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Tumor grafts grown on the chicken 
chorioallantoic membrane are 
distinctively characterized by MRI 
under functional gas challenge
Conny F. Waschkies1, Fatma Kivrak Pfiffner2, Dorothea M. Heuberger3, Marcel A. Schneider4, 
Yinghua Tian4, Petra Wolint   5, Maurizio Calcagni5, Pietro Giovanoli5 & Johanna Buschmann   5 ✉

Recently, a tumor model based on the chorioallantoic membrane (CAM) was characterized structurally 
with Magnetic Resonance Imaging (MRI). Yet, capability of MRI to assess vascular functional reserve and 
potential of oxygenation-sensitive MRI remain largely unexplored in this model. For this purpose, we 
compared MC-38 colon and A549 lung adenocarcinoma cell grafts grown on the CAM, using quantitative 
T1 and T2* MRI readouts as imaging markers. These are associated with vascular functionality and 
oxygenation status when compared between periods of air and carbogen exposure. Our data show that 
in A549 lung adenocarcinoma cell grafts T2* values increased significantly upon carbogen exposure 
(p < 0.004, Wilcoxon test; no change in T1), while MC-38 grafts displayed no changes in T1 and T2*), 
indicating that the grafts differ in their vascular response. Heterogeneity with regard to T1 and T2* 
distribution within the grafts was noted. MC-38 grafts displayed larger T1 and T2* in the graft centre, 
while in A549 they were distributed more towards the graft surface. Finally, qualitative assessment of 
gadolinium-enhancement suggests that A549 grafts display more prominent enhancement compared 
to MC-38 grafts. Furthermore, MC-38 grafts had 65% larger volumes than A549 grafts. Histology 
revealed distinct underlying phenotypes of the two tumor grafts, pertaining to the proliferative status 
(Ki-67) and cellularity (H&E). In sum, a functional gas challenge with carbogen is feasible through gas 
exchange on the CAM, and it affects MRI signals associated with vascular reactivity and oxygenation 
status of the tumor graft planted on the CAM. Different grafts based on A549 lung adenocarcinoma and 
MC-38 colon carcinoma cell lines, respectively, display distinct phenotypes that can be distinguished 
and characterized non-invasively in ovo using MRI in the living chicken embryo.

The chorioallantoic membrane (CAM) of the developing chicken embryo is an established model that is used in 
biomedical research in a multitude of different applications1. For instance, it is employed in screening biomateri-
als2–4, testing microsurgical procedures5, drug delivery systems and biosensors6,7, and in toxicity and pharmacoki-
netic studies8,9. Recently, the CAM model was used to asses perfusion capacities of on-planted biomaterials with 
Magnetic Resonance Imaging (MRI) as a non-destructive imaging readout10.

The CAM serves as a support for the respiratory capillaries outside the embryo. It is highly vascularized and 
allows for gas exchange between the embryo and its environment. This renders the CAM a suitable model to study 
angiogenesis11–14. Notably, as a natural immunodeficient host with a rich vascular network, the CAM is particu-
larly capable to sustain grafted tissues and implants for tissue engineering applications15. Most importantly, it 
provides an advantageous environment for tumor formation and is therefore often used to study tumor develop-
ment, metastasis and progression in xenotransplanted tumors16. Another advantage is the easy access to the CAM 
through a window in the eggshell, which allows for continuous visualization of the implant/graft site. Finally, the 
CAM model serves as an intermediate step between cell culture studies and more complex mammalian in vivo 
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models. Taken together, the CAM model represents a simple to maintain, rapid, low-cost assay for a multitude of 
different biomedical applications.

Recently, tumor growth on the chicken CAM was monitored and structurally characterized with MRI in 
ovo17,18. Vascular functional reserve and oxygenation-sensitive MRI measures19,20, however, remain largely unex-
plored in this model. The exploration of these factors will lead to an improved understanding of tumor vascular 
development and maturation, tumor heterogeneity and hypoxia from an MR imaging perspective.

Oxygen tension in (tumor) tissue is fundamentally determined by the balance between oxygen availability and 
consumption. Oxygen availability is dictated by the supply through blood flow and microvascular O2 concen-
tration, which in turn is determined by perfusion pressure, arterial partial pressure of oxygen (pO2) and relative 
oxygenation saturation of haemoglobin (Hb/HbO2 ratio), among others (haematocrit, drugs etc.). Oxygen con-
sumption is assumed to remain unchanged under hypercapnic and hyperoxic conditions.

Tissue oxygenation status can be assessed non-invasively with T2*-sensitive MRI (blood oxygenation level 
dependent, BOLD MRI21) and oxygen-enhanced (OE) MRI. T2*-sensitive MRI is based on the magnetic prop-
erties of haemoglobin which is paramagnetic in its de-oxygenated form and diamagnetic in its oxygenated form. 
T2* based MRI is hence sensitive to the relative Hb/HbO2 ratio in vessels, but also to blood volume, and there-
fore is not uniquely related to oxygenation status. However, changes in tumor oxygenation can be qualitatively 
assessed during carbogen breathing22–24.

