Skip to main content
. 2020 Apr 29;10:602. doi: 10.3389/fonc.2020.00602

Table 2.

Performance metrics of 6 classifiers on the train set and test set.

Performance Accuracy (%) lTPR mTNR Precision nAUC Kappa °MAE
gLR
   Train set 98.70 0.980 0.993 0.987 0.996 0.973 0.02
   Test set 98.72 0.987 1.000 0.988 1.000 0.974 0.01
hRC
   Train set 96.40 0.967 0.961 0.964 0.997 0.928 0.07
   Test set 98.72 0.974 1.000 0.988 1.000 1.000 0.05
iSMO
   Train set 97.72 0.961 0.993 0.978 0.977 0.954 0.02
   Test set 97.44 0.974 0.974 0.974 0.974 0.949 0.03
jRF
   Train set 97.72 0.974 0.980 0.977 0.997 0.954 0.10
   Test set 97.44 0.974 0.974 0.974 0.999 0.949 0.08
kNB
   Train set 97.01 0.948 0.993 0.972 0.994 0.942 0.06
   Test set 98.72 0.974 1.000 0.988 1.000 0.974 0.05
Kstar
   Train set 96.08 0.922 1.000 0.964 0.997 0.921 0.10
   Test set 96.15 0.949 0.949 0.974 0.997 0.923 0.10
g

logistic regression.

h

Random Committee.

i

Sequential minimal optimization.

j

Random Forest.

k

Naive Bayes.

l

True Positive Rate.

m

True Negative Rate.

n

Area under curve.

°

Mean absolute error.

The best performance metrics for each set are highlighted in bold.