Table 2.
Performance metrics of 6 classifiers on the train set and test set.
| Performance | Accuracy (%) | lTPR | mTNR | Precision | nAUC | Kappa | °MAE |
|---|---|---|---|---|---|---|---|
| gLR | |||||||
| Train set | 98.70 | 0.980 | 0.993 | 0.987 | 0.996 | 0.973 | 0.02 |
| Test set | 98.72 | 0.987 | 1.000 | 0.988 | 1.000 | 0.974 | 0.01 |
| hRC | |||||||
| Train set | 96.40 | 0.967 | 0.961 | 0.964 | 0.997 | 0.928 | 0.07 |
| Test set | 98.72 | 0.974 | 1.000 | 0.988 | 1.000 | 1.000 | 0.05 |
| iSMO | |||||||
| Train set | 97.72 | 0.961 | 0.993 | 0.978 | 0.977 | 0.954 | 0.02 |
| Test set | 97.44 | 0.974 | 0.974 | 0.974 | 0.974 | 0.949 | 0.03 |
| jRF | |||||||
| Train set | 97.72 | 0.974 | 0.980 | 0.977 | 0.997 | 0.954 | 0.10 |
| Test set | 97.44 | 0.974 | 0.974 | 0.974 | 0.999 | 0.949 | 0.08 |
| kNB | |||||||
| Train set | 97.01 | 0.948 | 0.993 | 0.972 | 0.994 | 0.942 | 0.06 |
| Test set | 98.72 | 0.974 | 1.000 | 0.988 | 1.000 | 0.974 | 0.05 |
| Kstar | |||||||
| Train set | 96.08 | 0.922 | 1.000 | 0.964 | 0.997 | 0.921 | 0.10 |
| Test set | 96.15 | 0.949 | 0.949 | 0.974 | 0.997 | 0.923 | 0.10 |
logistic regression.
Random Committee.
Sequential minimal optimization.
Random Forest.
Naive Bayes.
True Positive Rate.
True Negative Rate.
Area under curve.
Mean absolute error.
The best performance metrics for each set are highlighted in bold.