OE MRI is based on the effect that dissolved oxygen in blood acts as a T1-shortening paramagnetic contrast 
agent. It may detect presence of excess dissolved O2 in plasma upon a hyperoxic challenge. Comprehensive stud-
ies suggested that in normoxic tissues in the presence of fully oxygenated haemoglobin such excess O2 is dissolved 
in the blood pool, shortening T1. In hypoxic tissues, however, excess oxygen is bound to haemoglobin to replenish 
blood oxygen stores, going along with negligible O2 dissolution in plasma and therefore no change in T120,25,26.

Vasoreactivity is the capacity of the vasculature for vasodilation and is typically assessed as a functional 
stress test, measuring changes in perfusion in response to vasoactive stimuli. Often, T2* weighted BOLD MRI is 
employed in this regard for its technical simplicity, availability and good signal-to-noise ratio (SNR) in clinical 
settings27–29, though it represents only an indirect appraisal for relative perfusion change. Approaches that are 
more direct include arterial spin labelling or dynamic contrast enhanced MRI.

Non-invasive MR imaging of tumors on the CAM under gas challenge offers a viable option to assess tumor 
characteristics that may help in the selection of a proper therapeutic approach and to monitor treatment response. 
For example, tumor hypoxia results from an uncontrolled excessive cell proliferation, often encountered in malig-
nant, aggressive phenotypes and is associated with increased metastasis, uncontrolled angiogenesis and resistance 
to radio- and chemotherapy. In such tumors, there is a relative oxygen deficit, reflected in high Hb/Hb O2 ratios. 
The application of a hyperoxic gas challenge can lead to lower Hb/HbO2 ratios, resulting in increased T2* values. 
In contrast, if normoxic tumors are exposed to hyperoxic conditions, the amount of O2 dissolved in the blood 
plasma increases, resulting in lower T1 values. Simultaneous vasoconstriction triggered by elevated oxygen expo-
sure represents a competing effect by lowering the blood perfusion.

In the present study with a hypercapnic-hyperoxic gas challenge by carbogen (5% CO2 and 95% O2), we 
expect that the elevated CO2 level (hypercapnia) triggers vasodilation, leading to an increased blood perfusion 
and hence to an overall increased oxygenations status. On the other hand side, the high level of O2 (hyperoxia) 
leads to a lower Hb/HbO2 ratio in the blood, unless haemoglobin is already oxygen-saturated. In that case, excess 
O2 cannot be bound to haemoglobin, but will increase the dissolved O2 in the blood. Notably, excess O2 leads to 
a vasoconstriction, which has to be taken into account when discussing the oxygenation status under hyperoxic 
conditions. Excess O2 in the blood and a simultaneous vasoconstriction may result in an overall constant oxygen-
ation status, evoked by the two competing effects. Taken together, response to hypercapnic hyperoxia (carbogen) 
in T2*- and T1-sensitive MRI readouts offers a qualitative approach to assess the vasoreactivity of the tumor graft 
vasculature and helps distinguishing between hypoxic and normoxic tumor tissue.

MC-38 colon and A549 adenocarcinoma cell grafts were selected in the present study, representing murine 
and human cell lines as well as two different tumor types (colon and lung cancer, respectively). They were grown 
on the CAM and compared with regard to their vascular and oxygenation phenotypes. For this purpose, quanti-
tative T2* and OE T1 MRI are explored as functional in vivo imaging markers when compared between periods 
of air and hypercapnic-hyperoxia (carbogen) exposure. We demonstrate that a functional gas challenge with 
carbogen is feasible through the CAM, allowing to access vascular function and oxygenation status of the tumor 
graft in this experimental model.

Methods
CAM assay & cell preparation.  For experiments in chicken embryos until embryonic day 14 no IACUC 
approval is required according to Swiss animal care guidelines (TSchV, Art. 112). Fertilized Lowman white LSL 
chick eggs (Animalco AG Geflügelzucht, Staufen, Switzerland) were incubated at 37 °C and 65% relative humidity. 
On incubation day (ID) 3.5, a circular window was excised into the eggshell after removing 2 ml albumen so that 
the developing CAM detached from the eggshell (Supplementary Information Fig. 1A).

Two cell lines were chosen to generate tumor grafts on the CAM on ID 7: A549 cells (ATCC), a human lung 
alveolar cancer cell line, as well as MC-38 (Kerafast), a murine colon cancer cell line, syngeneic on a C57BL/6 
background (Supplementary Information Table 1). For that purpose, MC-38 cells were cultivated in DMEM (Life 
Technologies, Zug, Switzerland), supplemented with 10% FBS and 100 U/mL of penicillin and streptomycin, 
and incubated at 5% CO2 and 37 °C. A549 cells were cultivated in DMEM (Life Technologies), supplemented 
with NEAA, L-Glutamine and 10% FBS and incubated at 5% CO2 at 37 °C. The cells were harvested with trypsin 
(0.5%), were centrifuged and resuspended in serum free DMEM. For tumor graft generation, MC-38 cells below 
passage 7 (P7) and A549 cells below P13 were used. The cell suspension was 1:1 diluted with ice-cold growth 
factor-reduced matrigel (Corning) to a concentration of 0.5*106 cells/50ul. On a sterile petri dish, droplets of 
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50ul of the cell-matrigel suspension were formed and pre-warmed for 10 min at 37 °C. One such droplet was 
added on the CAM by a sterile 1 ml tip in the middle of a 1 cm-diameter plastic ring to flatten the CAM surface 
and as a landmark to locate the developing tumor grafts (Supplementary Information Fig. 1B). Eggs were further 
incubated until ID 14.

