribution after CNO was
similar to simulation predictions (circular Watson–Williams
multi-sample test, F(1,53)= 0.02, p= 0.88), but different to
control distributions for identified deep (F(1,44)= 4.4, p= 0.04)
and superficial cells (F(1,36)= 4.6, p= 0.038) reported in Fig. 1.
Moreover, the subset of putative pyramidal units followed
longitudinally along the experiment shifted consistently after
CNO (n= 12, Fig. 3f) so that theta phase distribution before and
after was significantly different (Supplementary Fig. 6E; F(1,22)=
4.5, p= 0.046). Interestingly, phase-locked dynamics become
indistinguishable across sublayers after CNO in PV-hM4D(Gi)
mice but not after vehicle nor in wild-type mice treated with CNO,
confirming specific effects (Supplementary Fig. 6F, G; see statistical
comparisons in caption). Therefore, dedicated GABAergic micro-
circuits constrain phase selection of subsets of CA1 pyramidal cells
during theta oscillations.

Contribution of glutamatergic inputs across CA1 sublayers.
Next, we aimed to examine the role of the glutamatergic input
pathways in shaping phase preference across sublayers. Given the
major role of CA3 and ECIII inputs, we first focused on
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understanding how individual cells integrate their rhythmic
synaptic potentials arriving at the falling theta phase and peak,
respectively. To test for the effect in a comparable number of
theta cycles, we chose GA-fitted values corresponding to larger
and smaller synaptic conductances on either pathway in n= 48
synthetic cells.

As previously suggested38,39, we found that entorhinal and
CA3 inputs could interact nonlinearly depending on their relative
strength and the dominant type of phase-dependent inhibition
(Fig. 4a). For low ECIII inputs, somatic depolarization was
dominated by CA3 inputs and synthetic cells fired preferentially
towards the theta trough independently on the PV/CCK axis (Fig.
4a, bottom). In contrast, for intermediate and high ECIII activity
levels, distal and proximal dendritic potentials interacted with
perisomatic inhibition to shape firing preference (Fig. 4a, middle
and top). This was clearly visible in membrane potentials at the
main proximal and distal dendritic trunk (Fig. 4b, gray traces).
Strikingly, bimodality of phase-locked firing could not be

explained by the phase of the maximal dendritic depolarization
alone, even under conditions of maximal inputs on either
pathway (Fig. 4c, arrowheads). This further supports the idea
that phase-locking firing is the result of several interacting factors.

To identify multimodal determinants of phase selection across
individual cells we ran a logistic regression analysis that included
all different explicative morphological, biophysical, intrinsic and
synaptic input features from a big dataset (n= 731 synthetic
cells × 97 features, >300,000 theta cycles; Supplementary Fig. 7A).
We evaluated the effect of up- and downregulations of each
feature in determining phase preference and selected those
meeting significance in circular Rayleigh statistics (Supplemen-
tary Fig. 7B). Consistent with results above, we found that PV,
CCK, and ECIII inputs largely explained phase bimodality across
the population of synthetic cells, but other factors emerged as well
generating additional predictions (Fig. 4d). For instance, having
lower or higher number of basal dendrites had contrasting effects
on phase preference, in contrast to the number of apical dendritic
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branches which could explain only minor phase difference (Fig.
4d). Notably, superficial and deep pyramidal cells differ in the
number of basal and apical dendritic branches40, supporting cell
morphology as a critical factor as suggested above. Similarly, we
found that inputs from CA2 and ECII contribute to set neuronal
firing along the raising and the falling theta phase. We confirmed
one of these predictions by running a new set of simulations at
different levels of CA2 inputs (Supplementary Fig. 7C). Other
predictions include asymmetric effects of the up and down-
regulation of entorhinal inputs and the effect of OLM
interneurons, which was supported by independent simulations
(Supplementary Fig. 4C). Finally, the regression analysis also
pointed to some intrinsic factors influencing phase-locking
behavior (Fig. 4d and Supplementary Fig. 7B, D). Because of
the distribution of some of these factors follows deep-superficial
gradients41, these results provide additional support to the idea
that under basal conditions selective phase-locked firing is
differentially organized across sublayers.

Dynamic reorganization of phase-locked firing. An additional
corollary of our simulations is that phase-locked firing could be
tuned from preferred phases provided physiological mechanisms
operate to regulate the relative contribution of some factors. For
instance, simulations in Fig. 4a predict that transient increases of
entorhinal inputs could act to shift firing differently from the
preferred phases established along the deep-superficial PV/CCK
axis. In vivo, activity levels at CA3 and ECIII synapses are
regulated by the cognitive load24,42. Theta cycles with low beta

(20 Hz) and gamma (30–60 Hz) transient spectral components
(tSC1 and 2, respectively) are associated with stronger CA3
inputs, whereas cycles with mid (tSC3) and higher gamma
components (tSC4) are rather reflecting instances of stronger
entorhinal inputs42. To better understand whether these
mechanisms can cooperate to advance or delay firing on demand,
we exploited the spectral variability of theta-nested oscillations as
a proxy for dynamical changes of entorhinal and CA3 inputs.

Using self-organizing maps (SOMs)43, we first categorized
waveforms of individual cycles in different classes (Fig. 5a). Then
for the separate tSC1-2 (high CA3) and tSC3-4 (high ECIII) classes
we built theta phase histograms of single cells recorded
simultaneously by juxtacellular and multisite methods (Fig. 5a,
Supplementary Fig. 8A, B, and see Methods). To ensure robust
statistics across different theta classes, data from each cell/unit was
contrasted against 1000 surrogates and only those meeting
significance (Rayleigh test and TP index) were further considered
(Fig. 5b and Supplementary Fig. 8C; n= 7 juxtacellular from 7
mice, 4 deep, and 3 superficial; n= 96 units from multisite
recordings, 3 sessions from 3 mice, 70 deep, and 26 superficial). In
addition, to facilitate interpreting results at the population level
and to further constraint chance effects, we restricted analysis to
units with consistent coactivation during cycles, as tested with a
rank order test44. To this purpose, for all cycles of a class the spike
timing of individual units was ranked from 0 to 1 (rank order).
Significant rank order distributions were identified using pairwise
correlations between all cycles and tested against the shuffle
distribution (Fig. 5c; pairwise correlations > 0.8; 500 shuffles). This
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allowed us to evaluate the concurrent phase-locking dynamics of
multiple units during high CA3 vs. high ECIII (Fig. 5d).

