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Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named non-alcoholic
fatty liver disease is the most common liver disorder in many countries. The
inflammatory subtype termed steatohepatitis is a driver of disease progression to
cirrhosis, hepatocellular carcinoma, liver transplantation, and death, but also to
extrahepatic complications including cardiovascular disease, diabetes and
chronic kidney disease. The plasticity of macrophages in response to various
environmental cues and the fact that they can orchestrate cross talk between
different cellular players during disease development and progression render
them an ideal target for drug development. This report reviews recent advances
in our understanding of macrophage biology during the entire spectrum of
MAFLD including steatosis, inflammation, fibrosis, and hepatocellular
carcinoma, as well as for the extra-hepatic manifestations of MAFLD. We discuss
the underlying molecular mechanisms of macrophage activation and polarization
as well as cross talk with other cell types such as hepatocytes, hepatic stellate
cells, and adipose tissue. We conclude with a discussion on the potential
translational implications and challenges for macrophage based therapeutics for
MAFLD.
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Core tip: In this work, we review the recent advances in our understanding of
macrophage biology during the entire spectrum of metabolic associated fatty liver
disease (MAFLD) including steatosis, inflammation, fibrosis, and hepatocellular
carcinoma, as well as for the extra-hepatic manifestations of MAFLD. We discuss the
underlying molecular mechanisms of macrophage activation and polarization as well as
cross talk with other cell types such as hepatocytes, hepatic stellate cells and adipose
tissue. We conclude with a discussion on the potential translational implications and
challenges for macrophage based therapeutics for MAFLD.
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INTRODUCTION
Metabolic associated fatty liver disease (MAFLD), formerly named non-alcoholic fatty
liver disease has now reached an “alert” level, an outcome of its high prevalence and
its  clinical  and economic burden.  It  is  estimated that  nearly 1  billion people  are
afflicted globally[1-3],  while projections suggest that the incidence of MAFLD and
MAFLD-related complications will continue to burgeon over the next few decades[4].
By current  indications,  MAFLD is  on trajectory to  become the  primary cause  of
hepatocellular  carcinoma  (HCC)  and  the  primary  indication  for  l iver
transplantation[5,6]. Of most concern, around 20 million people who have MAFLD are
expected to die of their liver disease. MAFLD not only increases the risk of liver
failure and HCC, but also increase the risk for extra-hepatic complications such as
type 2 diabetes, cardiovascular disease, chronic kidney disease, osteoporosis, and
some type of cancers. The estimated annual medical costs directly attributable to
MAFLD  is  about  $100  billion  in  the  United  States  and  €35  billion  in  four  large
European countries (Italy, France, Germany and The United Kingdom)[7].

The pathogenesis of MAFLD suggests that it is a heterogeneous disease with a
variable clinical presentation shaped by interactions between gene and environmental
cues[8,9]. In turn, the clinical presentation is affected by biological and chronological
age[10].  Though MAFLD is  classically  linked to  other  metabolic  dysfunction  and
disease  such  as  diabetes  and  obesity  with  a  shared  genetic  basis  between  the
conditions[11], it is now recognised that a significant proportion of patients are non-
obese[1]. The spectrum of disease varies widely ranging from simple steatosis to the
presence of inflammation, through to fibrosis, cirrhosis and HCC. Only a proportion
(5%-10%)  of  patients  with  MAFLD  will  develop  the  more  severe  subtype  of
steatohepatitis, and some of these will progress to advanced liver fibrosis or cirrhosis,
the leading cause of liver related morbidity, and mortality[12]. While HCC typically
develops in the context of cirrhosis, it is increasingly described in patients even in its
absence. Hence, the transition from steatosis to steatohepatitis represents a pivotal
checkpoint in the natural history of patients with the disease. The current view is that
innate immune mechanisms are central to the transition to hepatic inflammation[13]

with  macrophages  playing  a  critical  role.  In  this  review,  we  provide  a  detailed
overview  on  current  knowledge  on  the  role  of  macrophages  for  liver  immune
homeostasis and steatohepatitis development and the translational implications and
challenges arising from this knowledge.

HEPATIC MACROPHAGES
Hepatic  macrophages  consist  of  different  cell  populations  including  resident
macrophages (aka Kupffer cells) which originate from the yolk sac and function as the
dominant  liver  phagocyte.  In  addition,  bone  marrow derived  monocytes  in  the
circulation can infiltrate the liver[14].