Magnetic resonance imaging.  On ID 14, vascular response and oxygenation of the A549 and MC-38 car-
cinoma cell grafts grown on the chicken embryo’s chorioallantoic membrane was studied in situ on the CAM (“in 
ovo”) of the living chicken embryo using MRI. For the MRI examination, eggs were placed onto a custom-built 
sliding bed and enveloped by warm water tubing (37 °C) to maintain the temperature of the chicken embryo in a 
physiological range. Chicken embryos were sedated with 0.3 mg/kg medetomidine (diluted 1:100, volume 0.3 ml) 
dripped onto the CAM prior start of MRI examinations, and again immediately prior contrast-enhanced MRI 
when carried out.

MRI was performed in A549 (n = 14) and MC-38 graft samples (n = 12) on a 4.7 T cm Bruker PharmaScan 
system (Bruker BioSpin, Ettlingen, Germany), equipped with an actively decoupled two-coil system, consisting 
of a 72 mm quadrature resonator for excitation and a 20 mm single loop surface coil for reception. Gases were 
delivered through a plastic tube at 200 ml/min flow rate directed onto the CAM, which serves as a breathing organ 
during chicken embryo development. To prevent excessive loss of moisture, the egg shell window was kept cov-
ered by a sterile plastic plate onto which the surface coil was attached directly above the graft for optimal signal 
sensitivity and through which the gas tube was guided (Supplementary Information Fig. 1B).

MR images were collected from 4 sagittal slices comprising the tumor graft with a FOV of 4.5 × 2.7 cm 
and a spatial resolution of 300 × 300 um3 (image matrix 150 × 90) and a slice thickness of 800 um with an 
interslice gap of 200 um. Standard T2w RARE and T1w FLASH acquisitions were obtained for anatomical 
reference (T1w FLASH acquisition at higher spatial resolution of 150 × 150 um2, image matrix 300 × 300). 
Relaxometry measurements were performed with a RARE sequence at variable repetition times TR (TR 
430/800/1500/3000/4500 ms, RARE factor 2, TE 10 ms, acquisition time 6 min) and a multi-echo gradient-echo 
(MGE) acquisition (TE 4–81 ms, echo spacing 7 ms, 3 averages, TR 1500 ms, acquisition time 5 min) for quanti-
tative T1 and T2* mapping (referred to as qT1 and qT2*), respectively. qT1 and qT2* relaxation times serve as 
tissue-dependent markers associated with vascular functionality and oxygenation status when compared between 
periods of air and carbogen (5% CO2, 95% O2) exposure.

In selected samples T1w anatomical references scans were repeated 15 min after i.v. injection of 100 uL 
Gd-DOTA (Dotarem, Guerbet S.A., Switzerland) to study contrast enhancement in the graft. For intravenous 
injection, eggs were placed on a 37 °C heating pad and i.v. injection was performed under a surgical microscope 
with 12–20 x magnification. A big and straight vein on the surface was selected and grasped by a microsurgical 
forceps and 100 µL Gd-DTPA slowly injected with a 1.0 mL syringe and 30 G needle. A cotton sticker was placed 
on the injection site of vessel with slight pressure before the syringe was withdrawn to prevent bleeding.

Histology and Immunohistochemistry.  After completion of the MRI measurements, the graft was fixed 
overnight using 4% formalin solution in PBS, then excised, embedded in paraffin, cross-sectioned into 5 µm slices 
and stained for H&E (cellularity) and Ki-67 (proliferation).

For Ki-67 staining, samples were pre-treated in PT Link (DAKO) with Envision Flex Target Retrieval Solution 
Low pH (DAKO, K8005) and incubated with monoclonal mouse anti human Ki-67 MIB-1 antibody (DAKO, 
IR626, dilution: RTU) for A549 tumors or with monoclonal rabbit anti mouse Ki-67 (SP6, Abcam, 16667, dilution 
1:200 with buffer from DAKO) for MC-38 tumors, respectively. Then, secondary antibody was applied, consisting 
of labelled Polymer–HRP anti mouse (DAKO, K4007, dilution: RTU) for A549 tumors or labelled Polymer–
HRP anti rabbit (DAKO, K4003, dilution: RTU) for MC-38 tumors. After that, staining was performed in an 
Autostainer Link48 (DAKO), with Flex DAM and Substrate- Chromogen (DAKO, K3468) and Envision Flex 
Hematoxylin ready to use (DAKO, K8008).

For HIF-1-α staining of both cells grafts (n = 5 randomly selected for A549 and MC-38, respectively), a mouse 
monoclonal antibody (abcam, ab16066, 1:1000) was used. Briefly, samples were pre-treated in PT Link (DAKO) 
with Envision Flex Target Retrieval Solution high pH = 9.0 (DAKO, K8004) and then incubated with anti-HIF-
1-α for 1 hour. Then, secondary antibody was applied, consisting of labelled EnVision HRP/ mouse (DAKO, 
K4001, dilution: RTU) for 20 min. After that, staining was performed in an Autostainer Link48 (DAKO), with 
Flex DAM and Substrate- Chromogen (DAKO, K3468) and Envision Flex Hematoxylin ready to use (DAKO, 
K8008). For the quantitative determination of HIF-1-α positive cells per area, all cells stained dark brown were 
counted in the whole cross-section area of the respective tumor graft.