We found different phase-locking trends of deep and super-
ficial cells during cycles with high ECIII versus CA3 dominant
classes (Fig. 5E, circular ANOVA, F(1,101)= 14.3, p= 0.0003 for
all cells together; F(1,5)= 4.8, p= 0.0795 for juxtacellular cells
alone). During high ECIII inputs, deep cells either advance or
delay their firing but did not shift as a population as compared to
high CA3 cycles (Fig. 5f; mean at −35.8 ± 27.8°). In contrast,
most superficial cells tended to advance their firing during high
ECIII vs. high CA3 inputs (49.8 ± 63.2°, different than 0°, t(28)=
2.5, p= 0.019; Fig. 5e, f). Therefore, spike timing of CA1
pyramidal cells could be biased differently by the two major
glutamatergic pathways.

Discussion
Our work identifies multidimensional mechanisms underlying
firing selectivity of hippocampal pyramidal cells during theta

oscillations. Several intrinsic and microcircuit factors are critical
to shape integration of a collection of theta-modulated inputs in
individual pyramidal cells. Dissecting how each of these factors
determines firing behavior in vivo is experimentally intractable
given the lack of complementary tools to causally interfere with
some of them at once. We thus exploited realistic computational
models and evolutionary algorithms to treat this problem deter-
ministically using heterogeneous synthetic cells in terms of
morphology, biophysical and connectivity properties. This
unbiased approach was combined with experimental data to
dissect the mechanisms underlying the internal organization of
theta phase-locking behavior in the dorsal CA1. Altogether, our
data identify a set of testable physiological mechanisms under-
lying cell-type specific phase-locked firing. We propose that these
basic mechanisms act to set preferred theta phases differently in
deep and superficial CA1 pyramidal cells, while preserving indi-
vidual variability, consistent with experimental data26,45. These
internal firing reservoirs of preferred theta phases can be
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instrumental for flexible representations of fluctuating relevant
inputs during cognitive tasks.

We found that perisomatic inhibition delivered by com-
plementary populations of PV and CCK basket cells represents a
major factor in setting phase preference. In CA1, PV basket cells
innervate preferentially pyramidal cells at the deep sublayers
while CCK basket cells are more likely to target superficial
pyramidal cells36,37. Thus, different connectivity by the two
basket cell populations was enough to bias deep and superficial
pyramidal cells in response to input pathways (Fig. 3). This makes
sense given the coincident dynamics between ECIII inputs and
CCK basket cell firing at the theta peak, and CA3 inputs and PV
basket cell firing at the falling phase11,12,46. This result supports
significant effects of pyramidal cell-types in explaining the
bimodality observed in the population of juxtacellular recorded
cells in basal conditions (Fig. 1) and is consistent with reports of
different phase shifts across sublayers during behavioral tasks24–26.
Interestingly, our simulations also predict that different inner-
vation by bistratified and OLM interneurons will have more
impact in deep than superficial pyramidal cells (Supplementary
Fig. 4), suggesting additional roles in setting phase-locking pre-
ference of pyramidal neurons47,48.

Our computer simulations identified additional mechanisms as
well. First, we found that individual variability in passive and
active intrinsic properties could account for different distribu-
tions of phase-locking preference (Fig. 2f). Data support com-
plementary theta resonant effects of dendritic HCN channels
together with sodium and potassium perisomatic currents49,50.
Interestingly, single-cell transcriptomics suggest gradient dis-
tribution in the expression of ionic channels and receptors across
CA1 sublayers, in particular HCN channels and mGluR1 (ref. 41).
In CA1 pyramidal cells a CB1-HCN pathway interfere with
dendritic integration of glutamatergic inputs in superficial but not
in deep cells51. Thus gradient expression of intrinsic properties
can interact with phasic excitation and inhibition to shape phase-
locking preference at single-cell level52–54. Second, we noted a
cooperative effect between neuronal morphology and intrinsic
properties to skew phase preference in a given cell (Fig. 2f, g).
This result has earlier echoes in reports on the critical role of
branching patterns in firing behavior and dendritic back-
propagation55. More recent studies support the idea that appro-
priate matching between integrative properties and innervation
patterns can critically determine preferential responses of a range
of hippocampal cells to their input pathways56,57. Therefore,
different dendritic branches of superficial and deep cells may
additionally contribute to bias their phase preference19,40. Con-
sistently, superficial cells with more apical dendritic branches are
more responsive to CA3 inputs36, while deep cells with more
basal dendrites are more biased by CA2 inputs58. Similarly, recent
data supporting preferential responses of proximal deep CA1
pyramidal cells to medial entorhinal inputs are consistent with
our results59. Finally, we found that spike timing distribution was
not necessarily correlated with the phase-locking preference of
dendritic potentials (Fig. 4c). This is in agreement with nonlinear
integrative properties of CA1 pyramidal cells38,39 and suggests
different physiological mechanisms underlying phase dynamics
during theta oscillations.

Our logistic regression model also indicated that firing selec-
tion could be tuned distinctly across individual cells depending
on the relative contribution between factors. We suggest that
some of these major factors could change dynamically in vivo to
determine phase timing during theta oscillations. Consistently,
somatodendritic integration of fluctuating CA3 and ECIII gluta-
matergic inputs defined cycle-by-cycle by nested waveforms42

demonstrated that firing selection is tunable (Fig. 5). Interest-
ingly, depolarization of silent CA1 pyramidal cells by artificial

manipulations or sustained dendritic plateau are known factor
that modulate the oscillatory dynamics of CA1 place cells38,60,61.

