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Identification of potential 
microRNA panels for pancreatic 
cancer diagnosis using microarray 
datasets and bioinformatics 
methods
Roshanak Shams1,2 ✉, Samaneh Saberi1,3, Mohammadreza Zali1, Amir Sadeghi1, 
Soudeh Ghafouri-Fard2 & Hamid Asadzadeh Aghdaei1 ✉

Pancreatic cancer (PC) is a malignancy with little/no warning signs before the disease reaches its 
ultimate stages. Currently early detection of PC is very difficult because most patients have non-specific 
symptoms leading to postponing the correct diagnosis. In this study, using multiple bioinformatics 
tools, we integrated various serum expression profiles of miRNAs to find the most significant miRNA 
signatures helpful in diagnosis of PC and constructed novel miRNA diagnosis models for PC. Altogether, 
27 differentially expressed miRNAs (DEMs) showed area under curve (AUC) score >80%. The most 
promising miRNAs, miR-1469 and miR-4530, were individually able to distinguish two groups with the 
highest specificity and sensitivity. By using multivariate cox regression analyses, 5 diagnostic models 
consisting of different combinations of miRNAs, based on their significant expression algorithms and 
functional properties were introduced. The correlation model consisting of miR-125a-3p, miR-5100 and 
miR-642b-3p was the most promising model in the diagnosis of PC patients from healthy controls with 
an AUC of 0.95, Sensitivity 0.98 and Specificity 0.97. Validation analysis was conducted for considered 
miRNAs on a final cohort consist of the microarray data from two other datasets (GSE112264 & 
GSE124158) . These results provide some potential biomarkers for PC diagnosis after testing in large 
case-control and cohort studies.

According to GLOBOCAN 2018, pancreatic cancer (PC) is the 4th leading cause of cancer-related death and is 
associated with high mortality and poor prognosis1. PC is a malignant condition with little/no warning signs 
before the disease reaches its ultimate stages2. The majority of patients with PC are already reached to either 
locally advanced or metastatic level in the asymptomatic phase before referring to the clinic and as many as 
80% are categorized in unresectable group3. The average survival rate for the PC is reported to be less than one 
year. Some studies reported that the 5-year survival rate would increase notably if PC patients were diagnosed 
at initial stages and subjected to surgical resection followed by chemotherapy4,5. Currently early detection of 
PC is very difficult because most patients are found with non-specific symptoms leading to postponing the cor-
rect diagnosis6. On the other hand, sometimes pancreatic mass is indistinguishable from chronic pancreatitis or 
benign pancreatic cysts, so the results of pathological assessment of biopsies obtained from the lesion could be 
not informative7. Moreover, cytological analysis of the sample taken by endoscopic ultrasound-guided fine needle 
aspiration (EUS-FNA) may be non-precise because of sampling complications, inflammation coexistence or other 
conditions8. Therefore, finding possible non-invasive biomarkers at early stages of PC progression is crucial for 
evaluation of high-risk subjects to establish follow-up strategies and surgical resection of primary malignancy. 
In this regard, numerous scientists tend to identify biomarkers that could help gastroenterologists and pathol-
ogists in PC detection, and finding potential biomarkers with the possibility to be accessible in a less invasive 
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method have become a research trend. The ultimate biomarkers must be easily detectable with fine sensitivity 
and specificity and also must discriminate PC from other benign pancreatic diseases9. Blood is a simply reachable 
and rather steady sample to find alerting biomarkers. Technological advances in the recent years have provided 
possibilities to detect circulating biomarkers based on “omics” research, relying on proteins, cell-free DNAs, 
non-coding RNAs, circulating tumor cells (CTCs), and exosomes molecular contents10. MicroRNAs (miRs) are 
small (~22 nucleotides) non-coding RNAs that have gene regulatory roles via targeting the 3′-untranslated region 
(3′-UTR) of their target mRNA and finally cause either translational repression or mRNA degradation11,12. Up to 
now, a number of biomarkers have been introduced as PC biomarkers such CEA, CA19-9, CA125 and CA72-4. 
Nonetheless, none of these tumor markers has shown efficient sensitivity or specificity for diagnosing PC at pri-
mary stages and have been used for post resection monitoring rather than earlier detection purposes. MiRNAs 
seem to be truly stable in blood and several authors reported that miRNAs show dysregulation in pancreatic 
diseases being able to differentiate PC from pancreatitis, pancreatic benign masses as well as normal subjects13. 
Furthermore, owing to advanced technologies in high-throughput molecular methods the understanding of the 
pathophysiology of pancreatic cancer have been improved. Various genome-wide mRNA and miRNA expression 
profiling studies using microarray-based and NGS approaches have provided important insights into the phe-
notypic characteristics of pancreatic cancer14. In this study, using multiple bioinformatics tools, we integrated 
various serum expression profiles of miRNAs to find the most significant potential miRNA signatures helpful 
in the diagnosis of PC and constructed a novel miRNA- mRNA regulatory network in PC using bioinformatics 
approaches. Next, we investigated the molecular mechanisms downstream of the captured miRNA signatures and 
their predicted target genes correlated to PC progression and analyzed them in a logistic model.

Material and method
Microarray datasets search.  In order to find proper miRNA expression profiles in microarray datasets, 
we conducted a systematic search in Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/)15. Using the keywords “Pancreatic cancer” and “Serum”, at the first step we reached 900 datasets. Then, we 
limited the results using ‘Homo sapiens’ and ‘Non-coding RNA profiling by array’ filters, so we reached to 16 
datasets. Finally, by setting the sample count on more than 200 samples, 4 final datasets were achieved.

