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Abstract
Industrial development has increased wastewater (WW) volume; generating contamination and disturbing ecosystems, 
because of breeching disposal parameters. In this work, Coloured Laboratory Wastewater (CLWW), (1500.00 colour units, 
CU) was separately submitted to two secondary treatments. For the first one CLWW was treated for three cycles C1, C2 and 
C3 with P. pastoris X33/pGAPZαA-LaccPost-Stop producing rPOXA 1B laccase, immobilized in calcium alginate beads. 
For the second-one, rPOXA 1B enzyme concentrate was used (three processes: P1, P2, and P3). Both treatments were carried 
out in a 15 L reactor with 10 L effective work volume (EWV) with 72 h hydraulic retention time. C1, C2, and C3 effluents 
were flocculated and filtered through quartzite sand, while P1, P2, and P3 effluents were only filtered through quartzite sand. 
The mixture of secondary effluents was submitted to a tertiary treatment with Chlorella sp. For C1, C2, C3, P1, P2, and P3, 
CU removal was of 99.16, 99.58, 99.53, 96.72, 97.05 and 96.47%, respectively. Discharge parameters, total organic carbon 
(TOC), inorganic carbon (IC), chemical oxygen demand (COD) and biological oxygen demand  (BOD5) decreased, although 
they reached different final values. After the tertiary treatment (144 h) effluent discharge parameters were reduced to 34 ± 4 
CU, TOC to 6.6 ± 0.9 mg  L−1 and COD to 155 ± 4 mg  L−1. It was demonstrated that secondary treatments (immobilized 
recombined cells or recombinant enzyme concentrate) combined with Chlorella sp., (tertiary treatment) attained a consider-
able removal of discharge parameters, demonstrating a promissory alternative for CLWW sequential treatment.

Keywords Discolouration · Pichia pastoris · rPOXA 1B · Chlorella sp. · Laboratory coloured wastewater · Secondary 
treatment · Tertiary treatment
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CU  Colour units
C1  Cycle 1
C2  Cycle 2
C3  Cycle 3
P1  Process 1
P2  Process 2
P3  Process 3
EWV  Effective work volume
TOC  Total organic carbon
IC  Inorganic carbon
COD  Chemical oxygen demand
BOD5  Biological oxygen demand
POXA 1B  Laccase from P. ostreatus
rPOXA 1B  Recombinant laccase from P. ostreatus
TSS  Total suspended solids
TN  Total nitrogen
CFU  Colony forming units
OM  Organic matter
Y  Yield
ABTS  2, 2-Azino-bis(3-ethylbenzothiazoline-6-sul-

fonic acid)
SEM  Scaning electron microscopy
EDS  Energy dispersive X-ray spectroscopy
TDN  Total dissolved nitrogen
MP  Micropollutants
AOP  Advanced oxidation processes
TVA  Titania supported over volcanic ashes

Introduction

Over the past years, anthropogenic contamination has 
increased due to industrial development, resulting in con-
siderable environmental impact, which has prompted the sci-
entific community to develop new bioremediation processes. 
Biotechnological processes to treat wastewater is a major 
challenge because water sources have been contaminated 
with hydrocarbons (Ferrera-Cerrato et al. 2006), heavy met-
als (mercury, arsenic, and lead), emergent pollutants (persis-
tent organic compounds, endocrine disruptors, antibiotics), 
organic matter and compounds such as dyes and pigments 
(Deblonde et al. 2011; Barrios-Ziolo et al. 2015).

Hospitals, universities, research centers among others use 
different dyes, such as basic fuchsin, carbol fuchsin, crystal 
violet, lactophenol blue, methylene blue, Congo red, eosin, 
malachite green, among others for biological stains. Annu-
ally these institutions produce coloured laboratory wastewa-
ter (CLWW), which in some cases do not comply with estab-
lished norms for their disposal in superficial bodies of water 
or public sewer system (Pedroza-Camacho et al. 2018).

Several types of treatments exist to reduce the effect of 
CLWW pollutant load. Among them physical treatments 
can reduce the pollutant load by filtering systems. Other 

treatments include ionic exchange resins, chemical treat-
ment, such as ozonation, Fenton process, flocculation, and 
coagulation processes (Barrios-Ziolo et al. 2015). Last, bio-
logical processes are based on the capacity of microorgan-
isms or their enzymes to degrade organic matter present in 
wastewater for their growth (Ferrer Polo et al. 2018).

Some microorganisms can produce laccase (E.C. 
1.10.3.2) and p-diphenyl oxidases, enzymes, which are 
multicopper oxidases that catalyze aromatic and aliphatic 
compound degradation, as well as dyes and toxic pollutants 
by reducing molecular oxygen into water (Rivera-Hoyos 
et al. 2013, 2015, 2018). White-rot fungi generally produce 
these enzymes, such as Pleurotus ostreatus  and  Gano-
derma lucidum, among others (Morales-Álvarez et al. 2016, 
2017). Laccase production by native sources is inadequate 
to comply with environmental requirements. Therefore, its 
heterologous expression in yeast, such as Saccharomyces 
cerevisiae or Pichia pastoris becomes an important option 
as secondary wastewater treatment (Piscitelli et al. 2005; 
Rivera-Hoyos et al. 2015, 2018).

For wastewater, pollutant removal conventional second-
ary treatments are efficient. However, at the end of second-
ary treatment sludge is generated, which is composed of 
water, organic compounds and dissolved inorganic com-
pounds (continuous phase) and microbial biomass, rich in 
extracellular polymeric substances (Ratkovich et al. 2013). 
Part of secondary treatment sludge is used as a starter culture 
(10–20%) to maintain the continuous operation of biological 
reactors; the remaining sludge is disposed of as solid waste 
in sanitary landfills. If sludge has undergone stabilization 
processes, it is selected for agricultural purposes as long 
as it complies with physical, chemical, and microbiological 
quality criteria (Environmental Protection Agency (EPA) 
2005; Baily 2009).

Therefore, biological treatment alternatives are sought, 
such as the use of enzyme concentrates to decrease and/
or eliminate secondary sludge production. Enzymes are 
employed free or immobilized in different supports materi-
als to guarantee stability and activity for long periods (Ji 
et al. 2017; Bilal et al. 2019). For wastewater treatment poly-
phenol oxidase (E.C. 1.10.3.1) is distinct among a group of 
commercial enzymes, as well as various peroxidases (E.C. 
1.11.1). These enzymes catalyze the oxidation of phenolic 
and non-phenolic compounds, have low specificity and are 
stable under different physical and chemical conditions 
(Chang et al. 2015; Ji et al. 2017; Kashefi et al. 2019). How-
ever, oxidation processes undertaken by these proteins can 
produce intermediates with less degree of complexity, colour 
or ions dissolved as sulphates, nitrates, nitrites, and phos-
phates (Abdel-Kareem 2012; Rivera-Hoyos et al. 2018). An 
alternative to remove all of these constituents is to imple-
ment a tertiary treatment with microalgae (Arias et al. 2018; 
Li et al. 2019).
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Microalgae use organic/inorganic carbon (mixotrophic 
culture conditions), inorganic nitrogen and phosphorous, 
for their growth. Moreover, they eliminate heavy metals 
and remove dyes (Khandare and Govindwar 2015; Ditta 
et al. 2016). The mechanisms by which microalgae perform 
these bioremediation processes take place in two stages: an 
initial physicochemical process independent of metabolic 
processes, where the algae adsorb pollutant by its cell wall. 
Following, processes of bioaccumulation and biotransfor-
mation take place mediated by an ample gamut of enzymes 
(Fazal et al. 2018). Once microalgae have performed this ter-
tiary treatment its biomass can be employed as biofertilizer, 
for the extraction of bioproducts, and can be thermally trans-
formed for biochar production (Yu et al. 2017; Santos and 
Pires 2018). Hence, they can integrate CLWW or industrial 
treatment systems into low circular economy models, such as 
biorefinery. Consequently, improving wastewater treatment 
and generating higher value-added bioproducts.