Thus, the specific phase timing can shift in individual cells
depending on different activity levels at input pathways associated
to a range of cognitive demands such as encoding, retrieval24,62

and changes of brain states63,64. Accordingly, experience-
dependent plastic changes in the circuit built after experience
may indeed affect phase-spiking relationships16. Notably, we
found consistent trends of superficial cells to advance their firing
along phases in response to higher fluctuations of entorhinal
inputs recorded in basal conditions. This resembles basic
mechanisms of theta phase precession during place field cross-
ing9. Although many deep pyramidal cells behaved similarly,
others more typically delayed their firing in response to higher
ECIII inputs. Thus, our data suggest that at least some of the
behavioral theta sequences built during place field crossing may
actually occur in reverse order (Fig. 5d–f), a possibility that has
been already noted experimentally but so far lacks mechanistic
interpretation65. We predict that such reversed theta sequences
may be instrumental for hippocampal codes.

In summary, we propose that sublayer gradients in the dis-
tribution of intrinsic, morphological and microcircuit factors
collude to set preferred theta phase-locked firing differently across
deep and superficial CA1 pyramidal cells. Such preferred theta
phases represent stable attractors or firing reservoirs that dom-
inate the internal hippocampal dynamics under basal conditions.
Interaction between these internally generated reservoirs and
fluctuating inputs associated to different cognitive demands is
critical to build more flexible hippocampal representations24,65–67.

Methods
Animals. All protocols and procedures were performed according to the Spanish
legislation (R.D. 1201/2005 and L.32/2007) and the European Communities
Council Directive 2003 (2003/65/CE) for animal research. Experiments were
approved by the Ethics Committee of the Instituto Cajal and the Spanish Research
Council. A number of recordings in freely moving rats were obtained at the
University of Szeged, Hungary, and were approved by the Animal Care Committee
of the University of Szeged.

A total of 25 males and females mice were used from wild-type (C57BL/6J,
n= 15), PV-Cre (B6;129P2-Pvalbtm1(cre)Arbr/J; Jackson Labs, n= 9), Calb1-Cre
(Calb1-2A-dgCre-D; Jackson Labs, n= 3), and Thy1-ChR2-YFP (B6.Cg-Tg(Thy1-
COP4/EYFP)18Gfng/J, Jackson Labs; n= 2) lines. We also used 28 wild-type males
and females Wistar rats. Animals were maintained in a 12 h light–dark cycle (7 a.m.
to 7 p.m.) with access to food and drink ad libitum.

Head-fixed preparation. For recordings under head-fixed conditions, mice were
first implanted with fixation bars. To this purpose animals were anesthetized with
isoflurane (1.5–2%) in oxygen (30%), while continuously monitored with an oxi-
meter (MouseOx; Starr Life Sciences). Bars and ground/reference screws (over the
cerebellum) were fixed with dental cement. After surgery, mice were habituated to
head-fixed conditions over 2–3 weeks. The apparatus consisted in a cylindrical
treadmill (40 cm diameter) equipped with a sensor to estimate speed and distance
traveled analogically. The system was coupled to a water delivery pump controlled
by a dedicated Arduino. Water drop delivery was coupled to a sound to reinforce
associational learning. Animals learnt to run freely in the cylinder for water reward.
During training sessions (2 sessions × day), their access to water was restricted to
the apparatus. After a couple of weeks of training, mice were able to stay com-
fortable in the system for up to 2 h with periods of running, grooming, immobility
and sleep. Access to water was removed during recording sessions to avoid
motivational influences.

Once habituated to the apparatus, animals were anesthetized with isoflurane
to perform a craniotomy for electrophysiological recordings (antero-posterior
(AP): −3.9 to −6 mm from Bregma; medio-lateral (ML): 2–5 mm). The
craniotomy was sealed with Kwik-Cast silicone elastomer and animals returned to
their home cage. Experiments started the day after craniotomy.

Freely moving preparation. For recordings under freely moving conditions, rats
were first implanted with dedicated microdrives for juxtacellular recordings. For
the manual microdrive, animals were implanted with a plastic holder targeting a
small craniotomy (4.3 mm posterior to Bregma and 2.5 mm lateral) under iso-
flurane anesthesia (1.5–2% mixed in oxygen 400–800 ml/min). The dura mater was
left intact and craniotomy was cleaned with 0.05–0.07 mg/ml Mitomycin C (Sigma)
to reduce growth-tissue, filled with agar (2.5–3.5%) and covered to avoid drying. A
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ground epidural platinum/iridium wire (125 µm) was implanted over the cere-
bellum for reference. A contralateral intra-hippocampal tungsten wire (122 µm)
was implanted for local field potential (LFP) recordings (reference screw at the
occipital region). Cleaning of craniotomy was repeated over 4–5 consecutive days
after surgery. Animals were habituated daily to the recording arena (40 × 40 ×
23 cm or 25 × 25 × 35 cm) and microdrive-holder manipulation with water and
food ad libitum. The day of recording, the microdrive housing a glass pipette
(1.0 mm × 0.58 mm, ref. 601000; A-M Systems filled with 1.5–2.5% Neurobiotin in
0.5 M NaCl; impedance 8–15MΩ) was mounted in the holder and gently advanced
into the brain (350 µm per revolution at 3–5 µm resolution).

For the motorized microdrive, rats were implanted with the plastic holder
carrying a mock glass pipette using similar coordinates, material and procedures as
described above. The drive used a miniature brushless DC motor (125 : 1 planetary
gear reduction; Microcomo, Faulhaber Group, Germany) attached to a screw
(0.2 mm pitch, 1.6 mm diameter) and connected to the pipette holder. An
Arduino-based controller was used to drive the motor at steps of 1, 10, 100, and
1000 µm in both directions. A contralateral intra-hippocampal tungsten was used
to record LFP signals. A ground epidural platinum/iridium wire and/or chlorinated
silver wires (125 µm) were implanted over the cerebellum and used as reference for
the glass pipette. An occipital screw was implanted for independent ground and/or
reference. Over the next 2–3 days, rats were habituated to the recording arena
(25 × 25 × 35 cm) and manipulation of the implant. A video camera was used to
monitor animals’ behavior (sleep, running, grooming, rearing) and to track their
position in the recording arena. The day of recording, the animal was briefly
sedated with isofluorane (1.5% mixed in oxygen 400–800 ml/min) to mount a new
glass pipette and returned to the home cage while monitoring LFP signals.
Recordings started after 3–4 h, when rats behaved normally and LFP activity was
similar than before sedation.