The liver has the largest proportion of tissue macrophages among solid organs and
it is estimated that for every 100 hepatocytes in a healthy rodent, there are between
20-40  macrophages[15].  This  emphasizes  the  critical  role  of  liver  macrophages  in
maintaining liver homeostasis[16], but also indicates the high levels of heterogeneity of
this cell population that must exist to enable homeostasis maintenance. Two recent
studies employed single cell RNA sequencing to de-convolute hepatic macrophage
heterogeneity.  In  these  studies,  distinct  hepatic  macrophage  populations  with
inflammatory  and  non-inflammatory/immunoregulatory  functions  were
demonstrated[17]. The second study demonstrated that myeloid cells in liver and bone
marrow acquire a  functionally distinct  inflammatory phenotype in diet  induced
mouse models of steatohepatitis[18].

Physiologically,  hepatic  immune  homeostasis  is  controlled  by  sinusoidal
endothelial  cells  with  liver  macrophages  part  of  the  liver  reticulo-endothelial
system[19]. A recent report suggests that liver macrophages compromise two separate
and non-overlapping niches mediating immunosurveillance and that the hepatic
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capsule has a cellular network of resident macrophages phenotypically distinct from
KCs. These cells sense peritoneal bacteria and restricts hepatic dissemination of these
bacteria by promoting neutrophil recruitment to the capsule[20]. This system creates a
dynamic and complex network which therefore constitutes the first line of defence
against  invading  pathogens  with  contribution  of  other  immune  cells  such  as
neutrophils[16]. At the same time, the upkeep of tissue homeostasis is monitored by the
reticuloendothelial system through the production of immunoregulatory cytokines
such  as  interleukin-10  and programmed cell  death  1  ligand 1[21].  Their  function
includes scavenging bacteria and bacteria-associated products which end up in the
liver from the intestine through the portal vein[22]. However, alterations in this fine-
tuned system can lead to different pathological disorders and is strongly implicated in
MAFLD development.

MACROPHAGE POLARIZATION
Macrophages polarization is the process whereby macrophages differentiate into sub-
phenotypes  with  specific  biological  functions  in  response  to  signals  from  their
microenvironment including cytokines, growth factors, fatty acids, prostaglandins
and pathogen-derived molecules. A simplified classification is the M1 and M2 based
activation state[23,24]. M1 macrophages are pro-inflammatory and antimicrobial and
initiate  inflammatory  processes  by  expressing  high  levels  of  proinflammatory
cytokines and producing high amounts of reactive oxygen and nitrogen species[25]. In
contrast, M2 macrophages have anti-inflammatory and reparative functions with high
expression of different chemokines compared with M1 macrophages[24,25]. However,
the true complexity of macrophage phenotypes and their regulation is greater than
described above and is context dependent and dynamic[26]. Difficulties in interpreting
many published reports results from insufficient characterization of macrophage
polarization and function[14].

MACROPHAGES AND THEIR ROLES IN MAFLD

Macrophages, steatosis development, and the transition to steatohepatitis
Macrophages are highly versatile,  while extensive experimental and clinical data
indicates that they play a central role in MAFLD development with pro-inflammatory
macrophages determining disease severity[14]. In human MAFLD, portal macrophage
infiltration  is  observed  at  an  early  stage  before  inflammation  is  evident  and  is
associated with progressive disease[27]. Another study of young adult Koreans showed
an increase in the numbers of CD68+ Kupffer cells in biopsy samples from patients
with steatohepatitis compared to those with steatosis[28].  Similarly, an increase of
activated macrophages was found in children with MAFLD and these were located in
the vicinity of damaged hepatocytes[29].

Additional evidence for a central role for macrophages in steatohepatitis comes
from  experimental  models.  In  dietary  mouse  models,  an  increase  in  hepatic
macrophages that produce pro-inflammatory cytokines was observed in high-fat diet
(HFD) and methionine-choline-deficient (MCD) diet  fed mice[30,31].  Moreover,  the
production of these inflammatory mediators was increased after 4 wk in mice fed a
MCD diet and decreased subsequently, suggesting a determinant role in the transition
to steatohepatitis[32]. In addition, immune responses are innately different between
mouse strains;  T  helper  1  cell  and M1 responses  are  observed in  C57BL/6 mice
whereas T helper 2 cell and M2 response are observed in BALB/c mice[33]. Feeding
these two strains an MCD diet showed that steatosis and hepatic inflammation was
more induced in M1-prone C57BL/6 mice compared with the M2 prone BALB/c
strain[34].  Furthermore, the use of clodronate liposomes or gadolinium chloride to
deplete macrophages protected mice from steatosis development[35].