Differentially expressed miRNAs (DEMs) detection.  The DEMs were obtained using the online tool 
GEO2R in the GEO database15, which makes evaluations using the GEOquery and limma R packages from the 
Bioconductor project to compare two or more groups of samples in a GEO dataset. Normalization has been car-
ried out using the RMA algorithm. To keep away from the false-positive/negative and the differences between 
microarray platforms, the microarray gene-expression profiles of PC groups was compared to the normal groups 
of each dataset separately. |log2 (RMA signal intensity fold change) | ≥1 and p value > 0.01 was set as cut off to 
identify the significant DEMs. After that, significantly expressed DEMs in each study were listed respectively.

Combination of the data.  A Venn diagram creator tool in Bioinformatics & Evolutionary Genomics source 
was used to combine all datasets and find the overlapping DEMs (http://bioinformatics.psb.ugent.be/webtools/
Venn/). In order to cover more miRNAs with differential expression and to prevent missing of critical genes that 
may not have shown differences in expression in one study for any reason, it was decided to select the DEMs 
overlapped between at least 3 of datasets.

Area under curve (AUC) analysis.  The expression values of all overlapping DEMs were extracted and 
imported to GraphPad Prism software. After normalization of the values, Receiver-operating characteristic 
(ROC) curves and area under the ROC curve (AUC) were used to assess the detection ability of each miRNA in 
discriminating PC patients from the control group based on the sensitivity and specificity of each DEM.

Hierarchical clustering analysis.  Individual expression values of significantly up/down regulated DEMs 
in PC (27 DEMs) were logarithm transformed and were used as input values for the hierarchical clustering algo-
rithm. The following criteria was applied: The distance chose “Pearson Correlation”, and the linkage selected 
“average”. The result is demonstrated as a Heatmap.

Expression correlation analysis.  The expression values of the DEMs were clustered using the k-means 
method. The median of expression values of all miRNAs for each sample was used as the representative expres-
sion for the cluster. Using R programing software16 and the corrplot package17, Pearson’s correlation for 27 DEMs 
expression profiles were analyzed and demonstrated as a Corrplot.

MiRNA-miRNA interaction network.  MiRNet is an online tool suite designed for precise analysis and 
functional interpretation of miRNAs and xeno-miRNAs18. This tool holds numerous high-quality science-base to 
link miRNAs to their targets and other correlated molecules. Network analysis was carried out using functional 
annotations based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, and by the use 
of the hypergeometric algorithm for enrichment analysis of loaded data, a table of validated miRNA target genes 
was achieved using MiRNet.

MiRNA-mRNA interaction.  MirDIP, a miRNA target prediction online tool, supplies almost 152 million 
human miRNA–target predictions, which were gathered from 30 different resources. It also provides an inte-
grative score, which was statistically concluded from the acquired predictions, and was assigned to each unique 
miRNA–target interaction to give a unified measure of confidence19. Using this tool we reached to predicted 
target genes lists of each considered miRNA.
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Protein-protein interaction (PPI) network and functional enrichment analysis.  Interactions 
between the target genes of selected miRNAs were predicted using the STRING database v 9.0.5. Confident inter-
action score was set on ≥0.7. The PPI networks were uploaded and visualized to Cytoscape software20 and top 
modules of PPI network were picked using Molecular Complex Detection (MCODE)21 with the inclusion crite-
ria as follow: degree =2, node score =0.2, k-core=2, max. The average degrees of MCODE score and nodes in 
modules were chosen as the threshold, thus we set MCODE scores ≥9 and hub nodes ≥9 as criteria. Functional 
enrichment analysis was performed using DAVID for all targets and top modules respectively.

Multivariate regression analysis.  The expression of each miRNA was in continuous format and described 
as mean and standard deviation (SD). Candidate miRNA expressions were examined on the basis of their univar-
iable association with PC. The full model with the covariate effects was built according to five clusters obtained 
from bioinformatics analysis, using the stepwise inclusion method. The estimation of the coefficients in each 
regression model was checked by multicollinearity by analyzing variance inflation factor (VIF). A variable whose 
VIF values were more than 10 may need further investigation. The significance of covariates in each full model 
was further tested by the backward elimination method. The akaike information criterion (AIC) and bayesian 
information criterion (BIC) were computed each time a variable was included/excluded and the model with lower 
AIC or BIC was preferred. We also determined the performances of each model by examining measures of cali-
bration and discrimination. Calibration points out how nearly the predicted probability of having PC agrees with 
the observed PC status. This was assessed by Hosmer-Lemeshow test. Discrimination expresses the ability of the 
clinical decision rule to differentiate between individuals with and without PC. This was assessed by calculating 
the area under the ROC curve (AUC) statistic. We considered an AUC value of 0.5 as no discrimination, and 1 as 
perfect discrimination. All analyses were performed by using Stata software (version 14). Results were statistically 
significant by p < 0.05 levels.

Validation.  As a validation set, an independent cohort composed of serum miRNA expression profiles from 
patients with pancreatic cancer and healthy controls was provided. The subjects were chosen from two other GEO 
datasets (GSE112264 & GSE124158) consisting of serum miRNA profiles from PC patients and healthy controls 
(70 controls and 81 PC). The diagnostic performances of the considered models were checked through determin-
ing the combined AUCs for each considered panel. For this aim, the performances of each miRNA individually 
and also together as panels were analyzed and AUC scores and ROC curves for each model were obtained.