Electrophysiological recordings. For LFP recordings in head-fixed conditions, we
used 16- and 32-channel silicon probes from Neuronexus (linear arrays with
50–100 µm resolution and 413–703 µm2 electrode area; Poly3 arrays with 25 µm
resolution and 177 µm2 area and Buzsaki probes). LFP recordings in freely moving
conditions were obtained from a single tungsten wire. Wideband (1 Hz–5 KHz)
LFP signals were pre-amplified (4–10 × gain) and recorded with different AC
multichannel amplifiers (Multichannel Systems or the RHD2000 Intan USB Board
running under Open ephys). Characteristic features such as the laminar profile of
theta and sharp-wave ripples, as well as unit activity were used to inform laminar
position within the hippocampus. In all cases, electrode position was histologically
confirmed68.

Single-cell recordings followed by juxtacellular labeling for post-hoc immune-
histochemical identification were obtained in combination with LFP. For
juxtacellular recordings, a glass pipette (1.0mm × 0.58mm, ref. 601000; A-M
Systems) was filled with 1.5–2.5% Neurobiotin in 0.5M NaCl (impedance 8–15MΩ).
Juxtacellular signals were acquired with an intracellular amplifier (Axoclamp 2B;
Axon Instruments) at 100× gain. Single-cell and simultaneous LFP recordings were
sampled at 20 kHz/channel with 12 bits precision (Digidata 1440; Molecular
Devices). After recording, cells were modulated using the juxtacellular labeling
technique with positive current pulses (500–600 ms on–off pulses; 5–18 nA)68.

Chemogenetic experiments. PV-Cre mice were injected with AAV8-DIO-hSyn-
hM4D(Gi)-mCherry (1 µL; titer 5.3 × 1012 vg/ml; provided by UNC Vector core,
Roth lab) targeting the dorsal CA1 region (−1.9 mm AP; 1.25 mmML and 1mm
depth). After a minimum of 3 weeks from injection, animals were operated for
implanting head-fixing bars as described above. For juxtacellular experiments,
CNO was injected once the pipette was over the hippocampus and we started
searching for cells. Most cells were recorded between 10 and 60 min after CNO
injection. We monitored continuously the CNO effect using parallel LFP record-
ings. For multisite experiments, CNO was administered after having recorded more
than 20 min baseline activity. To facilitate longitudinal recordings from the same
population of cells, we implanted an intraperitoneal cannula for administering
CNO (5 mg/kg in dimethyl sulfoxide (DMSO)) or vehicle (DMSO) in a group of
mice. We also examined off-target effects of CNO in a group of wild-type mice.

Specificity of viral expression (as in Fig. 3c) and localization of probe tracks
were always assessed after experiments to validate local effects.

Optogenetic experiments. Calb1-Cre mice were injected with AAV5-DIO-EF1a-
hChR2-EYFP (1 µL; titer 4.5 × 1012 vg/ml; provided by UNC Vector core, Deis-
seroth lab) targeting the dorsal CA1 region (−1.9 mm AP; 1.25 mmML and 1mm
depth). Two days after AAV injection, two doses of trimethoprim (TMP T0667
from Sigma; ∼0.17 g/kg from saturated solution of 14 mg TMP in 1 ml saline)
per day were intraperitoneally injected over 3 consecutive days to induce Cre-
mediated recombination. After a minimum of 3 weeks from injection, animals were
operated for implanting head-fixing bars as above. Transgenic Thy1-ChR2-YFP
mice were directly implanted with fixation bars. One week after recovery from
surgical implantation, animals were trained in the head-fixed apparatus as above.

Recording and optogenetic stimulation were performed with integrated micro-
LED optoelectrodes originally provided by Euisik Yoon under the NSF-funded
NeuroNex project and later purchased from NeuroLight Technologies, LLC,

N1-A0-036/18. To constrain precisely optical stimulation at individual deep and
superficial pyramidal cells, and to avoid confounding microcircuit effects, we
exploited high-density recordings and nanowatt blue light stimulation at 10–20 nW
to activate isolated units29. The deep or superficial location of opto-tagged units
was confirmed by using information about the sharp-wave ripple profile across
high-density optoelectrodes. Only unambiguous deep and superficial pyramidal-
like opto-tagged units were included in the analysis.

Specificity of viral expression (as in Fig. 1h) and localization of probe tracks
were always assessed after experiments to validate local effects.

Tissue processing and inmunohistochemistry. After experiments, animals were
perfused with 4% paraformaldehyde and 15% saturated picric acid in 0.1 M, pH 7.4
phosphate-buffered saline (PBS). Brains were postfixed overnight, washed in PBS,
and serially cut in 70 µm coronal sections (Leica VT 1000S vibratome). Sections
containing the stimulus and probe tracks were identified with a stereomicroscope
(S8APO, Leica). Sections containing Neurobiotin-labeled cells were identified by
incubation in 1 : 400 Alexa Fluor488-conjugated streptavidin (Jackson Immu-
noResearch 016-540-084) with 0.5% Triton X-100 in PBS (PBS-Tx) for 2 h at room
temperature (RT). Slices recorded in vitro containing Alexa568 filled cells were
fixed for 30 min, washed in PBS, and processed similarly to others.