The objective of this work was to implement and com-
pare two secondary treatments [Pichia pastoris  X33/
pGAPZαA-LaccPost-Stop  (Clone 1), producing rPOXA 
1B, immobilized in calcium alginate beads (Gouzy-Olmos 
et al. 2018) and free enzyme concentrate rPOXA 1B concen-
trate (Rivera-Hoyos et al. 2015; Ardila-Leal et al. 2019)] for 
CLWW (1500.00 CU) discolouration, followed by a tertiary 
treatment with Chlorella sp., to complete removal of TOC, 
IC, COD and  BOD5 produced in secondary treatments.

Materials and methods

Coloured laboratory wastewater (CLWW)

CLWW from lot No. 1810 from wastewater from the teach-
ing and research laboratories at the “Departamento de 
Microbiología de la Facultad de Ciencias de la Pontificia 
Universidad Javeriana, Bogotá D.C., Colombia” was used. 
CLWW were characterized with regard to UV/VIS spectra 
to determine the wavelength where maximum absorbance 
was obtained.

P. pastoris immobilized cells

Recombinant P. pastorisX33/pGAPZαA-LaccPost-Stop 
(Clone 1), (Rivera-Hoyos et al. 2015) was immobilized in 
calcium alginate beads according to previously described 
conditions (Gouzy-Olmos et al. 2018).

Recombinant POXA 1B (rPOXA 1B) enzyme 
concentrate

Two enzyme concentrates produced with P. pastoris X33/
pGAPZαA-LaccPost-Stop (Clone 1) were used (Ardila-Leal 

et al. 2019). Concentrate lot number 1 (11,713  UL−1, pH 
7.40 ± 0.20) was used for process 1 (P1) and concentrate 
lot number 2 (41,273  UL−1, pH 7.40 ± 0.20) was used for 
processes 2 and 3 (P2 and P3).

Chlorella sp. cells

Chlorella sp., cells isolated from Winogradsky columns 
were used. Cells were cultured in Bold media [25 mg L−1 
 CaCl2, 25 mg  L−1 NaCl, 250 mg  L−1  NaNO3, 75 mg  L−1 
 MgSO4, 105 mg  L−1  KH2PO4, 75 mg  L−1  K2HPO4, 3 mL  L−1 
trace element solution (0.194 mg  L−1  FeCl3, 0.082 mg  L−1 
 MnCl2, 0.16 mg  L−1  CoCl2, 0.008 mg  L−1  Na2MoO4·2H2O 
and 0.005 mg  L−1  ZnCl2)], (Blair et al. 2014) and incubated 
at 19.00 ± 3.00 °C, 120 r.p.m, with artificial light cycles of 
12 h.

Treatment of different CU of CLWW with P. pastoris 
X33/pGAPZαA‑LaccPost‑Stop (Clone 1) immobilized 
cells in calcium alginate

Assays were carried out with CLWW containing different 
CU to select the most favourable concentration for use in 
pilot-scale treatments. Solutions were prepared with 300.00, 
1200.00 and 2300.00 CU from wastewater lot No. 1810. 
Colour units were determined from solutions by measuring 
absorbance at a wavelength of 614 nm and utilizing Equation 
(1), (Livernoche et al. 1983):

where A1 is the effluent’s absorbance at 614 nm and 0.312 
is the  ABS465n from a 500.00 CU platinum-cobalt standard 
solution (Livernoche et al. 1983).

Each assay was performed in 100  mL Erlenmeyer 
flask containing 25 mL of solution. Each assay consisted 
of control 1 (only CLWW solution), control 2 with cal-
cium alginate beads (CLWW and calcium alginate beads) 
and treatment 1 (dye solution and Pichia pastoris X33/
pGAPZαA-LaccPost-Stop (Clone 1) immobilized in cal-
cium alginate beads). Erlenmeyer flasks were incubated at 
30 °C at 150 rpm with photographic monitoring every 24 h. 
Assays were performed in triplicate. For CU determination, 
sampling was carried out at the beginning (0 h) and the end 
of the assay (144 h).

CLWW (1500.00 CU) secondary treatment with  
P. pastoris X33/pGAPZαA‑LaccPost‑Stop (Clone 1) 
immobilized cells (pilot scale)

The pilot treating plant consisted of a 20 L homogenization, 
neutralization and mixing tank, followed by a 15 L extended 

(1)CU =
A1 × 500

0.132
,
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aeration bioreactor (turbulent flow and dissolved oxy-
gen > 1 mg  L−1) with a 10 L effective work volume (EWV) 
at laboratories’ room temperature (~ 19 ± 3 °C). The reactor 
was inoculated with 10,000 beads containing immobilized 
cells (1 bead  mL−1), with 72 h hydraulic retention time. 
To flocculate the effluent after immobilized cell treatment 
340 mL  Al2(SO4)3 (3% w/v) and 36 mL NaOH (60% w/v) 
were used. Subsequently, the system was transferred to two 
filtration units with 5 L quartzite sand with 2-min retention 
time (Fig. 1). Three cycles per treatment were performed 
(Batch, C1, C2, and C3) for CLWW of the same lot with 
sampling every 12 h, to determine chemical oxygen demand 
COD (mg L−1), biological oxygen demand at day five  BOD5 
(mg L−1), total suspended solids TSS (mg L−1), total organic 
carbon TOC (mg L−1), inorganic carbon IC (mg L−1), total 
carbon TC (mg L−1), total nitrogen TN (mg L−1), pH and 
UV/VIS absorption spectra changes (Pedroza-Camacho 
et al. 2018).

Only for C1 immobilized cell reactivation 1 L of media 
was added (0.05 mM  CuSO4, 30 g L−1 glucose, 2.5 mM 

 NH4SO4, 10 g L−1 peptone, 30 g L−1 yeast extract), (Gouzy-
Olmos et al. 2018), and cells were soaked in media for 1 h. 
For the following two cycles (C2 and C3), cells from the 
previous cycle remained in the bioreactor and 1 L effluent 
from the previous cycle was added (before flocculation and 
filtration through quartzite sand). Reactivation in culture 
media was not performed for C2 or C3.

CLWW (1500.00 CU) secondary treatment 
with rPOXA 1B free enzyme concentrate (pilot scale)

As described in the previous assay the same treatment plant 
and conditions were used, except only free enzyme con-
centrate, was employed and the flocculation step was omit-
ted (Fig. 1). At 72 h of treatment, the effluent was filtered 
through quartzite sand. Initial dose for concentrated rPOXA 
lots was ~ 400 U  L−1. Three processes were evaluated (Batch, 
P1, P2, and P3). To determine COD (mg  L−1), TSS, (mg  L−1), 
TOC (mg  L−1), IC (mg  L−1), TC (mg  L−1), TN (mg  L−1), pH 

Fig. 1  Schematic representation of the treatment plant employed. 
Conduction line of treated water 1: CLWW was homogenized at 
homogenization tank 1, treated with P. pastorisX33/pGAPZαA-
LaccPost-Stop (Clone 1) immobilized in calcium alginate beads at 
extended aeration bioreactor, them flocculated and coagulated fol-
low by a quartzite sand filtration; effluent was stored at homogeniza-

tion tank 2. Conduction line of treated water 2: CLWW was homog-
enized at homogenization tank 1, treated with rPOXA 1B concentrate 
at extended aeration bioreactor, follow by a quartzite sand filtration; 
effluent was stored at homogenization tank 2. Once the secondary 
effluent mixture was homogenized in the homogenization tank 2, it 
was treated in the phototropic reactor with Chlorella sp
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and UV/VIS absorption spectra changes samples were col-
lected every 12 h (Pedroza-Camacho et al. 2018).