Results
Microarray datasets search results.  The flow chart of the datasets selection procedure and the features 
of the datasets are shown in Fig. 1. Some of the datasets contain a large set of expression profiles of various can-
cers, including PC. For these studies, a large number of healthy controls were included as normal controls, and 
we selected control samples based on the number of PC samples. GSE106817 consists of more than 2000 normal 
serum samples and 115 serum samples from PC patients (Yokoi et al., 2018). GSE113486 includes 200 normal and 
40 PC serum samples (Usuba et al., 2019). GSE59856 includes 300 healthy controls and 100 serum samples from 
PC patients (Kojima et al., 2015). The fourth dataset, GSE85589 consisted 29 healthy subjects and 88 PC patients’ 
sera. It should be added that just the two later datasets included some available demographic features such as can-
cer stage, age, gender and CA19-9 levels of the patients, so it was not possible to evaluate the associations of the 
final DEMs to these kinds of features. Two other datasets (GSE112264 & GSE124158) consisting of serum miRNA 
profiles from PC patients and healthy controls (70 controls and 81 PC) were also considered as the validation set.

Differentially expressed miRNAs (DEMs) and overlapped DEMs among 4 groups.  A total of 
1346, 1471, 127 and 93 miRNAs showed significant up/down regulation in GSE106817, GSE113486, GSE85589 
and GSE59856 microarray datasets, respectively. After integration of the results, 105 miRNAs that were com-
mon in at least 3 of datasets were captured (Table 1). 5 miRNAs (hsa-let-7b-5p, hsa-miR-4721, hsa-miR-122-5p, 
hsa-miR-1290 and hsa-miR-125a-3p) were common between all four analyzed datasets. Figure 2 represents the 
number of miRNAs which are shared between the datasets.

AUC analysis.  After extraction of the expression values for all 105 considered DEMs, in order to find the 
most reliable ones in discriminating PC from healthy controls, AUC analysis was performed and the ROC curves 

Figure 1.  The selection procedure and information of the datasets. Note: Due to the increased number of 
datasets in the GEO database from the date of this investigation (February, 2019), different results may be 
obtained by applying the same criteria.

https://doi.org/10.1038/s41598-020-64569-1


4Scientific Reports |         (2020) 10:7559  | https://doi.org/10.1038/s41598-020-64569-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

GSE106817 GSE113486 
GSE59856 GSE85589

GSE106817 GSE113486 
GSE59856

GSE106817 GSE113486 
GSE85589

GSE106817 GSE59856 
GSE85589

hsa-let-7b-5p hsa-miR-17-5p hsa-miR-202-5p hsa-miR-6075

hsa-miR-4721 hsa-miR-4732-5p hsa-miR-4668-5p

hsa-miR-122-5p hsa-miR-575 hsa-miR-4708-3p

hsa-miR-1290 hsa-miR-223-3p hsa-miR-3171

hsa-miR-125a-3p hsa-miR-8073 hsa-miR-10a-3p

hsa-miR-6880-5p hsa-miR-3910

hsa-miR-1246 hsa-miR-603

hsa-miR-6765-3p hsa-miR-32-5p

hsa-miR-20b-5p hsa-miR-532-5p

hsa-miR-20a-5p hsa-miR-548u

hsa-miR-106a-5p hsa-miR-4791

hsa-miR-6871-5p hsa-miR-127-3p

hsa-miR-6893-5p hsa-miR-6506-5p

hsa-miR-4454 hsa-miR-3927-3p

hsa-miR-451a hsa-miR-4742-5p

hsa-miR-126-3p hsa-miR-3128

hsa-miR-4476 hsa-miR-4696

hsa-let-7f-5p hsa-miR-5195-3p

hsa-let-7d-5p hsa-miR-548aq-3p

hsa-miR-1236-5p hsa-miR-455-3p

hsa-miR-4530 hsa-miR-509-5p

hsa-miR-25-3p hsa-miR-548ac

hsa-miR-564 hsa-miR-155-5p

hsa-miR-663a hsa-miR-548×-3p

hsa-miR-3907 hsa-miR-130a-3p

hsa-miR-6872-3p hsa-miR-22-3p

hsa-miR-6857-5p hsa-miR-548aj-3p

hsa-miR-30b-3p hsa-miR-542-3p

hsa-miR-7977 hsa-miR-7154-5p

hsa-miR-124-3p hsa-miR-4797-5p

hsa-miR-134-3p hsa-miR-890

hsa-miR-221-3p hsa-miR-101-3p

hsa-miR-1469 hsa-miR-6840-5p

hsa-miR-7975 hsa-miR-642b-3p

hsa-miR-4648 hsa-miR-5100

hsa-miR-619-5p hsa-miR-3201

hsa-miR-92a-2-5p hsa-miR-606

hsa-miR-125b-1-3p hsa-miR-570-3p

hsa-miR-26a-5p hsa-miR-4757-5p

hsa-let-7a-5p hsa-miR-5681a

hsa-let-7c-5p hsa-miR-7852-3p

hsa-miR-4733-3p hsa-miR-4536-3p

hsa-miR-16-5p hsa-miR-4712-3p

hsa-miR-20b-3p

hsa-miR-4490

hsa-miR-450b-5p

hsa-miR-3152-3p

hsa-miR-548a-3p

hsa-miR-221-5p

hsa-miR-628-5p

hsa-miR-335-5p

hsa-miR-181a-5p

hsa-miR-130b-3p

hsa-miR-518d-3p

hsa-miR-1278

hsa-miR-4423-3p

Table 1.  The overlapped DEMs among 4 different datasets.
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for all 105 DEMs were prepared. Finally, 27 DEMs showed AUC score >80% (Table 2) and the ROC curves of 
them is represented in Fig. 3. The list of those DEMs with AUC >80% are also listed in Table 3. The most prom-
ising miRNA, miR-1469, was able to distinguish the two groups with 91% specificity and 100% sensitivity. ROC 
curve analysis showed that the AUC value for this miRNA was 0.98 (95% CI 0.95–1.06) and this value for miR-
4530 was 0.93 (95% CI 0.91–0.97). Based on these results, miR-1469 and miR-4530 may be the strongest individ-
ual signatures for differentiating PC patients from healthy controls.