Sections containing the somata of recorded cells were treated with Triton 0.5%
and 10% fetal bovine serum (FBS) in PBS. After washing, they were incubated
overnight at RT with the primary antibody solution containing some of the
following antibodies with 1% FBS in PBS-Tx: rabbit anti-calbindin (1 : 1000, CB D-
28k, Swant CB-38, RRID:AB_10000340), mouse anti-calbindin (1 : 1000, CB D-
28k, Swant 300, RRID:AB_10000347), rabbit anti-somatostatin (1 : 1000, Peninsula
T4103, RRID:AB_518614), rabbit anti-PV (1 : 1000, Swant AB_2631173, RRID:
AB_2631173), mouse anti-PV (1 : 1000, Swant, 235, RRID:AB_10000343) and
rabbit anti-NPY (1 : 1000; Peninsula, T4070, RRID: AB_518504). After three
washes in PBS-Tx, sections were incubated for 2 h at RT with secondary antibodies:
goat anti-rabbit Alexa Fluor633 (1 : 500, Invitrogen, A21070), goat anti-mouse
Alexa Fluor488 (Jackson Immunoresearch 115-545-003) or goat anti-mouse
Rhodamine Red (1 : 200, Jackson ImmunoResearch, 115-295-003) in PBS-Tx-1%
FBS. Following 10 min incubation with bisbenzimide H33258 (1 : 10,000 in PBS,
Sigma, B2883) for labeling nuclei, sections were washed and mounted on glass
slides in Mowiol (17% polyvinyl alcohol 4–88, 33% glycerin and 2% thimerosal
in PBS).

Multichannel fluorescence stacks were acquired with a confocal microscope
(Leica SP5; LAS AF software v2.6.0). Morphological analyses were blind to
electrophysiology. Cells were classified deep or superficial depending on their
position within the Calbindin+ sublayer. The distance from the cell soma to the
border between the SP and radiatum (taken at 0) was measured from confocal
images using information from Calbindin and bisbenzimide staining and the
ImageJ software (v 1.52a NIH Image).

To evaluate appropriate expression of hM4D(Gi)-mCherry in PV basket cells,
we performed triple staining to identify mCherry+ cell types based on specific
markers: PV basket cells or axo-axonic cells located at the pyramidal layer
and expressing PV exclusively; bistratified cells located at the pyramidal layer
and co-expressing PV and NPY or PV and SST; OLM cells located at the oriens
and co-expressing PV with SST but not NPY; Ivy cells expressing NPY only.
Specificity was evaluated by counting the number of PV+ cells expressing
mCherry. Off-target expression was assessed by counting the number of mCherry+
cells not expressing PV (e.g. some Ivy cells). Similarly, specificity and off-target
expression of ChR2-YFP in Calb1-Cre and Thy1-ChR2 mice was evaluated by
immunostaining against Calbindin. Data were expressed in percentage of the total.

Computational model. To understand how deep and superficial CA1 pyramidal
cells integrate theta-modulated glutamatergic and GABAergic inputs, we modeled
single cells using the Neuron (v.7.4)+ Python (v.7) platform running on an Intel
Xeon E3 v5 processor with 64GB RAM and Ubuntu (v.16.04). Our simulations are
based on a realistic full-scale model of the CA1 microcircuit able to autonomously
generate theta oscillations33. To reduce computational cost and given our focus in
the integrative properties of single neurons, we considered only multi-
compartmental pyramidal cells with realistic morphologies and a collection of
theta-modulated glutamatergic and GABAergic inputs based on the full model and
literature (see Supplementary Tables 2 and 3). As the full model was conceived to
simulate the CA1 microcircuit, pyramidal cells were simplified to a few numbers of
compartments and basic biophysical features (see below). Given our focus on the
integrative properties of single pyramidal cells, we chose to sophisticate the model
details by including a range of ionic currents with a more realistic somatodendritic
distribution based on well-validated previous models of CA1 (refs. 69,70) (Sup-
plementary Tables 1 and 2).

To consider cellular heterogeneity, we included four different realistic
morphologies of CA1 pyramidal cells. They were obtained from http://
neuromorpho.org/ (morphologies n128, n127 and n409 from the Turner archive
and morphology sup1 corresponding to the superficial cell I040913C7SEC8_2D
from the Prida archive). Each morphology was fitted to 200–300 compartments
equipped with a set of active and passive voltage-dependent conductances (320 for
morphology n128, 261 for sup1, 270 for n409, and 230 for n127). Each
compartment was modeled using the Hodgkin–Huxley formalism with a set of
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differential equations representing the dynamics of different ionic channel plus the
intracellular calcium concentration (18 equations per compartment). Briefly, the
total current flowing through each compartment was the result of different
contributions:

I ¼
X

Isyn þ
X

Iintrinsicactive þ
X

Iintrinsicpassive ð1Þ
Each passive, active or synaptic current was generically modeled following the

HH formalism as:

I ¼ g V ; tð Þ � V � Vrevð Þ ð2Þ
With specific HH dynamics as specified in Supplementary Tables 2 and 3 (see

model DB codes).
To fit free parameters, we adopted a combination of GAs34 and random

selection within experimental value ranges (Supplementary Table 1). For GA
fitting, the effective conductance of each channel was modeled as the product of the
maximal experimental conductance (Gmax) and a GA factor:

g ¼ Gmax � GAfactor ð3Þ
The intrinsic GA consisted on 100 generation runs to look for parameter values

that converge to the target behavior. During one generation, each model was
assessed to target experimental behavior (Fig. 2b, c). Successful GA factor values
were passed with a 40% probability to next generations as well as 20% probability
for unsuccessful values to promote variability. To avoid GA factors to get trapped,
40% of values were “mutated”: one GA factor at once was changed randomly
within the range.