Vessel density was assessed in H&E stained sections based on one section through the middle of the cell graft 
(n = 5 randomly selected for A549 and MC-38, respectively). Vessels were analyzed according to their morphology 
and eventual erythrocytes within the lumen. The area of the section was determined with Synedra View software 
(version 18.0.0.7). The vessel density was counted as number of vessels per area (mm−2). Furthermore, staining 
with two different lectins was used to confirm chicken vessels within the human and murine tumor, respectively. 
Protocols for lectin stainings included Sigma Aldrich lectin (L0651, batch SLBQ4937V; dilution 1:2) and Vector 
laboratories lectin (B1305; dilution 1:500). After incubation with corresponding lectins for 1 hour, streptavidin/
HRP (DAKO, 1:500) was used. After that, staining was performed in an Autostainer Link48 (DAKO), with Flex 
DAM and Substrate- Chromogen (DAKO, K3468) and Envision Flex Hematoxylin ready to use (DAKO, K8008).

Data analysis.  Quantitative T1 and T2* maps were computed from RARE acquisitions at multiple TR and 
MGE acquisitions at different TEs, respectively, by exponential signal fitting (integrated in Brukers Paravision 
5.1. MRI acquisition and reconstruction software). Graft response to the stimulus was determined as the change 
in qT2* and T1 values under the carbogen challenge as compared to the baseline when the chicken embryo was 
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exposed to medical air in a region of interest comprising the graft. Graphs and statistical analyses were produced 
by R v3.5.0 (R Foundation for Statistical Computing, Vienna, Austria), using a paired-samples Wilcoxon test for 
testing between conditions (air vs. carbogen) in both graft types. An unpaired t test was used to compare the ves-
sel densities and densities of HIF-1-α positive cells in A549 and MC-38 cell grafts, where the data were normally 
distributed (Shapiro Wilk test) and the variances were homogene (Levene’s test).

Results
Graft anatomical structure and appearance.  MR images were obtained from all tumor grafts with suf-
ficient SNR and image quality to depict the grafts in T1w and T2w anatomical images. Grafts were as well delin-
eated in the quantitative T1 and T2* images and corresponding color-coded parametric maps obtained during 
air and carbogen exposure (Fig. 1A). Graft sizes were different, which was obvious in the anatomical images. The 
MC-38 colon carcinoma cell grafts had a 65% larger graft diameter (4.2 ± 0.8 mm) compared to the A549 adeno-
carcinoma cell grafts (2.6 ± 0.7 mm, Fig. 1C).

Response to carbogen exposure.  We compared MC-38 colon and A549 lung adenocarcinoma cell grafts 
using quantitative T1 and T2* MRI readouts. These served as imaging markers associated with vascular function-
ality and oxygenation status when compared between periods of air (baseline) and carbogen exposure (functional 
gas challenge, here hypercapnic hyperoxia).

Figure 1.  (A) In ovo MRI images of A549 lung adenocarcinoma and MC-38 colon carcinoma cell grafts grown 
on the CAM of the chicken embryo for 7 days. Grafts are shown in T1w and T2w anatomical reference images 
and are outlined with regions of interest on quantitative color-coded T1 (qT1) and T2* (qT2*) maps obtained 
while the graft was exposed to medical air and carbogen, respectively. (B) Comparative histology. Shown are 
sample slices from both graft types stained for H&E (top) and Ki-67 (bottom), respectively. Inserts: Supportive 
plastic ring with the graft (arrowhead) on the CAM, photographed after extraction of the CAM. Both graft types 
display distinct phenotypes with regards to cellularity (H&E) and proliferative status (Ki-67). (C) Graft size 
comparison. Quantitative comparison of graft diameter between A549 lung adenocarcinoma and MC-38 colon 
carcinoma cell grafts. (D) Vessel density comparison. Quantitative comparison of vessel density in A549 and 
MC-38 cell grafts.
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Quantitative parametric T1 and T2* maps show spatial variation in basal T1 and T2* obtained during expo-
sure to air. In MC-38 grafts, T1 values are larger in the graft centre, and the same applies for the T2* values, while 
the centre of larger T2* values in one probe was shifted laterally. This pattern has been consistently observed in all 
MC-grafts. In A549 grafts, larger T1 and T2* values were found more distributed towards the graft/CAM surface.

Response to carbogen exposure is accessible in larger T2* values, more prominently observed in A549 grafts 
and distributed towards the graft periphery. In MC-38 grafts, T2* increase was more ambiguous, with increase 
observed in six out of twelve samples, affecting mostly the centre of the graft and decrease or no change seen in 
the other samples. Response to carbogen was furthermore detected in change in T1 with slight decrease in MC-38 
grafts (except in one sample), but no consistent change in T1 in A549 grafts (increase in nine samples, decrease 
in four samples, no change in one sample), respectively, in the parametric maps. Regional heterogeneity in the 
carbogen response was observed in both graft types. There were increases as well as decreases in T1 within the 
same grafts (Fig. 1A).