Tertiary treatment with Chlorella sp., of effluents 
from secondary treatment

For tertiary treatment, effluents from secondary treatments 
(experiments with immobilized P. pastoris and free rPOXA 
1B enzyme concentrate) were mixed to generate an only lot. 
Treatment was performed in 15 L bioreactor with 8 L WEV, 
inoculated with 4% (v/v) Chlorella sp., (10 × 106 CFU mL−1) 
suspension, aerated with three submergible pumps to maintain 
a 1 L  min−1 flux. A fluorescent lamp was installed within the 
quartz jacket, placed in the center in the bioreactor (1000 lx 
with 12 h light/dark cycles), (Fig. 1). Average temperature in 
the area where the phototrophic reactor was placed oscillated 
between ~ 19.00 ± 3.00 °C. To determine COD (mg  L−1), TOC 
(mg  L−1),  NO3

= (mg  L−1),  NO2
− (mg  L−1), TSS, (mg  L−1), 

orthophosphates (mg  L−1) and pH, samples were collected in 
the beginning and at 144 h (6 days). Additionally, microalgae 
dry biomass was determined (dry weight determination (g  L−1) 
at 105 °C for 20 min), (American Public Health Association 
et al. 2005). The procedure for estimating the bacteria number 
was based on the 9215C spread plate method (Dichter and 
LeChevallier 2017).

Analytical techniques

UV/VIS spectrophotometry

UV/VIS spectra using Mecasys OPTIZEN spectrophotometer 
were determined for each sample before and after treatment 
to evaluate changes in absorption spectra in sample coloured 
compounds.

Colour Units (CU) determination

Colour units were determined measuring CLWW at 614 nm 
wavelengths, using Eq. (2), (Livernoche et al. 1983):

where A1 is the absorbance at which CLWW wave length 
was at its maximum, and 0.132 is the  ABS465nm of a stand-
ard platinum-cobalt solution with 500.00 CU (Livernoche 
et al. 1983).

TSS determination

Total suspended solids concentration (mg L−1) was deter-
mined using the 2540 D Standard Methods for the Examina-
tion of Water and Wastewater (Rice 2017).

(2)UC =
A1 × 500

0.132
,

COD determination

The HACH commercial kit was used based on the 8000 
HACH method. Reading was performed in a HACH spec-
trophotometer at 620 nm using as a blanc a COD tube with 
 dH2O instead of wastewater. Technique detection ranged 
between 0 and 15,000 mg  L−1.

BOD5 determination

The VELP SCIENTIFICA system was employed to deter-
mine this parameter.

TOC, IC, TC and TN determination

The concentration of organic matter (OM) of the effluents 
of each cycle and process at time 0 and post-filtration was 
measured using a TOC analyzer (Shimadzu TOC-L total 
organic carbon analyzer), this equipment uses a unique com-
bustion catalytic oxidation and NDIR according to 5310B 
Standard method (Rice 2017).

For TOC determination in tertiary treatment with Chlo-
rella sp., a HACH commercial kit for low range Total 
Organic Carbon (TOC), (Test’ N Tube™ 03) was used based 
on the 5310 C method, specifically persulphate combustion 
oxidation. Reading was performed in a HACH spectropho-
tometer at 430 nm using as a blanc one COT tube with Milli 
Q water instead of CLWW (American Society for Testing 
and Materials 1994).

Nitrates, nitrites and orthophosphate 
determination

NitraVer® commercial kit from HACH was used to deter-
mine nitrates, based on cadmium reduction method 8171 
ranging from 0.1 to 10 mg  L−1  NO3–N (Hach Company/
Hach Lange GmbH 2014). Nitrite determination was per-
formed using  NitriVer® 3 commercial kit from HACH, 
based on method 8507 ranging from 0.002–0.300  mg 
 L−1  NO2–N (Hach Company/Hach Lange GmbH 2007). 
Last, for orthophosphate determination  (HPO4

−3 in mg 
 L−1)  Spectroquant® for orthophosphates from Merck 
(MQuantTM three phosphate test, Merck) was used, based 
on previously reported phosphomolybdic acid colourimetric 
formation (Murphy and Riley 1962).

On the other hand, with algae biomass in mg  L−1, COD 
(mg  L−1) and TOC (mg  L−1) consumed at 144 h after tertiary 
treatment yield (YX COD

−1 and YX TOC
−1) and biomass volu-

metric productivity (mg  L−1 h−1) were calculated (Morales-
Álvarez et al. 2016, 2017).
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pH determination

Effluent’s and influent’s pH were measured using a JEN-
WAY pH meter.

Laccase activity determination

Laccase activity  (UL−1) was monitored by a change in 
absorbance at 420 nm (ε420 = 36.000 M−1 cm−1) based on 
ABTS oxidation in 0.1 M citrate buffer (pH 3.0 ± 0.2). 2 
µL of the sample were added to 898 µL of 0.1 M citrate 
buffer, and 100 µL of 20 mM ABTS at room temperature 
(25 °C). Green radical formation was evaluated spectropho-
tometrically for 1 min. Blanc solution contained 2 µL of 
distilled water, 898 µL of citrate buffer solution, and 100 µL 
of 20 mM ABTS, Eq. (3).

where ΔE corresponds to the difference between final and 
initial absorbance after 1 min of reaction, Vt refers to the 
total reaction volume (mL), ε refers to the ABTS molar 
extinction coefficient  (M−1 cm−1), d is the length of the 
cuvette in cm and Vs is the volume of sample (mL) contained 
in the reaction.

(3)UL
−1

=

(

ΔE × Vt

)

(

� × d × Vs

) ,

Scanning electron microscopy (SEM)

This service was contracted with Universidad de Los Andes 
(UNIANDES), Bogotá, D.C, Colombia. Alginate bead mor-
phology containing P. pastoris cells and Chlorella sp. cells 
were observed under scanning electron microscopy (SEM). 
A JEOL microscope was used, model JSM 6490-LV imaging 
from 10 to 30 kV. Samples were covered with gold under 
vacuum conditions using Metalizador Desk IV. Samples 
were observed at 8000× magnification for Chlorella sp. and 
for P. pastoris at 20,000× magnification.

Results

Treatment of different CU of CLWW with P. pastoris 
X33/pGAPZαA‑LaccPost‑Stop (Clone 1) immobilized 
cells in calcium alginate

Following are the CU selection assays performed at Erlen-
meyer flask scale (Fig.  2), which allowed establishing 
CLWW CU to be used at pilot scale for the plant treatment. 
Colour at 300.00 and 1200.00 CU notably decreased after 
144 h of treatment with percentages of decolouration of 
60.53 and 73.16%, respectively (Table 1).

Fig. 2  Photographic monitoring of CLWW treatments. CLWW treat-
ments for ~ 300.00, ~ 1200.00 and ~ 2300.00 CU, respectively, at 0  h 
and 144 h. The objective was to select best CU of CLWW for pilot 

treatment with P. pastoris X33/pGAPZαA-LaccPost-Stop (Clone 1) 
immobilized cells, and rPOXA 1B enzyme concentrate
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CLWW, UV/Vis characterization

CLWW (1500.00 CU) UV/VIS spectra for influent to treat 
with P. pastoris X33/pGAPZαA-LaccPost-Stop (Clone 1) 
immobilized in calcium alginate beads and for free rPOXA 
1B enzyme concentrate is presented in Fig. 3.