Each compartment was passively connected to neighbor compartments by axial
resistance. Passive properties were the following: (a) internal resistivity was defined
as a Ra= 100 (Ohm × cm) scaled by a GA factor; (b) membrane capacitance at
soma was 5 μF/cm2, and 1.8 × 5 × SpineFactor (μF/cm2) for the rest of the
compartments. The SpineFactor (SS) accounts for the extra surface area of
dendritic spines in a given compartment (Supplementary Table 2)71. Specifically,
SS= 2.51 for basal dendrites. For apical dendrites located <350 μm from soma:
SS= 1.69 if thickness > 1.6, SS= 1.60 if 0.55 < thickness < 1.6, SS= 1.86, if
thickness < 0.55, and for apical dendrites > 350 μm from soma, SS= 2.10 if
thickness > 0.35, SS= 1.71 if thickness < 0.35. Finally, the specific membrane
resistivity (S/cm2) was defined following:

gsoma
pas ¼ 0:001

80þ 0:4�80
1þexp 225�zð Þ=30ð Þ

ð4Þ

grestpas ¼ SS � gsoma
pas ð5Þ

where z is the somatodendritic distance.
Different glutamatergic (CA3, CA2, ECIII, and ECII) and GABAergic (Axo, Bis,

CCK, Ivy, NGF, OLM, PV, and SCA) inputs were simulated along the
somatodendritic compartments following realistic distributions (Supplementary
Table 3; columns # of boutons, Location and Distance to soma). For synaptic
currents, individual synapses were modeled using NetCon High Order Calculator
(HOC) function and distribution along the morphology followed experimental
observations (Supplementary Table 3). Distribution along theta cycles followed an
asymmetric Gaussian (beta function) with parameters β1 and β2 determined by
experimental observations (Supplementary Table 3).

Synapse dynamics were set with the Exp2Syn HOC function, as in the full
model with double exponential functions (Supplementary Table 3; columns Erev,
tau1, tau2, and Gmax) representing GABAa and AMPA currents. As in the full
model, NMDA receptors were not included.

Gmax tð Þ / e�t=tau1 � e�t=tau2
� �

ð6Þ
We compared a subset of our simulations with those emerging from the full

realistic model at scales 2 and 100 and found qualitatively similar results
(Supplementary Fig. 5). The full model was run in the supercomputers Comet and
Stampede of the Neuroscience Gateway portal (https://www.nsgportal.org/)72.

To model several individual CA1 pyramidal cells, we exploited GA variability of
the intrinsic and synaptic sets of values (Supplementary Fig. 3A, B). GA factors for
ionic channel conductance were chosen to fit the neuron intrinsic properties34–37.
GA factors of synaptic conductance of the CA3 inputs and their associated
feedforward inhibitory inputs (Axo, Bis, CCK, PV, and SCA) were selected to target
experimental data36. Each GA run provided a set of individuals (combination of
GA factors) fitting experimental values for intrinsic and synaptic properties. We
then chose 20 individuals fitting intrinsic and synaptic traits in the four different
morphologies (Supplementary Fig. 3B).

To evaluate the integrative properties of individual neurons during theta
oscillations, we simulated realistic theta-modulated firing of glutamatergic and
GABAergic inputs impinging at each compartment (Supplementary Table 3;
column Frequency and Phase; 1000 cycles per simulation and cell). Phases of
different inputs were established using a sinusoidal theta signal as a reference. This
signal was subsequently used to evaluate phase-locked behavior of simulated cells.
The firing rate from each individual pyramidal cell was evaluated and constrained
to realistic values (0.01–8 Hz). Parameter values were derived from experimental
ranges reported in literature and detailed in Supplementary Table 3 (refs. 73–79).

Model results not fitted by GA were compared with experimental
values36,51,80,81 (Supplementary Table 4).

Our model is available at Github (https://github.com/acnavasolive/LCN-
HippoModel) and ModelDB: 258854 (http://modeldb.yale.edu/258854).

Computer simulation experiments. A major goal of our simulations was to
evaluate the effect of different connectivity of pyramidal cells by local GABAergic
interneurons (Fig. 3). Thus, we tested the effect of changing the full model con-
nectivity of PV and CCK basket cells based on experimental data suggesting up to
70% difference on the number of boutons impinging onto deep and superficial CA1
pyramidal cells36. To this purpose, we changed the distribution of perisomatic
boutons (−50 to 150 µm around the soma) to the % of the GA-fitted value to
simulate deep (30% CCK, 100% PV) and superficial cells (100% CCK, 30% PV)
(Fig. 3a, b and Supplementary Fig. 4A, B). We also aimed to evaluate the effect of
reduction of 70% in the number of boutons for the other interneuronal types
(Supplementary Fig. 4C, D). Given the lack of experimental data on this matter, we
chose to simulate a general reduction all along their somatodendritic targets.

In a subset of simulations we confirmed that reducing connectivity (boutons) or
the corresponding input rate (Supplementary Table 2, Frequency) yielded qualitatively
similar results. To make testable predictions we simulated full reduction of PV basket
cell input rates (Supplementary Fig. 6A) and proportional reduction of PV, Bis, OLM
and Ivy inputs according to experimental data (Fig. 3c–e). We also tested the effect of
changes of glutamatergic inputs (ECIII, CA3 and CA2) by increasing/decreasing their
input rates in a realistic range (Fig. 4a).

Logistic regression model. For the multinomial logistic regression analysis, pre-
ferred phases from all simulations (n= 731 synthetic cells) were pooled into a big
data set including detailed information from morphological (number of dendritic
branches and axial resistance), intrinsic (maximal conductances of all ionic
channels fitted by GA) and synaptic features (same for all synaptic conductances)
(97 features in total, see full list below). The logistic regression function from
sklearn Python library was used to multinomially fit data using 30° binned pre-
ferred phases as the categorical dependent variable and each features as indepen-
dent variables (Supplementary Fig. 7A). The solver used was a quasi-Newton
optimization method named L-BFGS.

Outcomes of the model (coefficients) indicate the effect of increasing
(upregulating; black) or decreasing (downregulating; gray) a given feature on
specific preferred phases (Supplementary Fig. 7B; only significant features are
shown). To evaluate significant contribution of each feature in determining phase
preference, we run a circular Rayleigh statistical test (p < 0.001). The weighted
contribution of significant features to a given phase was considered to build a
generalized linear model. Individual features (up- and downregulated) explaining
at least 20% variance of phase-locking firing for three consecutive 30° bins were
considered to contribute significantly and analyzed separately (Fig. 4d).