To compare the two tumor grafts, a graphical approach was performed by region of interest (ROI) analysis 
comprising the whole graft. Our data show that in A549 lung adenocarcinoma cell grafts T2* values significantly 
increased by about 37% upon carbogen exposure (p < 0.004, Wilcoxon test; no change in T1, p = 0.45), while 
MC-38 grafts displayed no consistent trends in T1 (p = 0.84, Wilcoxon test; no change in T2*, p = 0.97, Fig. 2). T1 
response in A549 grafts and T2* in MC-38 grafts was more ambiguous, displaying different trends between sam-
ples and larger distribution between (ROI-averaged) basal values. Based on HIF-1-α positive cells per area, the 
density for hypoxic cells was higher for MC-38 grafts compared with A549 grafts (Supporting Information Fig. 2).

Gd-enhancement pattern.  Gd-enhancement was obtained from few samples, as an additional readout 
pertaining to vascular integrity, with signal enhancement indicating accumulation of contrast agent due to vas-
cular leakage. Preliminary qualitative assessment suggests that A549 grafts display a generally more prominent 
enhancement in all three samples studied, while only one MC-38 graft displayed similar overall signal enhance-
ment (Supplementary Information Fig. 1C).

Notably, upon visual inspection of the graft and attached CAM after extraction from the egg no difference in 
the vascularization pattern/ vascular bed surrounding the graft was observed between the different graft types 
(upper left inserts Fig. 1B). Vessel density was significantly higher in A549 grafts compared with MC-38 grafts 
as assessed by histomorphometry, p = 0.0037, unpaired t test (Fig. 1D). Chicken vessels within human A549 and 
murine MC-38 grafts were qualitatively confirmed by two lectin stainings (Supporting Information Fig. 3).

Histological appearance.  A549 and MC-38 cell grafts exhibited distinct phenotypes in terms of cellularity 
and proliferative status. A549 grafts revealed a more granular appearance in H&E staining in contrast to the more 
densely packed cellular organization seen within MC-38 grafts. Similarly, proliferative cells were more homog-
enously distributed within the MC-38 grafts, while A549 grafts they were found rather in patches distributed 
towards the graft surface (Fig. 1B).

Figure 2.  Quantitative analyses of changes in T1 and T2* upon carbogen gas challenge, as compared with 
medical air, in A549 lung adenocarcinoma cell grafts and in MC-38 colon carcinoma cell grafts, respectively. 
In A549 lung adenocarcinoma cell grafts, T2* values increased by 37% upon carbogen exposure (p < 0.004, 
Wilcoxon test) while MC-38 colon carcinoma cell grafts displayed no consistent trends in T1 and T2*.
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Discussion
In this study, we used quantitative T2* and oxygen-enhanced T1 MRI in a tumor model planted on the chorioal-
lantoic membrane of the chicken embryo. We investigated if these may serve as functional in ovo imaging markers 
when compared between periods of air and hypercapnic-hyperoxia (carbogen) exposure. A549 and MC-38 tumor 
grafts were studied and compared in terms of their changes in quantitative T2* and T1. Both responded to carbo-
gen gas exposition, however in different ways. The findings indicate that functional gas challenge with carbogen is 
feasible through gas exchange on the CAM. Moreover, vascular function as well as oxygenation status of different 
tumor grafts can be assessed in this experimental model.

MR images were obtained from all tumor grafts with good SNR and image quality to depict the grafts on ana-
tomical images and quantitative parametric maps of T2* and T1 values. The two graft types displayed different 
size and structure as shown in the MRI images, and corroborated by histology.

Quantitative maps of T2* and T1 obtained under basal condition (air) revealed distinct and different distri-
bution of areas with high T2* and T1 values in both graft types. They were larger in the graft core in the MC-38 
grafts, while larger T2* and T1 values were distributed more towards the graft/CAM surface of the graft in the 
A549 grafts. This topography might be related to the underlying tumor structure: H&E staining revealed a more 
homogenous, densely packed cellularity for MC-38 grafts, while A549 grafts displayed a more granular cellularity.

Similarly, response to the hypercapnic-hyperoxic gas challenge with carbogen was heterogeneous in the grafts. 
A graphical, rather simplified approach to compare the two tumor grafts was performed by ROI analysis compris-
ing the whole graft. While thus averaging across heterogeneous graft regions, it was used as a first step towards 
a more quantitative analysis comparing the two different graft groups, given the differences in graft size. Here, a 
distinct pattern of responses was observed between the two graft types: A549 grafts displayed a strong response in 
T2*, with significantly increased T2* values upon carbogen challenge, but no consistent trend in T1. MC-38 grafts 
in contrast, revealed no consistent response in T1 and T2*. Such different response patterns indicate that the grafts 
differ in their vascular response. Notably, we also assessed contrast enhancement with Gd-DOTA in a few sam-
ples, which appeared more prominent in the smaller A549 grafts. Such enhancement pattern might be supportive 
for our notion that A549 grafts display a better vascular response (significantly increased T2*). This is supported 
by a higher vessel density found for A549 grafts compared with MC-38 grafts. In addition, MC-38 grafts exhibited 
a significantly higher HIF-1-α positive cell density, which might be a result of the lower vessel density, especially 
in the center of the MC-38 tumors. It has to be emphasized, however, that the total cell density is visibly higher 
in MC-38 grafts compared to A549 grafts, which relativates the findings of higher HIF-1-α positive cell density.