CLWW (1500.00 CU) secondary treatment with  
P. pastoris X33/pGAPZαA‑LaccPost‑Stop (Clone 1) 
immobilized cells at pilot scale

In Fig. 4a–c, the UV/VIS absorption spectra are presented 
for the three cycles of CLWW (1500.00 CU, influents) 
treatment with P. pastoris immobilized cells producing 
the recombinant POXA 1B enzyme, as well as removal 

percentages of some CLWW discharge parameters after 
treatment (secondary effluent).

In the three treatment cycles, the UV/VIS spectrum 
revealed a decrease in absorbance (approximately 0) in the 
VIS region (400–800 nm) as a consequence of rPOXA 1B 
action, produced by immobilized cells (Fig. 4a–c). In addi-
tion, in the three cycles at 74 h of treatment an increase in 
absorbance in the UV region (200–400 nm) was observed in 
comparison with the same region of CLWW (1500.00 CU). 
However, the signal was gradually decreasing with cycle 
change (C1 > C2 > C3). Table 2 shows CLWW (1500.00 CU, 
influents) discharge parameters of the effluent of the different 
treatment cycles.

CLWW (1500.00 CU) secondary treatment 
with rPOXA 1B free enzyme concentrate (pilot scale)

UV/VIS absorption spectra for CLWW (1500.00 CU, influ-
ents) for the three treatment processes with rPOXA 1B con-
centrate, as well as removal percentages of certain CLWW 
discharge parameters after treatment (effluent) are illustrated 
in Fig. 4e, f.

For the three processes, UV/VIS spectra exhibited a 
decrease in absorbance signal, almost 0 in the VIS region 
(400–800 nm) as a consequence of the presence of rPOXA 
1B enzyme (Fig. 4d–f). At 73 h of treatment an increase 
in absorbance for the three processes in the UV region 
(200–400  nm) was observed, in comparison with the 
same region of CLWW (1500.00 CU), however, the signal 
decreased when the process was changed from P1 to P2 
(P1 > P2 = P3).

Average enzyme activity at the beginning of treat-
ment was 401.23 ± 6.83 U  L−1 and after 73 h decreased 
to 296.60 ± 12.29 U  L−1, with oscillations during treat-
ment. Table 3 summarizes CLWW (1500.00 CU, influents) 
parameter quality and parameters of effluents after different 
treatments.

Tertiary treatment with con Chlorella sp. 
of a mixture of secondary effluents treated with  
P. pastoris X33/pGAPZαA‑LaccPost‑Stop (Clone 1) 
immobilized cells and enzyme extract

The mix of six secondary effluents presented the follow-
ing initial characteristics: CU (90 ± 3  CU614 nm), COD 
(300 ± 9 mg  L−1), TOC (10 ± 2 mg  L−1), TSS (66.7 ± 1.2 mg 
 L−1),  NO3 (6.25 ± 0.98 mg  L−1),  NO2 (0.065 ± 0.002 mg 
 L−1), orthophosphates (15.7 ± 0.57  mg  L−1) and pH 
(7.06 ± 1.1). UV/VIS absorption spectra of secondary efflu-
ents mixture at the beginning of tertiary treatment and at 
144 h is presented in Fig. 5. Signal associated with initial 
CU decreased to end at 34 ± 4 CU. In the UV region two 
changes were observed, one at signal 289 nm (decrease in 

Table 1  CLWW percentage decolouration after 144  h of treat-
ment. Treatment with calcium alginate beads and P. pastoris X33/
pGAPZαA/LaccPost-Stop (Clone 1) immobilized in calcium alginate 
beads

Bold values indicate major decolouration treatments
a CLWW
b CLWW + Ca2+ alginate beads
c CLWW + Ca2+ alginate beads and P. pastoris X33/pGAPZαA-
LaccPost-Stop (Clone 1)

CLWW, colour unit (CU) Treatment % decoloura-
tion (144 h)

 ~ 300.00 C1a 0.00
C2b 7.89
T1c 60.53

 ~ 1200.00 C1 0.00
C2 14.38
T1 73.16

 ~ 2300.00 C1 0.00
C2 7.97
T1 1.95

Fig. 3  LCWW UV/VIS (200–800  nm) absorption spectra. LCWW 
(1500.00 CU) spectra; where 614  nm was selected as the visible 
wavelength for maximal absorption
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absorbance from 0.263 to 0.211), the second change con-
sisted of the appearance of a signal at 253 nm (0.183 units 
of absorbance), which could be associated with an interme-
diate produced by Chlorella sp., or to a pigment produced 
by the algae.

Concerning to quantify discharge parameters for the 
tertiary treatment, initial and final values are presented in 
Table 4. It is noteworthy a decrease in COD (155 ± 4 mg 
 L−1), TOC (6.6 ± 0.87 mg  L−1),  NO3 (4.25 ± 1.11 mg  L−1) 
and orthophosphates (9.2 ± 2.3 mg  L−1) concentration. On 
the contrary,  NO2 and TSS values increased with values of 

0.156 ± 0.07 mg  L−1 and 149 ± 7 mg  L−1, respectively, at 
144 h.

Tertiary treatment efficiency and Chlorella sp., growth 
under mixotrophic conditions without sterility conditions 
were confirmed with a dry weight of algae biomass (ini-
tial: 500 ± 10 mg  L−1 and final 1400 ± 80 mg  L−1) and 
total bacteria count (initial: 1 × 104 ± 1 × 101 CFU mL−1 
and final: 1 × 106 ± 1 × 102  CFU  mL−1). Additionally, 
when biomass yield was calculated in terms of consumed 
COD (YX/DQO) and TOC (YX/COT) the values obtained were 
9.65 ± 1.24 mg mg−1 and 411 ± 35 mg mg−1, respectively. 

Fig. 4  The behaviour of the 3 cycles and the 3 treatment processes 
of CLWW (1500.00 CU) treatment with P. pastoris X33/pGAPZαA-
LaccPost-Stop (Clone 1) immobilized cells, and with rPOXA 1B 

enzyme concentrate, respectively. a–c UV/VIS absorption spectra of 
C1, C2 and C3 respectively. d–f UV/VIS absorption spectra of P1, P2 
and P3 respectively
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Last, biomass volumetric productivity was 9.7 ± 1.3 mg 
 L−1 h−1.

P. pastoris immobilized in alginate beads after sec-
ondary treatment (74 h) and Chlorella sp., after tertiary 

treatment (144 h) were characterized under SEM (Fig. 6a, 
b). P. pastoris were oval shaped with an approximate size of 
1.6 ± 0.5 µm and were distributed in different zones of the 
alginate matrix (Fig. 6a). Chorella sp., cells were spherical 
with an approximate size of 4.9 ± 0.9 µm (Fig. 6b). Groups 
of variable sizes were observed, which could be associated 
with sample preparation for microscopic analysis.