Full list of features: CA3 factor (CA3_F), original gCA3 (CA3_G), final gCA3
(CA3_F*G), CA3 #boutons (CA3_B), CA3 frequency (CA3_Freq), CA3 phase
(CA3_Ph), CA2 factor (CA2_F), original gCA2 (CA2_G), final gCA2 (CA2_F*G),
CA2 #boutons (CA2_B), CA2 frequency (CA2_Freq), CA2 phase (CA2_Ph), EC3
factor (EC3_F), original gEC3 (EC3_G), final gEC3 (EC3_F*G), EC3 #boutons
(EC3_B), EC3 frequency (EC3_Freq), EC3 phase (EC3_Ph), EC2 factor (EC2_F),
original gEC2 (EC2_G), final gEC2 (EC2_F*G), EC2 #boutons (EC2_B), EC2
frequency (EC2_Freq), EC2 phase (EC2_Ph), Axo factor (Axo_F), original gAxo
(Axo_G), final gAxo (Axo_F*G), Axo #boutons (Axo_B), Axo frequency
(Axo_Freq), Axo phase (Axo_Ph), Bis factor (Bis_F), original gBis (Bis_G), final
gBis (Bis_F*G), Bis #boutons (Bis_B), Bis frequency (Bis_Freq), Bis phase
(Bis_Ph), CCK factor (CCK_F), original gCCK (CCK_G), final gCCK (CCK_F*G),
CCK #boutons (CCK_B), CCK frequency (CCK_Freq), CCK phase (CCK_Ph), Ivy
factor (Ivy_F), original gIvy (Ivy_G), final gIvy (Ivy_F*G), Ivy #boutons (Ivy_B),
Ivy frequency (Ivy_Freq), Ivy phase (Ivy_Ph), NGF factor (NGF_F), original gNGF
(NGF_G), final gNGF (NGF_F*G), NGF #boutons (NGF_B), NGF frequency
(NGF_Freq), NGF phase (NGF_Ph), OLM factor (OL-M_F), original gOLM (OL-
M_G), final gOLM (OL-M_F*G), OLM #boutons (OL-M_B), OLM frequency
(OL-M_Freq), OLM phase (OL-M_Ph), PV factor (PV_F), original gPV (PV_G),
final gPV (PV_F*G), PV #boutons (PV_B), PV frequency (PV_Freq), PV phase
(PV_Ph), SCA factor (SCA_F), original gSCA (SCA_G), final gSCA (SCA_F*G),
SCA #boutons (SCA_B), SCA frequency (SCA_Freq), SCA phase (SCA_Ph), iNa
factor (iNa_F), gNa original mean (iNa_Gmean), iA factor (iA_F), gA original
mean (iA_Gmean), iAHPs factor (iAHPs_F), gAHPs original mean
(iAHPs_Gmean), iC factor (iC_F), gC original mean (iC_Gmean), iKDR factor
(iKDR_F), gKDR original mean (iKDR_Gmean), iM factor (iM_F), gM original
mean (iM_Gmean), iCa factor (iCa_F), gCa original mean (iCa_Gmean), HCN
factor (HCN_F), gHCN original mean (HCN_Gmean), L factor (L_F), gL original
mean (L_Gmean), Ra factor (Ra_F), gRa original mean (Ra_Gmean), #Apic
branches (nBrApic), #Basal branches (nBrBasal), and #Total branches (nBrTotal).

Analysis of experimental LFP signals. All analysis was performed using routines
written in Matlab 9.5 2018b (MathWorks). For experimental data, LFPs from
different layers were identified according to distinctive features, including sharp-
wave ripples (at stratum radiatum (SR) and stratum pyramidale (SP)) and maximal
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theta oscillations (stratum lacunosum moleculare (SLM)). In data from juxtacelular
recordings, we used the LFP signal from the glass pipette similarly. Power spectra
of LFP signals were estimated using the Fast Fourier transform. For theta activity,
non-overlapping segments of continuous oscillations in the 4–12 Hz band were
identified using the largest amplitude channel (typically at SLM). To detect theta
cycles, we band-filtered LFP signals at 4–12 Hz, with forward-backward-zero-phase
FIR filters, to detect troughs and validate them whenever they were surrounding by
equivalent peaks at the expected period defined by the oscillatory spectrum. We
next identified the associated theta peak at the SP, which was used as a reference.
For sharp-wave ripples, LFP signals at SR were low-pass filtered (<100 Hz) to
identify sharp waves and signals from SP were bandpass filtered (100–600 Hz) to
identify ripples. For detecting sharp waves, filtered signals were smoothed (Gaus-
sian kernel) and events detected by thresholding >3 SDs. For detecting ripples,
bandpass-filtered signals were smoothed (Savitzky–Golay) and events detected by
thresholding >2 SDs. All pairs of detected events were visually confirmed and
artifact discarded.

Unsupervised decomposition of theta cycles. Based on recent results supporting
distinctive nested spectral components25,42, we applied unsupervised SOM analysis
to classify theta cycles according to their LFP signatures43. To this purpose, each
cycle was mapped into a high-dimensional space determined by downsampling
with principal component analysis to explain >90% variance. Cycles sharing similar
nested components (oscillations in the beta, low gamma and high gamma band)
will map together in the hyper-space. SOM works to organize this cluster of points
in the hyper-space into a low-dimensional matrix by optimizing the topological
distance. Cycles grouped in a given element of the matrix share common wave-
forms and neighboring elements that are likely to be similar were grouped together
in a similarity matrix. The number of clusters was defined by the Davies–Bouldin
index. SOM represents a predictive model that needs to be validated. Thus, for each
mean element of the matrix we represented the time-frequency components
using wavelet analysis and used information from the similarity matrix to identify
theta-nested spectral components tSC1 (<20 Hz centered at the theta peak), tSC2
(30–40 Hz, at the falling phase), tSC3 (50–60 Hz; at the theta peak), and tSC4
(70–90 Hz at the peak), as validated recently42. The SOM classifier (RhythSOM) is
available at GitHub (https://github.com/acnavasolive/RhythSOM).