Although we demonstrate feasibility of this gas challenge approach, there are limitations. Anesthesia repre-
sents a prominent confound to any vascular functional study30,31 and has been extensively discussed in the con-
text of preclinical functional MRI32–36. Vasoreactivity is a tightly controlled process, which is regulated through 
neuronal, hormonal and metabolic factors. Volatile anesthetics decrease endothelium-dependent vasorelaxation 
through the nitric oxide signaling pathway, but also injectable anesthetics have been shown to inhibit vasocon-
striction to various degrees. Our anesthesia protocol, optimized in our lab previously for the chicken embryo 
in ovo37, might also affect our observations with regards to changes in T2* and T1. However, imaging requires 
immobilization of the chicken embryo and corresponding confounding effects cannot entirely be precluded. 
Previous studies describe other anesthesia protocols in the context of MRI monitoring of chick development in 
ovo using MRI with a focus on their robustness, repeatability and teratogenic effects in different applications38–41, 
while hemodynamic and metabolic effects have also been discussed42–44. An age-adapted cooling regime has been 
introduced as a viable alternative to pharmacological anesthesia for immobilization of the chicken embryo18,45–47.

Sensitivity of the technique is certainly another limitation. While our tumors grafts were 2.6 mm (A549) and 
4 mm (MC-38) in diameter, corresponding to a (spherical) volume of about 9 and 33 mm3, respectively, the 
smallest tumor we were able to analyze was 1 mm in diameter (0.5 mm3). This limit will allow for some significant 
reduction in tumor volume, e.g. by treatment, that could still be assessed. Higher field strength MRI systems with 
optimized coils and faster gradients systems may provide more favorable sensitivity/spatial resolution.

Another aspect pertains to the CAM model itself. Though it represents a versatile, accessible and easy to han-
dle, cheap model, its immunodeficient phase is restricted only to ID 14. Nevertheless, tumors grown within the 
time window of ID 7 and ID 14 can be well detected and characterized by MRI. After ID 15 the immune system 
is activated, affecting graft acceptance of the host. In addition, dependent on applicable jurisdiction, experiments 
may be regarded as full animal experiment from ID15, with all necessary ethical license approvals in place.

The sequential design of the gas challenges, starting under air and continuing with the functional gas chal-
lenge, may also be critical. In some samples, repeat measurements under air after the functional challenge 
revealed drop towards basal levels. Therefore, we adapted our protocol with a 5-minute break between each gas 
change. The necessity to wait long enough between exposure to different gas challenges has to be taken into 
account.

Finally, we report upon gross phenotypical histological markers, H&E and Ki-67, to explore the underlying 
cellular structure and composition of the studied cell grafts. Larger size of MC-38 grafts may be related to its more 
homogenously distributed and larger number of proliferative cells as observed under Ki-67 staining. In A549 
grafts proliferative cells show a more patchy distribution, clustering more towards the surface of the graft. As to 
whether these phenotypically different cellular distributions contribute to different basal T2* or T1 values in the 
two graft types, and their contribution to different response to the functional challenge remain to be studied.

Conclusions
Our proof-of-principle study demonstrates that different tumor grafts planted on the CAM of the chicken 
embryo display distinct phenotypes that can be distinguished and characterized non-invasively in ovo using MRI. 
Importantly, we show that functional gas challenge is feasible through the CAM and affects MRI signals associ-
ated with vascular reactivity and oxygenation status of the graft. This technique allows a non-destructive and easy 

https://doi.org/10.1038/s41598-020-64290-z


7Scientific Reports |         (2020) 10:7505  | https://doi.org/10.1038/s41598-020-64290-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

assessment of different drugs and may be useful for the development of novel cancer models. With the CAM as an 
intermediary between cell cultures and experimental animal models, and comparative histology readily available, 
this model of tumor characterization will help to learn more about the underlying functional MRI signal changes 
that serve as MRI markers for different tumor vascular functional and oxygenation phenotypes. In addition, 
biopsies from human cancer tissue may be planted onto the CAM and characterized by gas challenge via MRI. As 
such, our study paves the way for future drug screening and clinical applications where functional gas challenge 
may help to characterize tumors.

Received: 23 August 2019; Accepted: 14 April 2020;
Published: xx xx xxxx

References
	 1.	 Nowak-Sliwinska, P., Segura, T. & Iruela-Arispe, M. L. The chicken chorioallantoic membrane model in biology, medicine and 

bioengineering. Angiogenesis 17, 779–804 (2014).
	 2.	 Klueh, U., Dorsky, D. I., Moussy, F. & Kreutzer, D. L. Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue 

responses to biomaterials and implants. Journal of biomedical materials research. Part A 67, 838–843 (2003).
	 3.	 Moreno-Jimenez, I., Kanczler, J. M., Hulsart-Billstrom, G., Inglis, S. & Oreffo, R. O. C. (*) The Chorioallantoic Membrane Assay for 

Biomaterial Testing in Tissue Engineering: A Short-Term In Vivo Preclinical Model. Tissue engineering. Part C, Methods 23, 938–952 
(2017).

	 4.	 Valdes, T. I., Kreutzer, D. & Moussy, F. The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. 
Journal of biomedical materials research 62, 273–282 (2002).

	 5.	 Leng, T. et al. The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retina 24, 427–434 
(2004).

	 6.	 Valdes, T. I., Klueh, U., Kreutzer, D. & Moussy, F. Ex ova chick chorioallantoic membrane as a novel in vivo model for testing 
biosensors. Journal of biomedical materials research. Part A 67, 215–223 (2003).