Regarding EDS analysis, it was observed both cell types 
contained carbon, oxygen, nitrogen, phosphorus, aluminium 
and potassium (Table 5). However, atomic percentages var-
ied among them, such that the higher contents were observed 
in Chorella sp., for carbon, oxygen, nitrogen and phospho-
rus, which could be associated with the capacity of micro-
algae to assimilate carbon by mixotrophy (fix atmospheric 

Table 2  Discharge parameters behaviour of different cycles of 
CLWW treatment (1500.00 CU) with P. pastoris X33/pGAPZαA-
LaccPost-Stop (Clone 1) immobilized of the cells

N/A does not apply, N/C unable to calculate
a Percentage calculated from 1500.00 CU at the beginning of treat-
ment

Discharge  
parameter

0 h 74 h Removal (%)

Cycle 1
 TOC (mg  L−1) 2214.26 ± 46.84 591.97 ± 3.63 73.26 ± 0.40
 TC (mg  L−1) 2290.00 ± 48.08 608.50 ± 4.38 73.42 ± 0.37
 IC (mg  L−1) 75.74 ± 1.24 16.53 ± 0.75 78.18 ± 0.64
 TN (mg  L−1) 411.49 ± 20.53 264.40 ± 4.81 36.49 ± 5.00
 CU 1500.00 ± 0.00 12.63 ± 2.19 99.16 ± 0.15a

 COD (mg  L−1) 6045.00 ± 35.36 1660.00 ± 0.00 72.43 ± 0.00
 BOD5 (mg  L−1) 999.00 ± 0.00 999.00 ± 0.00 0.00 ± 0.00
 TSS (mg  L−1) 275.00 ± 35.36 50.00 ± 0.00 80.00 ± 0.00
 BOD5/COD 0.16 0.60 N/A
 TOC/TN 5.38 2.24 N/A
 COD/TOC 2.73 2.80 N/A
 pH 4.16 ± 0.20 5.05 ± 0.20 N/A

Cycle 2
 TOC (mg  L−1) 135.86 ± 6.70 74.01 ± 0.50 45.45 ± 3.06
 TC (mg  L−1) 165.09 ± 3.97 93.22 ± 1.22 43.36 ± 2.65
 IC (mg  L−1) 29.11 ± 0.93 19.36 ± 0.57 33.49 ± 0.19
 TN (mg  L−1) 94.76 ± 1.63 93.20 ± 0.62 2.17 ± 1.32
 CU 1500.00 ± 0.00 6.31 ± 4.37 99.58 ± 0.29a

 COD (mg  L−1) 760.00 ± 155.56 280.00 ± 14.14 67.82 ± 1.63
 BOD5 (mg  L−1) 999.00 ± 0.00 250.00 ± 0.00 74.98 ± 0.00
 TSS (mg  L−1) 66.67 ± 28.87 66.67 ± 28.87 0.00 ± 0.00
 BOD5/COD 1.30 0.80 N/A
 TOC/TN 1.43 0.79 N/A
 COD/TOC 5.59 3.78 N/A
 pH 7.21 ± 0.20 8.01 ± 0.20 N/A

Cycle 3
 TOC (mg  L−1) 47.08 ± 1.41 20.60 ± 3.13 56.13 ± 7.96
 TC (mg  L−1) 54.22 ± 2.17 27.81 ± 1.54 48.61 ± 4.59
 IC (mg  L−1) 6.33 ± 0.73 7.34 ± 0.85 0.00 ± 0.00
 TN (mg  L−1) 60.07 ± 0.66 60.60 ± 0.00 0.00 ± 0.00
 CU 1500.00 ± 0.00 10.10 ± 2.19 99.33 ± 0.15a

 COD (mg  L−1) 370.00 ± 0.00 295.00 ± 21.21 15.71 ± 6.06
 BOD5 (mg  L−1) 250.00 ± 0.00 250.00 ± 0.00 0.00 ± 0.00
 TSS (mg  L−1) 166.67 ± 28.87 33.33 ± 28.87 83.33 ± 14.43
 BOD5/COD 0.60 0.80 N/A
 TOC/TN 0.78 0.34 N/A
 COD/TOC 7.86 14.32 N/A
 pH 7.28 ± 0.20 7.50 ± 0.20 N/A

Table 3  Discharge parameters for different CLWW (1500.00 CU) 
treatment processes with rPOXA 1B enzyme concentrate

N/A does not apply, N/C unable to calculate
a Percentage calculated from 1500.00 CU at the beginning of treat-
ment

Discharge  
parameter

0 h 73 h Removal (%)

Process 1
 TOC (mg  L−1) 420.06 ± 9.53 273.71 ± 5.08 34.84 ± 0.27
 TC (mg  L−1) 481.20 ± 11.03 332.80 ± 6.79 30.84 ± 0.18
 IC (mg  L−1) 61.14 ± 1.50 59.09 ± 1.71 3.36 ± 0.43
 TN (mg  L−1) 205.37 ± 6.71 198.53 ± 6.11 3.32 ± 1.48
 CU 1500.00 ± 0.00 49.24 ± 3.79 96.72 ± 0.25a

 COD (mg  L−1) 1865.00 ± 49.49 840.00 ± 84.85 55.00 ± 3.36
 TOC/TN 2.05 1.38 N/A
 COD/TOC 4.44 3.07 N/A
 pH 6.96 ± 0.20 7.97 ± 0.20 N/A

Process 2
 TOC (mg  L−1) 172.53 ± 2.81 112.16 ± 0.68 34.98 ± 1.45
 TC (mg  L−1) 210.70 ± 4.10 134.64 ± 0.08 36.09 ± 1.20
 IC (mg  L−1) 38.49 ± 1.07 22.48 ± 0.76 41.11 ± 0.02
 TN (mg  L−1) 112.94 ± 0.59 104.25 ± 5.08 8.85 ± 5.23
 CU 1500.00 ± 0.00 44.19 ± 35.36 97.05 ± 0.15a

 COD (mg  L−1) 885.00 ± 77.78 345.00 ± 35.36 60.69 ± 7.45
 TOC/TN 1.53 1.08 N/A
 COD/TOC 5.13 3.08 N/A
 pH 7.16 ± 0.20 7.65 ± 0.20 N/A

Process 3
 TOC (mg  L−1) 155.81 ± 0.41 101.61 ± 2.70 34.79 ± 1.56
 TC (mg  L−1) 191.70 ± 2.21 129.64 ± 3.71 32.89 ± 1.67
 IC (mg  L−1) 36.29 ± 1.45 27.61 ± 1.69 23.98 ± 1.69
 TN (mg  L−1) 105.12 ± 1.07 103.35 ± 1.43 1.77 ± 0.91
 CU 1500.00 ± 0.00 53.03 ± 0.00 96.47 ± 0.00a

 COD (mg  L−1) 785.00 ± 35.36 360.00 ± 14.14 54.05 ± 3.87
 TOC/TN 1.48 0.98 N/A
 COD/TOC 5.04 3.54 N/A
 pH 7.19 ± 0.20 7.90 ± 0.20 N/A
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 CO2 and employ organic carbon present in water) and effi-
ciently remove nutrients such as phosphorus and nitrogen.

Discussion

Treatment of different CU of CLWW with P. pastoris 
X33/pGAPZαA‑LaccPost‑Stop (Clone 1) immobilized 
cells in calcium alginate

Data illustrated in Fig. 2 and Table 1 demonstrate that up 
to 1200.00 CU ~ 73% color removal was obtained. Decol-
ouration obtained in these assay was supported by three 
factors, (1) high rPOXA 1B redox potential (Roman et al. 

2010; Mendoza et al. 2011; Drumond Chequer et al. 2013; 
Rivera-Hoyos et al. 2013; El-Batal et al. 2015; Morales-
Álvarez et al. 2016), (2) adsorption generated by the pres-
ence of calcium alginate beads (Fig. 1) and (3) P. pastoris 
X33/pGAPZαA-LaccPost-Stop (Clone 1) planktonic cells 
(Gouzy-Olmos et al. 2018).

Modest colour elimination at 2300.00 CU could be due 
to aspects, such as (1) calcium alginate matrix saturation, 
(2) extended treatment time requirement, and (3) possible 
water toxicity on P. pastoris X33/pGAPZαA-LaccPost-Stop 
(Clone 1) immobilized cells. Experimentally the effect of 
time on % decolouration could have been studied, however, 
after 144 h the assay becomes unfeasible for industrial pur-
poses since it would be too extensive and costly, therefore 
less attractive; particularly if it is an industrial batch process 
with a high liquid waste flow.