Co-expression correlations.  Figure 4A demonstrates a hierarchically clustered Heatmap built up using 
the expression values of all 27 captured DEMs. Six miRNAs showed down-regulation and 21 miRNA showed 
up-regulation in PC patients compared with healthy subjects. Pearson’s correlation coefficients were determined 
among all the 27 miRNA captured signatures (Fig. 4B). Altogether, 6 miRNAs including miR-5100, miR-8073, 
miR-642b-3p, miR-1246, miR-1469 and miR-663a showed the strongest positive correlations. The highest positive 
correlation coefficient was found between miR-5100 and miR-8073 (Pearson’s correlation = 0.893, p < 0.001), 
followed by miRNA-642b-3p with miR-663a and miR-1469 (Pearson’s correlations = 0.864, p < 0.001 and 0.851, 
p < 0.001).

MiRNA-miRNA interaction network.  Using MiRNet online software, the interactions between the 27 
DEMs were analyzed based on their target genes and downstream molecular pathways. After uploading the 
miRNA IDs and setting the cut off degree on 2, a networks based on the following parameters was acquired 
(Fig. 5A): number of queries: 27, number of nodes: 2931 (miRNAs: 29, Targets: 2826) and number of edges:18640 
(Fig. 5A). A module consisting of PC related genes and their connected miRNAs was extracted from this network 
and the result is represented in Fig. 5B.

Target genes of miRNAs and functional enrichment analysis.  Overall 1147 target genes for all 27 
DEMs were predicted. The full list of those DEMs in addition to their predicted target genes are available in 
Supplementary File 1. Through DAVID online tool, GO and KEGG pathway enrichment of the identified target 
genes were performed. GO biological process (BP) analysis showed that the target genes were mostly involved in 
response to drug, regulation of translation and cellular membrane organization (Table 3). KEGG analysis showed 
that the target genes were mainly implicated in cancer-related pathways including chronic myeloid leukemia, 
glioma, prostate cancer and also pancreatic cancer (Table 4).

PPI network construction and top module selection.  The PPI network was composed of 506 nodes 
and 10805 edges. Using the plug-in MCODE in Cytoscape software, three significant modules were selected with 
MCODE score ≥10 (Fig. 6). Functional enrichment analysis indicated that the genes of these modules were sig-
nificantly enriched in ubiquitination, gene expression regulation, and spliceosome complexes.

Top clustered DEMs and modules.  Five clusters of most related miRNAs amongst all of the 27 considered 
DEMs were defined based on the different aspects of their trends in the expression and functional properties. The 
list of all clusters components is available in Supplementary File 2.

Multivariate regression models.  The results of univariable logistic regression showed the significant role 
of each miRNA in the distinction of PC (Supplementary File 2, Crude model). Univariable logistic regression 
analysis in each cluster showed that all selected miRNAs significantly increase the risk of PC and these associa-
tions were statistically highly significant (P < 0.0001; Supplementary File 2, Crude Model).

The multivariable logistic regression of miRNA expression was based on five cultures that resulted by clus-
tering method in bioinformatics analysis. In each cluster when all predictors were included in the model, the 
association of them with PC changed. In cluster 1, while the strength of association among miR-125a-3p, miR-
92a-2-5p and miR-4530 and PC decreased, but remained statistically significant (P = 0.031, P < 0.0001 and 
P < 0.0001, respectively; Supplementary Table 1, Model A). However, the association between miR-125b-1-3p, 
miR-6893-5p and miR-4476 and PC were statistically non-significant and omitted in further analysis. In cluster 

Figure 2.  A VENN diagram representing the number of DEMs that are in common between different analyzed 
datasets.
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2, the associations between miR-8073 and miR-663a and PC were decreased but remained statistically significant 
(P = 0.005 and P = 0.032, respectively; Supplementary Table 1, Model A). Although the interaction between miR-
5100 and miR-642b-3p were found to be non-significant (P = 0.082 and P = 0.061, respectively; Supplementary 
Table 1, Model A), but they were forced into the final diagnostic model because of their trend relevance. However, 
the association between miR-1246 and PC was statistically non-significant and omitted from further analysis. In 
cluster 3, while the strength of association among PC and miR-125a-3p (P = 0.008; Supplementary Table 2, Model 
A) was increased and associations were decreased for miR-5100 and miR-642b-3p (P = 0.003 and P = 0.005, 
respectively; Supplementary Table 1, Model A), but remained statistically significant. However, the associations 
between miR-606, miR-4668 and miR-3910 and PC were statistically non-significant and omitted for further 
analysis. In cluster 4, the strength of association between PC and miR-4668, miR-663a and miR-125a-3p were 
increased (P = 0.078, P = 0.058 and P = 0.080 respectively; Supplementary Table 2, Model A), but remained sta-
tistically non-significant. Yet, they were forced into the final diagnostic model because of their trend relevance. 
However, associations between PC and other miRNAs of the cluster were statistically non-significant and omit-
ted frm further analysis. In cluster 5, although the strength of association between miR-8073, miR-92a-25p and 
miR-5100 and PC was decreased (P = 0.004, P < 0.0001 and P = 0.006 respectively; Supplementary 2. Table 2, 
Model A), it remained statistically significant. However, association between PC and miR-1246 was statistically 
non-significant and omitted from further analysis.