	 7.	 Vargas, A., Zeisser-Labouebe, M., Lange, N., Gurny, R. & Delie, F. The chick embryo and its chorioallantoic membrane (CAM) for 
the in vivo evaluation of drug delivery systems. Advanced drug delivery reviews 59, 1162–1176 (2007).

	 8.	 Ribatti, D. The chick embryo chorioallantoic membrane (CAM) assay. Reproductive toxicology 70, 97–101 (2017).
	 9.	 Zuo, Z. et al. The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds. Scientific reports 7, 46690 

(2017).
	10.	 Kivrak Pfiffner, F. et al. A new in vivo MRI method to non-invasively monitor and quantify the perfusion capacity of 3D-biomaterials 

grown on the chorioallantoic membrane of chick embryos. Tissue Engineering Part C-Methods 21, 1–8 (2014).
	11.	 Nowak-Sliwinska, P. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21, 425–532 

(2018).
	12.	 Ribatti, D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. International review of cell and molecular 

biology 270, 181–224 (2008).
	13.	 Ribatti, D. et al. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. The 

Anatomical record 264, 317–324 (2001).
	14.	 Storgard, C., Mikolon, D. & Stupack, D. G. Angiogenesis assays in the chick CAM. Methods in molecular biology 294, 123–136 

(2005).
	15.	 Baiguera, S., Macchiarini, P. & Ribatti, D. Chorioallantoic membrane for in vivo investigation of tissue-engineered construct 

biocompatibility. Journal of biomedical materials research. Part B. Applied biomaterials 100, 1425–1434 (2012).
	16.	 Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Experimental cell research 328, 314–324 

(2014).
	17.	 Herrmann, A., Taylor, A., Murray, P., Poptani, H. & See, V. Magnetic Resonance Imaging for Characterization of a Chick Embryo 

Model of Cancer Cell Metastases. Molecular imaging 17, 1536012118809585 (2018).
	18.	 Zuo, Z. et al. High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane. NMR in biomedicine 

28, 440–447 (2015).
	19.	 Baudelet, C. et al. The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal 

within tumors. NMR in biomedicine 19, 69–76 (2006).
	20.	 O’Connor, J. P. et al. Oxygen-Enhanced MRI Accurately Identifies, Quantifies, and Maps Tumor Hypoxia in Preclinical Cancer 

Models. Cancer research 76, 787–795 (2016).
	21.	 Ogawa, S. et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A 

comparison of signal characteristics with a biophysical model. Biophysical journal 64, 803–812 (1993).
	22.	 Baudelet, C. et al. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour 

acute hypoxia? Physics in medicine and biology 49, 3389–3411 (2004).
	23.	 Baudelet, C., Cron, G. O. & Gallez, B. Determination of the maturity and functionality of tumor vasculature by MRI: correlation 

between BOLD-MRI and DCE-MRI using P792 in experimental fibrosarcoma tumors. Magnetic resonance in medicine 56, 
1041–1049 (2006).

	24.	 Baudelet, C. & Gallez, B. How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) 
inside tumors? Magnetic resonance in medicine 48, 980–986 (2002).

	25.	 Dewhirst, M. W. & Birer, S. R. Oxygen-Enhanced MRI Is a Major Advance in Tumor Hypoxia Imaging. Cancer research 76, 769–772 
(2016).

	26.	 Jordan, B. F. et al. Application of MOBILE (mapping of oxygen by imaging lipids relaxation enhancement) to study variations in 
tumor oxygenation. Advances in experimental medicine and biology 789, 281–288 (2013).

	27.	 Cantin, S. et al. Impaired cerebral vasoreactivity to CO2 in Alzheimer’s disease using BOLD fMRI. NeuroImage 58, 579–587 (2011).
	28.	 Kassner, A., Winter, J. D., Poublanc, J., Mikulis, D. J. & Crawley, A. P. Blood-oxygen level dependent MRI measures of cerebrovascular 

reactivity using a controlled respiratory challenge: reproducibility and gender differences. Journal of magnetic resonance imaging: 
JMRI 31, 298–304 (2010).

	29.	 Yezhuvath, U. S., Lewis-Amezcua, K., Varghese, R., Xiao, G. & Lu, H. On the assessment of cerebrovascular reactivity using 
hypercapnia BOLD MRI. NMR in biomedicine 22, 779–786 (2009).

	30.	 Boillot, A., Haddad, E., Vallet, B. & Barale, F. [Effects of anesthetic agents on arterial reactivity]. Annales francaises d’anesthesie et de 
reanimation 18, 415–429 (1999).

	31.	 Mariappan, R., Mehta, J., Chui, J., Manninen, P. & Venkatraghavan, L. Cerebrovascular reactivity to carbon dioxide under anesthesia: 
a qualitative systematic review. Journal of neurosurgical anesthesiology 27, 123–135 (2015).

	32.	 Jonckers, E., Shah, D., Hamaide, J., Verhoye, M. & Van der Linden, A. The power of using functional fMRI on small rodents to study 
brain pharmacology and disease. Frontiers in pharmacology 6, 231 (2015).