Considering the gap between 1200.00 and 2300.00 CU is 
wide, as well as the possible toxic effect on the recombinant 
strain, it was decided to perform the entire pilot-scale study 
at 1500.00 CU, an intermediate CLWW dilution, for the 
cycle treatments with immobilized cells in calcium alginate 
beads, as well as for the free rPOXA 1B enzyme concentrate. 
This decision suggests that in practice it will require influ-
ent dilution, to adjust the CU to 1500.00. However, it is also 
clear the possibility of reusing the effluent in the dilution of 
the influent to be treated, which would significantly reduce 
water expenditure.

The limitation in enzyme activity determination could 
have been due to low enzyme diffusion, an effect attributed 
to alginate concentration (≥ 4% w/v), (Tanaka et al. 1984; 
Won et al. 2005). Decolouration percentages are presumed 
to have resulted from enzyme activity, because of the dif-
ference between dye adsorption (absorption control C2, 

Chorella sp. tertiary treatment
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Fig. 5  Chorella sp. tertiary treatment. UV/VIS absorption spectra of 
mix of secondary effluents treated for 144 h

Table 4  Discharge parameters 
for tertiary treatment with 
Chorella sp., at 144 h

N/A does not apply, N/C unable to calculate

Tertiary treatment

Discharge parameter 0 h 144 h Removal (%)

CU 90 ± 3 34 ± 4 62.2 ± 1.3
TOC  (mgL−1) 10 ± 2 6.6 ± 0.87 34 ± 3
COD  (mgL−1) 300 ± 9 155 ± 4 48.3 ± 2.4
NO3

= 6.25 ± 0.98 4.25 ± 1.11 32 ± 2
NO2

− 0.065 ± 0.002 0.156 ± 0.07 0
Ortophososphates 15.7 ± 0.57 9.2 ± 2.3 41.4 ± 3.5
TSS  (mgL−1) 66.7 ± 1.2 149 ± 7 0
Algae dry weight 500 ± 10 1400 ± 80 N/A
Total bacteria (CFU  mL−1) 1 × 104 ± 1 × 101 1 × 106 ± 1 × 102 N/A
P(biomass) (mg  L−1 h−1) N/C 9.7 ± 1.3 N/A
Y(biomass/COD) (mg  mg−1) N/C 9.65 ± 1.24 N/A
Y(biomasa/TOC) (mg  mg−1) N/C 411 ± 35 N/A
pH 7.06 ± 0.20 7.49 ± 0.20 N/A
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alginate beads without cells) and T1 treatment for the dif-
ferent CU (Table 1).

CLWW UV/VIS characterization

CLWW lots generated every semester in teaching and 
research laboratories at the Department of Microbiology 
School of Sciences, Pontificia Universidad Javeriana are 
heterogenous, due to different concentrations and types of 
colourants and/or additives (oils, alcohols and acids, etc.), 
depending on the time of collection. Thus, to identify the 
wavelength where maximum absorption was obtained it 
was necessary to characterize CLWW, UV/VIS spectra 
and determine the corresponding CU. The CLWW lot 
used in this work had 25,750.00 CU and was diluted into 
1500.00 CU with a maximum VIS absorption at 614 nm 
(Fig. 3a).

CLWW (1500.00 CU) secondary treatment with  
P. pastoris X33/pGAPZαA‑LaccPost‑Stop (Clone 1) 
immobilized cells at pilot scale

Absorption spectra tendencies for the three cycles were 
similar (Fig. 4a–c). At 0 h, when compared with CLWW 
(1500.00 CU) an increase in absorbance in the UV region 
(200–400 nm) was observed. This increase resulted from 
reactivation media supplementation to reactivate immobi-
lized cells in cycle 1 (Gouzy-Olmos et al. 2018), although 
for cycles 2 and 3 a lesser increase in the UV region 
was observed (0 h), because for both cycles no reactiva-
tion media was added, and only immobilized cells and 
1 L effluents from the previous cycle was used (before 
flocculation and quartzite sand filtration). In general, an 
increase in UV region absorbance at 0 h could be due to 
supplementation with organic matter (reactivation media 
components, effluent from the previous cycle, cells and 
extracellular metabolites) and to the colour provided by 
the reactivation media, specifically for cycle 1.

For the VIS region between 0 and 72 h absorbance 
considerably decreased and flocculation and quartzite 
sand filtration also reduced absorbance in the UV region 
(200–400 nm). However, at the end of the cycles, espe-
cially cycle 1 and 2, absorbance and spectral profile for 
UV regions were higher in comparison with CLWW 
(1500.00 CU) Fig. 5a–c. These results could be due to two 
aspects, (1) transformation of complex compounds and/or 
aromatic compounds (with absorbance in the VIS region) 
that changed their conformation into simple or aliphatic 
compounds (Fernández et al. 2016; Morales-Álvarez et al. 
2016; Blanco-Vargas et al. 2018; Pedroza-Camacho et al. 
2018) and (2) remains of the organic load added to the 
system with the reactivation media.

Fig. 6  Scanning electron micrographs (SEM). a P. pastoris cells immobilized in calcium alginate after the secondary (74 h). b Chlorella sp. 
cells after tertiary treatment (144 h)

Table 5  Atomic composition for EDS from P. pastoris X33/
pGAPZαA-LaccPost-Stop (Clone 1) and Chorella sp.

ND not determined

Element Atomic (%)

P. pastoris Chlorella sp.

C 51.40 80.75
O 40.32 12.14
N 0.10 1.83
P 0.04 1.20
Na ND 1.30
Al 0.13 1.27
K 0.07 1.51
Ca 7.94 ND
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For cycle 1 at 0  h no important decolouration was 
observed, varying between 1500.00 to 1436.87 CU (Table 2, 
Fig. 4a–c), however, at 2 h CU decreased to 273.99 CU (data 
not shown). Nevertheless, for cycles 2 and 3 decolouration 
was immediate (0 h) decreasing CU from 1500.00 a 598.48 
and 209.59 CU, respectively, (Table 2, Fig. 4a–c). Once 
effluents from cycles 1, 2 and 3 were flocculated and filtered 
they demonstrated colour removal of 99.1, 99.5 and 99.3%, 
respectively (Table 2).

For the different cycle’s behavior of discharge parameters 
 (BOD5, COD, TOC, TC, IC and TN) revealed an evolution 
in organic charge (Table 2). COD reduction was 72.43, 67.82 
and 15.71% for C1, C2 y C3, respectively; suggesting the 
implemented system decreased organic load supplemented 
during alginate bead reactivation (reactivation media). How-
ever, low COD reduction in C3 indicated it reached its limit. 
For TOC reduction, this parameter presented removal per-
centages between 45 and 73%.

TOC/TN ratio in all treatment cycles decreased (Table 2), 
suggesting an organic matter oxidation, in addition to a 
greater elimination of carbon compounds in comparison 
with nitrogenous compound elimination (Malvis et al. 2019). 
In C1, C2 and C3 TOC/TN ratio decreased between 0 and 
74 h of treatment (Table 2). Furthermore, for all cycles 
COD/TOC ratio was not below 2.5, indicating a decrease 
in complex sub-products (Bilinska et al. 2016). COD/TOC 
ratios below 2.5 indicate residual organic carbon is due to 
the presence of recalcitrant organic compound presence 
(Guedes et al. 2003); an association that can change due 
to non-biodegradable organic compounds that remain at 
the end of wastewater treatment (Mara and Horan 2003). 
Moreover,  (BOD5/COD) treatability ratio demonstrated val-
ues higher than 0.5 for all treatment cycles, suggesting that 
influents (0 h) as well as effluents (74 h) were susceptible to 
biodegradation (Tchobanoglous et al. 2013; Bilinska et al. 
2016).