The results of univariable and multivariable logistic regression along with the AIC and BIC values correspond-
ing to the inclusion/exclusion of each predictor (Supplementary Table 2) were used to select predictors of the full 
diagnostic (logistic) model.

The optimum model in each cluster was selected by both methods corresponded to the model consisting of 
different predictors (Table 5). The final prediction models in different clusters leading to better diagnosis of PC 
are presented in Table 3. The Hosmer-Lemeshow statistic suggested that fit of model was adequate for each cluster 
dataset (Table 5). In this regard, the cluster 3 was the most fitted model that the ROC analysis on the predicted 
probabilities of PC derived from this model yielded an AUC of 0.95, Sensitivity 0.98 and Specificity 0.97, which 
segregated PC patients from controls. Our suggested model, based on miRNA expression indices provides a 
molecular screening strategy, suitable for application prior to subsequent invasive methods of risk monitoring, 
such as surgery. However, it should be noted that this paper is basically bioinformatics research. Without any new 
sample being prospectively collected and examined to prove the validity of the proposed signatures, the suggested 
models will not be appropriate for clinical use.

Column1 Area Std. Error 95% confidence interval P value

hsa-miR-1469 0.9825 0.004891 0.9729 to 0.9921 <0.0001

hsa-miR-4530 0.9332 0.009712 0.9141 to 0.9522 <0.0001

hsa-miR-125a-3p 0.901 0.01227 0.8769 to 0.9250 <0.0001

hsa-miR-125-1-3p 0.8952 0.01372 0.8683 to 0.9221 <0.0001

hsa-miR-4668 0.8904 0.01581 0.8594 to 0.9214 <0.0001

hsa-miR-4490 0.8903 0.01431 0.8623 to 0.9184 <0.0001

hsa-miR-4536 0.8863 0.01757 0.8518 to 0.9207 <0.0001

hsa-miR-5100 0.8833 0.01674 0.8505 to 0.9161 <0.0001

hsa-miR-4742-5P 0.8739 0.01657 0.8414 to 0.9064 <0.0001

hsa-miR-663a 0.8728 0.01434 0.8447 to 0.9009 <0.0001

hsa-miR-628-5p 0.8719 0.01671 0.8392 to 0.9047 <0.0001

hsa-miR-3927-3P 0.8709 0.01821 0.8352 to 0.9066 <0.0001

hsa-miR-1246 0.8694 0.01583 0.8384 to 0.9004 <0.0001

hsa-miR-642-3p 0.868 0.01788 0.8330 to 0.9031 <0.0001

hsa-miR-92a-2-5p 0.8618 0.01883 0.8249 to 0.8987 <0.0001

hsa-miR-3021 0.8549 0.01928 0.8171 to 0.8927 <0.0001

hsa-miR-7852 0.8536 0.01927 0.8158 to 0.8914 <0.0001

hsa-miR-3128 0.8521 0.0195 0.8138 to 0.8903 <0.0001

hsa-miR-6893 0.8503 0.01614 0.8187 to 0.8819 <0.0001

hsa-miR-532-5p 0.8499 0.01802 0.8146 to 0.8852 <0.0001

hsa-mirR-8073 0.8466 0.01704 0.8132 to 0.8800 <0.0001

hsa-miR-548u 0.8427 0.02049 0.8026 to 0.8829 <0.0001

hsa-miR-3910 0.8356 0.02059 0.7953 to 0.8760 <0.0001

hsa-miR-4476 0.8123 0.0185 0.7760 to 0.8486 <0.0001

hsa-miR-4696 0.8067 0.02144 0.7647 to 0.8488 <0.0001

hsa-miR-3152 0.8056 0.02247 0.7616 to 0.8496 <0.0001

hsa-miR-606 0.8022 0.02274 0.7577 to 0.8468 <0.0001

Table 2.  The results of AUC analysis for considered DEMs.
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Validation.  The performance evaluations of the resulted diagnostic models showed that model 2 demon-
strates the best performance in discriminating PC patients from healthy controls (AUC: 0.978; sensitivity: 0.986; 
specificity: 0.875) (Fig. 7 & Table 6). The 4 other models also showed AUC >80% which are statistically significant 
values (Table 6 & Supplementary File 3).

Figure 3.  The ROC curves for DEMs with AUC > 80%.

GO Term Total Expected Hits Pval

response to drug 344 20.6 40 0.0363

regulation of translation 228 13.7 28 0.0427

cellular membrane organization 471 28.3 48 0.0427

cell-cell junction organization 186 11.2 24 0.0427

homeostasis of number of cells 196 11.8 25 0.0427

positive regulation of cellular component organization 560 33.6 54 0.0427

ER-nucleus signaling pathway 111 6.66 17 0.0427

Table 3.  GO Enrichment of Target DEGs in PC.
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Discussion
In order to early diagnosis of patients with PC, there is a comprehensive need to find biomarkers with high speci-
ficity and sensitivity. By using bioinformatics methods, this study describes 5 new miRNA panels for PC diagnosis 
using a combination of 27 miRNAs in serum of PC patients. To find the miRNA candidates, 4 GEO microarray 
datasets containing the miRNA expression profiles from the serum of PC and healthy controls were chosen for 
differential expression analysis. DEMs from all of the datasets were extracted and at the result, 105 miRNAs that 