Analysis of juxtacellular recordings. For juxtacellularly labeled cells, signals from
glass pipettes were high-pass filtered at 300 Hz to detect positive spikes from the
recorded cell (>8 SD). Simultaneous LFP signals at SLM and SP were processed as
described above. The stability of the action potential waveform (peak-to-peak
duration and amplitude as well as a spike asymmetry index defined as the ratio of
the difference between the negative and positive baseline-to-peak amplitudes and
their sum) was evaluated over the entire recording session (>3 min), before jux-
tacellular electroporation. Interspike interval autocorrelograms (1 ms bin size) were
constructed using all detected spikes. Baseline firing rate was stable for small
movements of the pipette towards the cell, excluding mechanical interferences.

Phase-locked firing of single cells was evaluated from each spike using the
Hilbert phase of theta peaks detected before (either all detected cycles or classified
cycles tSCi). Each theta cycle was divided into 25 bins. Phase locking was quantified
using the mean vector length of phase distribution from 0 to 1 in significantly
theta-modulated cells (p < 0.05, Rayleigh test). The SP theta trough was set at 0
(360°) and peaks at 180°. To test phase-locking significance, we implemented a
surrogate test consisting of randomizing 1000 times the firing rate of each cell
across all cycles. Differences between the experimental/simulated and surrogate
distribution were tested at p= 0.05 significant level.

State-dependent analysis of juxtacellular recordings. To account for state-
dependent effects on single-cell firing, we defined periods of sleep, immobility and
other activities (grooming, whisking, and arousal) using an integrated analysis of
behavioral and electrophysiological data.

In the open-field preparation, sleeping epochs were defined as periods of
immobility, lasting at least 60 s, and typically associated with curled-up postures as
evaluated from the video. They were typically associated with slow-wave high-
amplitude activity (<3 Hz) and short REM phases characterized by low amplitude
theta activity. Running periods were defined whenever the rat was moving
at >5 cm/s and theta oscillations were recorded in the hippocampus. Immobility
was defined for >5 s periods at 0 cm/s with large irregular activity. Wake non-
running periods were defined as periods of immobility associated with
hippocampal theta activity and included behaviors like grooming, attention,
whisking, or head nodding.

In the head-fixed preparation, sleep was defined whenever mice were immobile
with eyes closed and a higher arousal level (not responding to mild clapping). Sleep
in the wheel was accompanied by high-amplitude slow-wave activity and
occasionally by theta. Only a minority of mice exhibited REM sleep in the wheel
and therefore this state was not considered for analysis. Running was defined
whenever the speed was >4 cm/s in association with theta oscillations. Immobility
periods were defined as continuous periods (>5 s) at 0 cm/s in the wheel
accompanied by large irregular activity. During some immobility periods, mice

performed grooming, whisking, and attentive behaviors that were associated with
hippocampal theta oscillations.

Sorting and analysis of individual units from multisite recordings. Single units
were isolated using Kilosort2 (https://github.com/MouseLand/Kilosort2)82. Spike
trains were analyzed by generating interval time histograms and temporal auto-
correlograms (±0.025 s). Only units with >100 spikes, none of them in the
refractory period of the interspike time histogram (1–2 ms), and with spike
amplitudes three to four times above background noise, typically 20–30 µV, were
included. Putative pyramidal cells and interneurons were differentiated following
standard criteria, including trough-to-peak duration of the nonfiltered spike,
waveform asymmetry, and the first moment of the autocorrelograms. The firing
rate was not used as a classificatory criterion, given the large variability, especially
between interneuronal types and states. Putative interneurons were subclassified
(PV, CCK, OLM, and Bis) according to their theta preference and behavior during
sharp-wave ripples, as previously reported83. Deep and superficial pyramidal cells
were subclassified according to their location in the multisite probe (maximal
amplitude spike) and the associated sharp-wave ripple waveform in the corre-
sponding channel, as reported before84. Units that could not be unambiguously
identified were left unclassified.

Rhythmic and phase-locked firing of sorted units was evaluated as described
above for juxtacellular data.

Rank order test. To identify theta cycles with simultaneous unit firing more than
expected by chance, we used a rank order test44. For each cycle, the timing from
multiple pyramidal units recorded simultaneously with multisite probes were
transformed in a normalized chronological order from 0 to 1, to avoid influences
from instantaneous variations of theta frequency. Only cycles with at least four
participating units were included. Only the first spike from each unit in a cycle was
considered for the rank order. We then constructed 500 rank order shuffles for
each cycle and tested each real sequence in a cycle against all shuffle distributions
using Pearson’s correlations. Rank distribution of the correlation values was tested
against shuffle correlations; significance at p= 0.05. Only cycles with more sig-
nificant correlations than expected by chance were considered for further analysis.

Analysis of simulation results. Results from simulations were analyzed with
Matlab routines. Action potential firing was estimated from the high-pass filtered
(>300 HZ) somatic membrane potential signal by thresholding. Membrane
potential fluctuations from the soma, the proximal apical and the distal main
dendritic compartments were used to evaluate somadendritic dynamics. To eval-
uate phase-locked behavior of simulated cells the sinusoidal theta signal was used
as a reference and analysis implemented as previously described for juxtacellular
recordings.

Statistical analysis. Statistical analysis was performed with Matlab. No statistical
method was used to predetermine sample sizes. Normality and homoscedasticity
were evaluated with the Kolmogorov–Smirnov and Levene’s tests, respectively. The
exact number of replications for each experiment is detailed in text and figures.

Circular statistics was performed using the CircStat Matlab toolbox. Circular
one-way (Watson–Williams multi-sample test) or two-way ANOVAs
(Harrison–Kanji tests) were applied to examine effects of preparation and/or
sublayers. Post-hoc comparisons were evaluated with T-tests, corrected by
Bonferroni whenever requiered. Correlations were evaluated with the Pearson
product-moment correlation coefficient, which was tested against 0 (i.e., no
correlation was the null hypothesis) at p < 0.05 (two sided). Both the Pearson’s
coefficient and p-value are reported to facilitate interpretation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Experimental data supporting the findings of this study are available on request from the
corresponding author. The model and validated parametric sets are available at Github
https://github.com/acnavasolive/LCN-HippoModel and ModelDB: 258854. The Matlab
SOM routine adapted to the analysis of LFP events (RhythSOM) is available at GitHub
(https://github.com/acnavasolive/RhythSOM).
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