In C1, pH changed to neutral (0 at 72 h), (data not shown). 
A change in pH could be due to the generation of aromatic 
intermediates and amines resulting from the transformation 
of the dyes through enzymes (Rani et al. 2014). However, 
because of the flocculation process used  Al2(SO4)3 and 
NaOH to separate part of the TSS and free biomass in the 
effluent before filtration, the pH acidified. Although these 
chemical compounds allow for particle separation, they 
also generate changes in the pH (Shon et al. 2009; Zhao 
et al. 2011). The pH in C2 and C3 was neutral throughout 
the treatment, nevertheless in cycle 2 flocculation slightly 
modified the pH, the effect caused by the used of the afore-
mentioned chemicals.

During CLWW treatment cycles (C1, C2 and C3), no 
enzyme activity was detected (U  L−1). Enzyme activity 
arrest difficulties were observed since UC selection analy-
ses (Fig. 2, Table 1). Probably, activity was below detection 

values by the used methodology, given the low diffusion of 
the enzyme from the calcium alginate bead. During the first 
hours of the cycles, it was possible to observe dye adsorption 
to the alginate beads and subsequently the gradual discol-
ouration of beads, a similar effect observed in Fig. 2. Other 
authors reported limited enzyme diffusion with increased 
alginate concentration (≥ 4% w/v), (Tanaka et al. 1984; Won 
et al. 2005), as was employed in this study. Hence, algi-
nate beads should be dissolved in phosphate buffer to detect 
activity (Hung et al. 2008). Additionally, our group demon-
strated in a computational model laccase does not rupture 
 Ca2+ alginate matrix (Gouzy-Olmos et al. 2018).

CLWW (1500.00 CU) rPOXA 1B free enzyme 
concentrate treatment at pilot scale

For the three treatment processes absorption spectra tenden-
cies are shown in Fig. 4d–f. At 0 h an increase in the absorp-
tion pattern in the UV region (200–400 nm) was observed, 
as a consequence of supplementation with enzyme concen-
trate. Process 1 had the highest increase since 330 mL of 
rPOXA 1B concentrate (lot number 1) was used for initial 
enzyme activity of ~ 400 U  L−1 in comparison with processes 
2 and 3, where only 88 mL (lot number 2) were employed 
to attain the same initial activity (~ 400 U  L−1). In general, 
an increase in UV region absorbance (0 h) could be due to 
organic matters incorporated with the addition of enzyme 
concentrate.

At the end of each process, absorbance and UV spec-
tral profile (200–400 nm) was higher in comparison with 
CLWW (1500.00 CU), as was observed for treatment cycles 
with immobilized cells in calcium alginate. This could be 
related to complex and/or aromatic compound transforma-
tion (absorbencies in the VIS region) with changes in con-
figuration into simple or aliphatic compounds displaying 
maximum absorbencies in the UV region (200–400 nm), 
(Langergraber et al. 2004; Fernández et al. 2016; Morales-
Álvarez et al. 2016; Blanco-Vargas et al. 2018; Pedroza-
Camacho et al. 2018). Another possibility is to the organic 
matter in the bioreactor since at 72 h of treatment it was 
impossible to reduce to 100% the incorporated organic load 
with rPOXA 1B, likely caused by low microbial load within 
the treatment.

In all processes with rPOXA 1B, as well as the three 
cycles developed with immobilized cells an instantaneous 
decolouration effect was observed at 0 h decreasing 1500.00 
CU into 1041.66, 652.77 and 597.22 CU for processes 1, 2 
and 3, respectively (Fig. 4d–f). In all treatment processes 
(P1, P2 and P3), it was noticed absorption in the UV region 
considerably decreased after 72 h, with 96.71, 97.05 and 
96.46% dye removal, respectively (Table 3).

Discharge parameters for the different processes (COD, 
TOC, TC, IC and TN), (Table 3) demonstrated that enzyme 
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concentrate contributed with organic matter to the media 
(concentrate residual components), because they presented 
values greater than 0 h in all the processes, compared to 
those obtained in the CLWW (1500.00 CU), (Fig. 4d–f). 
However, organic matter contribution was less in compari-
son with reactivation media supplementation in cycle 1, 
which could explain why COD and TOC removal percent-
ages were similar for the three processes.

TOC/TN ratio in all processes (P1, P2 and P3), (Table 3) 
decreased between 0 and 73 h. Additionally COD/TOC ratio 
also decreased with final rations greater than 2.5 at 73 h 
(Guedes et al. 2003), which could demonstrate a decrease in 
complex sub-products after treatment (Bilinska et al. 2016), 
caused by dye mineralization and/or residual components of 
the enzyme concentrate.

The pH in all three processes maintained a relatively 
neutral behaviour because it was not necessary to perform 
flocculation procedures. Hence, no variations in pH were 
observed as took place in the cycles.

During the three processes (P1, P2 and P3) enzyme activ-
ity ranged between 289.81 ± 3.21 and 415.33 ± 5.86 U  L−1, 
after quartzite sand filtration enzyme activity decreased in all 
processes, ranging between 282.40 ± 3.21 and 303.70 ± 8.49, 
as a result of enzyme adsorption by the quartzite sand (Jada 
et al. 2006).

Collectively, results demonstrated the capacity to elimi-
nate more than 90% of the CU with both treatments. CLWW 
treatment with immobilized cells revealed they could be 
re-used (at least for 216 h) without losing their removal 
capacity, which presents a technological advantage since it 
is not necessary to prepare immobilized cells for each treat-
ment and opens new possibilities to implement a continu-
ous system for treatment of this type of CLWW. Moreover, 
CLWW (1500.00 CU) treatment with 400 U  L−1 de rPOXA 
1B was also successful in decolouration, obtaining > 96% 
removal regardless of the volume of enzyme concentrate 
incorporated.

Although both treatments (cycles and processes) 
removed > 95% of the colour (which was the objective of 
the first part in this work), removal of organic matter only 
reached between 15.71 and 72.43% in the cycles and the 
processes between 54.05 and 60.69%. Therefore, residual 
wastewater obtained from the treatments may contain nutri-
ents (sources of carbon, nitrogen and phosphorus) necessary 
for a tertiary treatment, which in this case propose microal-
gae use (Malvis et al. 2019).

Chlorella sp. tertiary treatment of effluents 
from secondary treatment

The initial characterization of six lots of secondary efflu-
ents mixture (C1, C2, C3, P1, P2 and P3), changed sub-
stantially concerning the individual values obtained for each 

secondary treatment (CU 90 ± 3  UC614nm, COD 300 ± 9 mg 
 L−1, TOC 10 ± 2 mg  L−1, TSS 66.7 ± 1.2 mg  L−1,  NO3 
6.25 ± 0.98 mg  L−1,  NO2 0.065 ± 0.002 mg  L−1, orthophos-
phates 15.7 ± 0.57 mg  L−1 and pH 7.06 ± 1.1 (Table 4). This 
was due to a dilution effect when both secondary effluents 
were mixed. Even so, initial tertiary treatment values had 
concentrations that had to decrease before discharging of the 
tertiary treatment or re-use as irrigation water (Ministerio de 
Ambiente y Desarrollo Sostenible 2014).