Figure 4.  (A) The hierarchically clustered Heatmap built up using the expression values of all 27 captured 
DEMs. (B) Pearson’s correlation plot for 27 DEMs expression profiles. Pearson’s correlations calculated for all 
27 DEMs values are demonstrated as circles whose sizes are representative of the certain correlation value, with 
colors ranging from dark red (coefficient -1), to dark blue (coefficient 1), as described in the color scale.
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were common between 4 or 3 categories were captured out. In the next step, the expression values for all these 
DEMs were extracted and normalized. Using ROC curve analysis, the most powerful DEMs in discriminating 
PC patients from healthy controls were picked out. Overall, 27 DEMs showed AUC >80% and were considered 
as suitable candidates for further analysis. Although recent findings have introduced circulating miRNAs as diag-
nostic cancer markers, none have led to the utilization of these markers for clinical plans due to the insufficiency 
of individual miRNA biomarkers in clinical testing22,23. An increasing interest to combine biomarkers into unique 
panels tackles the problem of tumor heterogeneity and low specificity and sensitivity of single miRNAs to diag-
nose certain cancers. For this reason, multiple mathematical models have been employed to weigh the efficiency 
of combinations of miRNAs as cancer diagnostic biomarkers. These methods comprise threshold-based methods, 
logistic regression, decision trees and support vector machine24. In this study, we used logistic regression method 
to find the most promising miRNA combinations as diagnostic models for PC. Figure 8 demonstrates all steps of 
finding the hub DEMs and clustering processes.

Figure 5.  (A) The miRNA-mRNA interactions among all 27 considered DEMs. The red circles represent all 
predicted target genes and the green ones represent the genes implicated in cancer related pathways. (B) Well-
known target genes for pancreatic cancer in associations to the considered DEMs.
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To find the hub genes, multiple bioinformatics and statistical analyses were performed to specify the fittest 
miRNA combination among all 27 DEMs, as a diagnostic model. Five clusters of miRNAs were introduced based 
on different approaches in grouping genes such as clustering based on co-expression (cluster 1-2), correlations 
of the expressions (cluster 3), association of the target genes to PC (cluster 4) and functional enrichment analysis 
of the target genes (cluster 5). The first 2 clusters were determined based on the results of hierarchically clustered 
genes, where based on the co-expression of the DEMs, 2 clusters could be separated. The 3th cluster is consisted 
of the genes that have the highest positive or negative correlation (>0.8) of the expression to each other. Based 
on the functional enrichment analyses that were performed on the predicted target genes of considered DEMs, 
two more clusters were specified. One of them included the DEMs that target well-known genes contributed to 
PC (cluster 4) and the second one consisted the DEMs that are associated with the top modules extracted from 
the PPI network of whole target genes of 27 DEMs (cluster 5). Finally, in order to find the most promising mod-
els amongst the determined clusters, multivariate cox regression analysis was performed on all clusters and the 

Pathway Total Expected Hits Pval

Chronic myeloid leukemia 73 4.59 19 1.28E-05

Glioma 65 4.08 17 2.01E-05

Prostate cancer 87 5.47 20 2.01E-05

Melanoma 68 4.27 17 3.05E-05

Colorectal cancer 49 3.08 13 0.000266

Non-small cell lung cancer 52 3.27 13 0.000452

Pathways in cancer 310 19.5 39 0.00048

Circadian rhythm - mammal 22 1.38 8 0.000881

Bladder cancer 29 1.82 9 0.00106

Pancreatic cancer 69 4.33 14 0.00158

HTLV-I infection 199 12.5 27 0.0019

p53 signaling pathway 68 4.27 13 0.00448

Endometrial cancer 44 2.76 10 0.00502

mTOR signaling pathway 45 2.83 10 0.00566

Acute myeloid leukemia 57 3.58 11 0.00985

Chagas disease (American trypanosomiasis) 89 5.59 14 0.0155

Small cell lung cancer 80 5.03 13 0.016

TGF-beta signaling pathway 84 5.28 13 0.024

Fc gamma R-mediated phagocytosis 97 6.09 14 0.0304

Jak-STAT signaling pathway 99 6.22 14 0.0351

Renal cell carcinoma 60 3.77 10 0.0386

Cell cycle 124 7.79 16 0.0428

Regulation of actin cytoskeleton 182 11.4 21 0.043

Table 4.  KEGG pathway enrichment of Target DEGs in PC.

Figure 6.  Three top modules (clusters) extracted from PPI network interactions between all of the target 
genes of considered miRNAs. Blue circles and the green diamonds represent the predicted target genes and the 
associated miRNAs respectively.
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Intercept and Predictors Coefficient SE OR 95% CI P value VIF Sensitivity Specificity
Opt 
Cutoff