Pro-inflammatory macrophages have also been found to induce hepatic insulin
resistance  and  decrease  hepatocyte  responsiveness  to  insulin  by  attenuating
phosphorylation of the insulin receptor substrate 1 in hepatocytes[36]. Thus, silencing
of  NF-κB  specifically in Kupffer  cells  improves insulin sensitivity and decreases
cytokine secretion in a HFD-fed model further suggesting a crucial role for them in
hepatic insulin resistance[37]. Another report found that HFD-fed mice injected with
clodronate to deplete Kupffer cells had decreased steatosis and steatohepatitis via
reducing interleukin-1β-dependent suppression of peroxisome proliferator-activated
receptor-α (PPARα)[38]. The latter is suggested to have an anti-inflammatory role in
liver and adipose tissue[39]. Along the same line, depletion of Kupffer cells leads to
reduction of inflammatory cytokine expression and decreases inflammation and liver
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cell  death[40].  Another  suggested mechanism is  of  p38 mitogen-activated protein
kinases  being upregulated in  the liver  of  patients  with MAFLD in multiple  diet
induced steatohepatitis mouse models. Macrophage p38 induces M1 polarization and
pro-inflammatory cytokine secretion promoting the progression to steatohepatitis[41].

Macrophages and liver fibrosis
In  virtually  all  chronic  liver  diseases,  there  is  no  fibrosis  without  preceding  or
concomitant  inflammation.  Liver  macrophages  play  a  pivotal  role  in  fibrosis
progression with these cells and hepatic stellate cells (HSCs, the major producer of
extracellular  matrix)  exhibiting  bidirectional  signalling [ 4 2 ].  Thus,  chemo-
kines/cytokines from HSCs augment macrophage infiltration, while macrophages
amplify inflammation, contribute to maintain the fibrogenic phenotype and promotes
HSC  survival.  Macrophages  also  play  a  dominant  role  in  fibrosis  resolution.
Alternatively activated M2 macrophages correlate with hepatic injury in MAFLD[31]

orchestrating a fibrosis response favouring liver remodelling and tissue repair by
producing transforming growth factor-β and platelet-derived growth factor among
other proteins[43].

Distinct monocytes/macrophage populations can be found in human and mouse
liver  based  on  levels  of  Ly-6C  (Gr1)  or  CD14/CD16  expression,  in  murine  and
humans respectively.  In  humans it  includes  “classical”  CD14++CD16−  and “non-
classical” CD14+CD16+  monocytes/macrophages as well as CD16++  cells.  Notably,
fibrosis  is  associated  with  preferential  enrichment  of  CD14+CD16+  cells  or  its
functional  counterpart  Ly-6Chi  in  mouse[44,45].These  cells  activate  HSCs  in  vitro,
partially dependent on transforming growth factor (TGF) -β release[44,45]. Conversely,
the production of soluble mediators such as CC-chemokine ligand 2 (also known as
MCP1)  and macrophage  colony-stimulating  factor  by  activated HSCs augments
inflammatory cell infiltration to initiate and maintain myofibroblast activation[46]. Ly-
6Clo cells have been identified as a feature of “restorative” hepatic macrophages in
mice[47] but the exact counterpart of these in humans remains to be clarified. In mouse
models, autophagy gene Atg5 in the myeloid lineage Atg5(fl/fl) LysM-Cre knockout
mice have demonstrated that  macrophage autophagy attenuates  liver  fibrosis[48].
Additionally, immune cell subset differentiation can perpetuate or restrict hepatic
injury[19].

In sum, at different stages of hepatic injury, both resident Kupffer cells and freshly
recruited monocyte-derived macrophages  play critical  roles  in  the  regulation of
inflammation, fibrosis and fibrolysis[49].

Macrophages and HCC
MAFLD can increase the risk of  HCC even in the absence of  cirrhosis[50].  Tumor
associated macrophages secrete inflammatory cytokines such as tumour necrosis
factor-α and growth factors such as vascular endothelial growth factor and TGF-β that
are involved in angiogenesis and contribute to tumor development, progression, and
metastasis[51]. Toll like receptor (TLR) 4 but not TLR2 on macrophages has also been
demonstrated  to  contribute  to  steatohepatitis-related  HCC in  mice  by  inducing
proinflammatory cytokines  and the  proliferation of  HCC and cancer  progenitor
cells[52]. Another mechanistic study suggests that obesity-associated oxidative stress
increases STAT-1 and STAT-3 signaling which can independently contribute to the
pathogenesis of steatohepatitis, fibrosis, and HCC in mouse models[53].