Regarding CU decrease in the VIS region, Chorella sp. 
efficiently eliminated 62.2 ± 1.3% of the initial 90 CU. The 
decrease was observed from the first hours of contact and 
increased as a function of time (data not shown), (Table 4); 
demonstrating that initial removal was carried out by dye 
adsorption to the microalgae’s cell wall, a process that 
depended on biomass quantity, pH, temperature and time 
of contact (Dirbaz and Roosta 2018; Furuhashi et al. 2019). 
The increase in microalgae biomass and their size (Fig. 6b), 
was a factor that favoured dye removal (from 500 to 1400 mg 
 L−1 at 144 h) since contact surface area was increased and 
more functional groups were made available to adsorb the 
dyes, where the most representative were those close to pH 
7.0 ± 0.2 and –OH, –NH, and the chelant C=O present in 
amides, and C–O, methyl (–CH3) and methylene (–CH2) 
groups (Khataee et al. 2013; Dirbaz and Roosta 2018).

Another factor that favoured dye adsorption was the pH 
since during the entire experiment it remained between 7.06 
and 7.49 ± 0.2. Under this condition microalgae, cells wall 
charges negatively due to OH- adsorption and proton loss, 
allowing for a more efficient electrostatic attraction adsorp-
tion (Table 4). In particular, cationic dyes, such as crystal 
violet, malachite green and methylene blue (Vyavahare et al. 
2019).

Even though it was not verified, microalgae could have 
also produced enzymes that participated in dye biotrans-
formation process, since in the UV region a decrease in the 
289 nm signal was observed with an increase in the 253 nm 
signal (Fig. 5). This UV region (200–400 nm) absorption 
changes could be attributed to transformations through 
enzyme activity. In this sense, it has been reported azoic 
dyes (such as Congo red) can be degraded by Chlorella Vul-
garis, Chlorella pyrenoidosa and Oscillatoria tenuisin, con-
verting them into simple aromatic rings and amines (Forgacs 
et al. 2004). This type of degradation can be carried out 
by two types of enzymes azoreductases (E.C. 1.7.1.6) and 
oxidases (E.C. 1.1.3), (Solís et al. 2012; Otto and Schlosser 
2014).

COD and TOC removal were 48.3 ± 2.4 and 34 ± 3, 
respectively. Reduction in these parameters could be 
accounted by two aspects (Table 4). The first makes ref-
erence to Chlorella sp. cells adaptation to this type of 
wastewaters since to keep them under laboratory condi-
tions, secondary effluents from another treatment plant 
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that operates continuously in the laboratory, in which the 
present investigation was conducted, was used as a culture 
medium (Pedroza-Camacho et al. 2018). Some authors 
report microalgae bioremediation potential can increase 
if a prior adaptation process is carried out by culturing in 
media similar to wastewater be treated (Hu et al. 2019). 
The second reason was related to the capacity Chlorella 
sp. has to grow under mixotrophy conditions, alternating 
between heterotrophic and autotrophic metabolism. Heter-
otrophic metabolites were obtained from secondary efflu-
ent organic compounds and autotrophic from produced 
 CO2 by bacterial metabolism present during tertiary treat-
ment (initial: 1 × 104 ± 1 × 101 and final: 1 × 106 ± 1 × 102), 
(Table 4).

Combination of both types of metabolism allows Chorella 
sp., to grow more rapidly and to produce greater quantities 
of biomass in comparison with only autotrophic conditions, 
which was evident by biomass volumetric productivity 
(9.7 ± 1.3 mg  L−1 h−1) and biomass yield in terms of COD 
and TOC (9.65 ± 1.24 and 411 ± 35 mg mg−1), respectively 
(Table 4). TOC yield was higher than COD since dissolved 
organic carbon is easier to employ than total organic matter 
present, with a mix of carbon, nitrogen and sulphur com-
pounds with different states of oxidation (Nirmalakhandan 
et al. 2019).

Nitrate (32 ± 2%) and orthophosphate (41.4 ± 3.5%) 
removal demonstrated Chlorella sp. eliminated part of the 
nutrients produced by partial mineralization of the dyes and 
were accumulated within the microalgae (Table 4). Nitrate 
removal was not particularly high, which could be due 
to microalgae preference for ammonium as the inorganic 
source of nitrogen. This process does not require previ-
ous reductions steps and is actively incorporated into the 
cells by the glutamine synthetase-glutamate synthase (E.C. 
6.3.1.2)—(E.C. 1.4.7.1) metabolism for direct amino acid 
conversion, where glutamine synthase catalyzes glutamine 
formation from glutamate and adenosine triphosphate 
(ATP), (Gonçalves et al. 2017). Another factor that might 
have determined low nitrate removal is associated with 
nitrites, which increased in concentration. These ions could 
have been generated by nitrate reduction to nitrite, due to 
bacteria present during tertiary treatment under non-sterile 
conditions. Nitrite at various concentrations can exert an 
inhibitory effect on microalgae.

Regarding orthophosphates, their removal was higher in 
comparison with nitrates, but it might have been affected 
by the amount of light on Chorella sp., cells. Within the 
bioreactor when cell density is high, the same algae gener-
ate a blocking effect where light cannot go through, and 
not all cells receive the same luminosity, which determines 
that ATP and NADPH decreases and orthophosphate ions 
present in the secondary effluent adsorption becomes rather 
inefficient (Khalid et al. 2019).

Last, when tertiary effluent results were analyzed it was 
determined post-treated water was suitable for Lolium per-
ennial seed germination (90% germination at 5 days), (data 
not shown) since its final composition had low organic car-
bonaceous organic matter, decreased colour, neutral pH and 
nutrients that were easily assimilated by the plant, such as 
nitrates, nitrites and orthophosphates. Results obtained in 
this work were similar to those reported by Pedroza-Cama-
cho et al. (2018); the same type of wastewater was used; 
however, a fungal/bacterial consortium carried out biologi-
cal treatment. Moreover, sedimentation and filtration were 
used to remove activated sludge, and no microalgae were 
employed. In that study, final effluent was classified as Class 
two water suitable for irrigation favoring the growth of 
Lolium perennial on a greenhouse scale (Pedroza-Camacho 
et al. 2018).

Table 6 shows differences of control parameters for pol-
lutants removal; differentiating between biological and 
physicochemical treatments. It is observed that removal 
parameters vary depending on the treatment applied and that 
removal of pollutants such as  NO3–N, is difficult to eliminate 
in some physicochemical treatments, however, using micro-
algae this drawback can be overcome since the algae uses the 
nitrogen source as a nutrient (Wang et al. 2010).

On the other hand, the emission of greenhouse gases 
 (CO2) generated during physicochemical treatments harms 
the environment; however, microalgae have the advantage, 
to consume  CO2, being an important operational parameter.

Finally, the use of an open system such as Chlorella sp. 
(tertiary treatment), stands out as a viable option for waste-
water treatment; since some physicochemical treatments, in 
addition to having a higher cost than microalgae, are waste 
generators that generate negative impacts on the environ-
ment (Quiñones et al. 2015; Wang et al. 2018).

Conclusions

This study presented the successful use of recombinant yeast 
and a recombinant enzyme for the secondary treatment at a 
pilot-scale of coloured CLWW. Secondary treatment with P. 
pastoris X33/pGAPZαA-LaccPost-Stop (Clone 1) immobi-
lized in calcium alginate beads presented a decolouration 
percentage > 99%. In addition, it demonstrates immobi-
lized cells can be re-used and maintain their colour removal 
capacity for at least 216 h, which opens new possibilities 
for a continuous treating system. For secondary treatment 
with rPOXA 1B free enzyme concentrate, decolouration 
was > 96%; demonstrating the system has the advantage to 
incorporate less organic matter, due to the absence of cells 
and initial reactivation media. Chlorella sp., complemented 
dye removal (62.2%), COD (48.3%), TOC (34%), nitrates 
(32%) and orthophosphates (41.4%); becoming a valuable 
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option for CLWW tertiary treatment. Data presented demon-
strate a promissory alternative for coloured CLWW sequen-
tial treatment.
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