Cluster 1

Intercept 20.04426 3.258 — —

mir125a3p −0.103 0.029 0.90 0.85–0.95 <0.0001 1.88

mir92a25p −0.140 0.028 0.86 0.82–0.91 <0.0001 2.14

mir4530 −0.111 0.028 0.89 0.84–0.94 <0.0001 2.34

Mean VIF 2.12

AIC/ BIC 63.79/ 79.28

McFadden’s Pseudo R2 0.8853

Hosmer-Lemeshow GOF X2 = 1.30, P value= 0.9956

ROC area (95% CI) 0.9964 (0.99287–0.99990) 0.98 0.95 0.576

Cluster 2

Intercept −22.92 5.751

mir5100 0.080 0.045 1.08 0.99–1.18 0.079 5.85

mir8073 0.152 0.052 1.16 1.05–1.29 0.004 5.47

mir642b3p 0.107 0.056 1.11 0.99–1.24 0.056 4.64

mir663a 0.126 0.053 1.13 1.02–1.26 0.019 4.15

Mean VIF 5.03

AIC/ BIC 31.13/ 50.50

McFadden’s Pseudo R2 0.9565

Hosmer- Lemeshow GOF X2 = 11.81, P value= 0.1598

ROC area (95% CI) 0.9995 (0.99844–1.00000) 0.99 0.98 0.553

Cluster 3

Intercept −3.793 3.393

mir8073 0.22 0.051 1.25 1.13–1.38 <0.0001 1.26

mir92a25p 0.17 0.037 1.19 1.10–1.28 <0.0001 2.02

mir5100 −0.23 0.059 0.79 0.70–0.89 <0.0001 2.00

Mean VIF 1.76

AIC/ BIC 55.25611/ 70.74458

McFadden’s Pseudo R2 0.9028

Hosmer- Lemeshow GOF X2 = 2.22, P value= 0.9735

ROC area (95% CI) 0.9970 (0.99334–1.00000) 0.98 0.97 0.688

Cluster 4

Intercept −7.466 2.528

mir4668 0.142 0.045 1.15 1.05–1.26 0.002 6.63

mir663a −0.11 0.027 0.89 0.84–0.94 <0.0001 3.51

mir125a3p 0.109 0.039 1.11 1.03–1.20 0.005 4.65

Mean VIF 4.93

AIC/ BIC 49.65036/ 65.13883

McFadden’s Pseudo R2 0.9144

Hosmer- Lemeshow GOF X2 = 2.22, P value= 0.9735

ROC area (95% CI) 0.90 (0.89–0.95) 0.96 0.90 0.589

Cluster 5

Intercept 3.966 5.754

mir125a3p −0.382 0.166 0.68 0.49–0.94 0.021 1.91

mir5100 0.242 0.089 1.27 1.06–1.51 0.007 2.13

mir642b3p 0.216 0.083 1.24 1.05–1.46 0.010 2.54

Mean VIF 2.19

AIC/ BIC 23.29147/ 38.77994

McFadden’s Pseudo R2 0.9686

Hosmer- Lemeshow GOF X2 = 0.03, P value= 1.0000

ROC area (95% CI) 0.95 (0.92–0.99) 0.97 0.93 0.401

Table 5.  Full diagnostic (logistic) model for pancreatic cancer, including the intercept. SE: Standard error. 
OR: Odds Ratio. X2: Chi square statistic. GOF: Goodness of fit. ROC = Receiver-operating characteristic. VIF: 
variance inflation factor
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fittest models as panels of miRNAs were identified to discriminate PC patients from the healthy subjects. Overall, 
2 models as the co-expression models, 1 model as the correlation model and 2 models as the gene functional 
models were introduced.

As can be seen in Fig. 4, two groups of co-expressed DEMs are prominent. The first cluster is down-regulated and 
the second one is up-regulated and both of them consist the DEMs with the most similarity in expression to each 
other. The downregulated co-expressed cluster consists of miR-125b-1-3p, miR-125a-3p, miR-92a-5p, miR-4530, miR-
6893-5p and miR-4476. While all of these DEMs may be strong discriminators of PC patients from healthy controls 
solitarily, but the fittest model extracted from this cluster included miR-125a-3p, miR-92a-5p and miR-4530. These 
miRNAs have shown differential expression in a variety of cancers especially gastro Intestinal cancers in multiple stud-
ies and are known as tumor suppressor miRNAs25–28. The other DEMs of this cluster also have documented traces in 
association with GI cancers. For example, Yamada A et al. have introduced liquid biopsy markers for early detection 
of colorectal cancer and, in a cohort of 237 patients, circulating levels miR-125b independently showed differentiated 

Figure 7.  Performance of the model 2 on the validation cohort. The combinatorial multivariable ROC curve of 
the model is demonstrated. Colored lines represent the ROCs of each marker individually. Black line represents 
the combinatorial ROC for all of the DEMs as model 2.

Symbol AUC SE SP

Combination model 1 0.936 0.859 0.925

Combination model 2 0.978 0.986 0.875

Combination model 3 0.969 0.901 0.938

Combination model 4 0.957 0.831 0.938

Combination model 5 0.929 0.873 0.900

Table 6.  The performance of the considered models on the validation set. AUC: Area under curve, SE: 
Sensitivity, SP: Specificity.

Figure 8.  The summary of the whole steps of the hub DEMs selection and clustering of them.
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expression in colorectal neoplasms in comparison to healthy controls. However, they showed that this miRNA in com-
bination with some other miRNAs as a panel has improved the accuracy of detection29. The second cluster included 
a set of up-regulated miRNAs such as miR-1469, miR-1246, miR-5100, miR-8073, miR-642b-3p and miR-663a that 
showed significant co-expression in PC patients. MiR-1469 was the most powerful individual marker in the diagnosis 
of PC in the results of our analyses. Multiple studies have reported the effect and differential expression of this miRNA 
in various cancers such as lung, gastric, rectal and also pancreatic cancer30–33. Similarly, miR-1246 has been introduced 
as a significant serum/plasma marker in the diagnosis of a variety of cancers including esophageal squamous cell carci-
noma, lung, prostate, colorectal and eventually pancreatic cancer34–38. MiR-5100 has been associated with risk of PC as 
2 studies have reported differential expression of this miRNA in PC patients’ saliva and cell lines39,40. Despite that miR-
8073 has been confirmed as a tumor suppressor miRNA in some cancers such as breast, ovarian and colorectal41–43, 
in this study we found significant up-regulation of this miRNA in the serum of PC patients. In line with the results of 
our study, mir-642b-3p have records of significant overexpression in the serum of PC patients in some recent stud-
ies44–46. For miR-663a, some studies have reported significant down-regulation in a variety of cancers such as colorectal 
and non-small cell lung as well as PC33,47,48 that may show a tumor suppressive effect of this gene, but in this study 
we detected significant up-regulation of this miRNA through the analyzed datasets. Stablished model from cluster 2, 
consisted miR-5100, miR-8073, miR-642b-3p and miR-663a. Although miR-1469 and miR-1246 individually showed 
high power to differentiate PC patients from healthy controls, they did not fit into the logistic model along with other 
miRNAs. The correlation model was also the top model introduced from the third cluster including the DEMs with 
the strongest negative or positive correlation of expression. MiR-125a-3p, miR-606, miR-4668, miR-3910, miR-5100, 
miR-642b-3p and miR-532 formed this cluster and most of them have been reported as feasible diagnostic biomarkers 
for a variety cancers (Bibi et al., 2016b; Cheng, Wang, Han, & sciences, 2017; Song, Wang, Jin, Wang, & Duan, 2015), 
but here we introduced them as a unified model for this aim. The acquired logistic model from this cluster includes 
miR-125a-3p, miR-5100, miR-642b-3p that were discussed earlier.