	33.	 Keilholz, S. D., Pan, W. J., Billings, J., Nezafati, M. & Shakil, S. Noise and non-neuronal contributions to the BOLD signal: 
applications to and insights from animal studies. NeuroImage 154, 267–281 (2017).

https://doi.org/10.1038/s41598-020-64290-z


8Scientific Reports |         (2020) 10:7505  | https://doi.org/10.1038/s41598-020-64290-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

	34.	 Pan, W. J., Billings, J. C., Grooms, J. K., Shakil, S. & Keilholz, S. D. Considerations for resting state functional MRI and functional 
connectivity studies in rodents. Frontiers in neuroscience 9, 269 (2015).

	35.	 Brevard, M. E., Duong, T. Q., King, J. A. & Ferris, C. F. Changes in MRI signal intensity during hypercapnic challenge under 
conscious and anesthetized conditions. Magnetic resonance imaging 21, 995–1001 (2003).

	36.	 Schroeter, A., Grandjean, J., Schlegel, F., Saab, B. J. & Rudin, M. Contributions of structural connectivity and cerebrovascular 
parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation. Journal of cerebral 
blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 37, 2368–2382 (2017).

	37.	 Waschkies, C., Nicholls, F. & Buschmann, J. Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick 
embryos for in ovo Magnetic Resonance Imaging free of motion artifacts. Scientific reports 5, 15536 (2015).

	38.	 Boss, A. et al. Measurement of T1, T2, and magnetization transfer properties during embryonic development at 7 Tesla using the 
chicken model. Journal of magnetic resonance imaging: JMRI 28, 1510–1514 (2008).

	39.	 Heidrich, A., Wurbach, L., Opfermann, T. & Saluz, H. P. Motion-artifact-free in vivo imaging utilizing narcotized avian embryos in 
ovo. Mol Imaging Biol 13, 208–214.

	40.	 Mohammad, F. K., Faris, G. A. & Al-Zubeady, A. Z. Developmental and behavioral effects of medetomidine following in ovo 
injection in chicks. Neurotoxicol Teratol 34, 214–218.

	41.	 Oppitz, M. et al. Magnetic resonance imaging of iron-oxide labeled SK-Mel 28 human melanoma cells in the chick embryo using a 
clinical whole body MRI scanner. MAGMA 20, 1–9 (2007).

	42.	 Peebles, D. M. et al. Magnetic resonance proton spectroscopy and diffusion weighted imaging of chick embryo brain in ovo. Brain 
Res Dev Brain Res 141, 101–107 (2003).

	43.	 Sugiyama, T., Miyazaki, H., Saito, K., Shimada, H. & Miyamoto, K. Chick embryos as an alternative experimental animal for 
cardiovascular investigations: stable recording of electrocardiogram of chick embryos in ovo on the 16th day of incubation. Toxicol 
Appl Pharmacol 138, 262–267 (1996).

	44.	 Wojtczak, J. A. The hemodynamic effects of halothane and isoflurane in chick embryo. Anesth Analg 90, 1331–1335 (2000).
	45.	 Bain, M. M. et al. Noninvasive monitoring of chick development in ovo using a 7T MRI system from day 12 of incubation through 

to hatching. Journal of magnetic resonance imaging: JMRI 26, 198–201 (2007).
	46.	 Hogers, B. et al. Non-invasive tracking of avian development in vivo by MRI. NMR in biomedicine 22, 365–373 (2009).
	47.	 Li, X. et al. Micro-magnetic resonance imaging of avian embryos. J Anat 211, 798–809 (2007).

Acknowledgements
The authors gratefully acknowledge Hartmann-Müller Foundation for partially funding the study and Ines 
Kleiber-Schaaf and Andrea Garcete-Bärtschi for help with histology and immunohistochemistry. Moreover, we 
thank Gabriella Meier Bürgisser for the microscopy.

Author contributions
C.F.W., D.M.H. and J.B. designed and performed experiments, including cell culture, C.A.M. assay and MRI 
assessments. F.K.P. and P.W. prepared the egg window. M.A.S. cultured MC-38 cells. D.M.H. cultured A549 
cells. Y.T. injected contrast agent. C.F.W. and J.B. wrote manuscript. C.F.W. made Figures 1 and 2 as well as the 
supporting information Figure 1; J.B. made supporting information Figures 2 and 3. C.F.W., D.M.H., M.C., P.G. 
and J.B. supervised the study. C.F.W., D.M.H. and J.B. edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-64290-z.
Correspondence and requests for materials should be addressed to J.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64290-z
https://doi.org/10.1038/s41598-020-64290-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Tumor grafts grown on the chicken chorioallantoic membrane are distinctively characterized by MRI under functional gas chal ...
	Methods

	CAM assay & cell preparation. 
	Magnetic resonance imaging. 
	Histology and Immunohistochemistry. 
	Data analysis. 

	Results

	Graft anatomical structure and appearance. 
	Response to carbogen exposure. 
	Gd-enhancement pattern. 
	Histological appearance. 

	Discussion

	Conclusions

	Acknowledgements

	Figure 1 (A) In ovo MRI images of A549 lung adenocarcinoma and MC-38 colon carcinoma cell grafts grown on the CAM of the chicken embryo for 7 days.
	Figure 2 Quantitative analyses of changes in T1 and T2* upon carbogen gas challenge, as compared with medical air, in A549 lung adenocarcinoma cell grafts and in MC-38 colon carcinoma cell grafts, respectively.