In order to find miRNAs that are the most related to each other and can be used as a diagnostic panel, we per-
formed multiple functional enrichment analyses so we could categorize the considered miRNAs based on the func-
tions of their target genes. First, using an online miRNA target gene prediction software, all feasible target genes were 
predicted. Afterwards, the functional status of all target gene were analyzed in regard of GO and KEGG functional 
enrichment. GO analysis showed that a significant number of all target genes have role in the processes such as cel-
lular membrane organization, cell-cell junction organization and. These kinds of cellular and molecular functions 
are clearly understood as critical procedures in tumorigenesis and metastasis49,50. On the other hand, the results of 
KEGG pathway analysis demonstrated that most of the target genes of considered miRNAs are implicated in vari-
ous cancer-related pathways including chronic myeloid leukemia, glioma, prostate cancer and also PC. Figure 5A 
represents all miRNA-target genes interactions while the green circles represents the target genes implicated in 
cancer related pathways. Figure 5B is the extracted module consists of known genes correlated to PC as well as their 
contributed miRNAs. MiRNAs of this module were considered as a cluster and miR-4668, miR-663a, miR-3128, 
miR-125a-3p, miR-3910, miR-3152, miR-606, miR-3927 and miR-6893-5p were the compartments of it. After per-
forming multivariate logistic regression analysis miR-4668, miR-663a and miR-125a-3p were unified as the fifth 
model. Amongst the 3 compartments of this model, miR-4668 has been shown to have over-expression in serum 
and tissue samples from in hepatocellular carcinoma and gastric cancer51,52. As it is shown in Fig. 5B, a group of con-
sidered miRNAs in this study may target some known genes associated with pancreatic cancer. For example, Schutte 
et al. detected improper hypermethylation of the p16/CDKN1A gene in a group of PC patients53. In this study, we 
found significant overexpression of miR-4668 and miR-663a that both are strongly predicted to target the CDKN1A 
gene. Another gene of this module is RHOB, that is a known tumor suppressor gene in various cancers54,55, never-
theless, it is not much known in PC. The revival of suppressed RHOB leads to tumor regression in different types 
of cancers56 and may be used as a critical target in cancer therapy57. Yonggang Tan et al. demonstrated significant 
down-regulation of RHOB in human PC and showed that this gene suppresses the progression of PC by inhibiting 
proliferation, migration, and invasion, as well as by inducing apoptosis58. In the present study, we showed that miR-
92a-5p and miR-663a are predicted to target this gene and may have associations to PC progression.

In the aspect of PPI network construction through the target genes of considered DEMs and analysis of the 
top modules, we identified 3 top modules that had the strongest PPIs through all the target genes. Later, we found 
that a set of miRNAs are connected to all these top 3 modules, as it is shown in Fig. 8 (miR-8073, miR-92a-2-5p, 
miR-5100, miR-1246, miR-1469 and miR-642b-3p), so we assumed them as a cluster and the fifth model consist-
ing of miR-8073, miR-92a-5p and miR-5100 were extracted from this cluster. The functional enrichment analyses 
showed that the most component of this three modules are implicated in ubiquitination, gene expression regula-
tion and spliceosome complexes.

In conclusion, this study supports the accuracy of some formerly proposed biomarkers for PC and also has sug-
gested new candidate miRNAs which can be used as diagnostic or prognostic means or as therapeutic targets. We 
introduced 5 diagnostic models consisting of different combinations of miRNAs, based on their significant expres-
sion algorithms and functional properties. The aim of this study was to identify appropriate miRNA biomarkers in 
serum samples that could differentiate PC from healthy individuals. For this matter, we have to first test the sides 
of the coin (ie, PC vs healthy controls) because if panels of microRNA could not discriminate these two extremes, 
it would not be possible to develop a diagnostic microRNA for early detection of primary tumors or early stages of 
the disease. However, it should be considered that none of these models have been tested in experimental studies 
up to now and they need to be validated in such investigations. Even though this bioinformatics study presented 
some additional biomarkers or panels for possible consideration in future research, the analyses in these datasets do 
not support the immediate clinical use of these biomarkers without more rigorous testing in large case-control and 
cohort studies. Besides, in order to reach to compatible results, researchers should avoid contaminations. As miR-
NAs can be found in the serum in different forms such as free, associated to HDL or enclosed in exosomes or micro 
vesicles, researchers should be careful in the isolation step of miRNAs from the desired samples.
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