MACROPHAGES AND MAFLD EXTRA-HEPATIC
MANIFESTATIONS
The consequences and complications of MAFLD are not limited to liver, but also
extend to include various extra-hepatic organ involvement including type 2 diabetes
mellitus, chronic kidney disease, osteoporosis, hypothyroidism, some type of cancers,
and cardiovascular disease[54]. The mechanisms that contribute to this heightened risk
for cardiovascular disease and type 2 diabetes mellitus risk are poorly understood.

Disordered myelopoiesis and macrophage-mediated inflammation was recently
suggested as a plausible overarching mechanism linking MAFLD to cardiovascular
diseases[55].  Soluble CD163, a macrophage activation marker correlates with liver
injury[56] with similar finding reported for CVD risk[57]. As discussed above, apart from
their  central  role in progression to steatohepatitis  and fibrosis,  macrophages are
known to enter to plaques and promote lesion progression, instability and rupture[58].
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FACTORS REGULATING MACROPHAGE PHENOTYPE AND
PLORAIZATION IN MAFLD

Dietary factors
Nutrition and the intracellular metabolism of macrophages are a key regulator of their
function  and  can  determine  the  skew  of  macrophages  towards  a  pro  or  anti-
inflammatory phenotype[59]. For example, dietary cholestrol differentially shapes the
transcriptome of Kupffer cells and infiltrating macrophages during steatohepatitis
progression tworads a pro-inflammatotry phenotype[60].  Similarly, a HFD induces
macrophage polarization and aggravates the liver inflammatory microenvironment
and cancer progression in a zebrafish model of MAFLD-associated HCC; this effect
was reversed by metformin[61]. Conversely, exercise training and weight loss suppress
macrophage  activation  as  assessed by  soluble  CD163  (sCD163)[62,63].  Similarly,  a
reduction in sCD163 was noticed following bariatric surgery which was accompanied
by  improvements  in  insulin  sensitivity  and  liver  enzymes [64].  Functionally,
endolysosomal lipid trapping and accumulation in Kupffer cells in response to high
fat diet feeding upregulates hepatic inflammatory gene expression[65,66] while fatty
acids  can  incresae  mitochondrial  DNA  release  causing  activation  of  NOD-like
receptor  family  pyrin  domain  containing 3  (NLRP3)  inflammasomes  in  Kupffer
cells[67]. In contrast, vitamin D receptor activation in hepatic macrophages improves
insulin resistance, steatosis and hepatic inflammation through the induction of an
anti-inflammatory phenotype[68].

Hematopoiesis in bone marrow is influenced by environmental cues including diet.
Myelopoiesis is tightly regulated in bone marrow[69],  governing the generation of
mature cells via sequential progression from HSCs to differentiated cells including
monocytes  and  macrophages  that  share  a  distinct  committed  progenitor[70,71].
Dysregulation of hematopoiesis switches the protective response to pro-inflammatory
myelopoiesis  in  the  marrow  and  governs  ongoing  and  future  inflammatory
responses[72-74]. A recent study showed that bone marrow derived macropahges from
western diet fed mice have an inflammatory activation profile compared to those
from normal chow fed mice[18].

Thus,  dietary factors  play a  role  in  determining macrophage polarisation and
activation as well as in shaping myelopiesis. Macrophage polarisation and activation
is shown in Figure 1.

The Gut–liver axis
Dysbiosis  of  the  gut  microbiota  is  a  factor  contributing to  the  development  and
progression of fatty liver disease[75]. Dysbiosis affects hepatic macrophage activation
and  polarization  through  multiple  potential  mechanisms.  For  example,  the  gut
microbiome plays a central regulatory role in host metabolism whereby alterations in
the metabolic outputs of intestinal microbiota affect macrophage polarization[75]. A
recent study using metabolomics analysis of cecal and fecal material from germ-free
and  conventionally  raised  HFD  fed  mice  identified  a  gut  microbiota-derived
metabolite  indole-3-acetate  that  directly  modulates  inflammatory  responses  in
macrophages  and  dampens  the  release  of  pro-inflammatory  cytokines [ 7 6 ].
Mechanistically, these effects were mediated through the aryl-hydrocarbon receptor, a
transcription  factor  that  regulates  responses  to  multiple  environmental  signals
including  dietary  factors [76].  In  the  same  vein,  ARNT  mRNA  expression  is
downregulated in liver tissues from MAFLD patients, while deletion of ARNT in
mouse myeloid cells leads to steatohepatitis[77]. Similarly, the dysregulation of gut
microbiota  of  infants  of  obese  mothers  leads  to  impaired  macrophage  function
including cytokine production, phagocytosis and adaptation to various stimuli that
ultimately increases susceptibility to MAFLD[78,79].

Another mechanism exists whereby alterations in the intestinal permeability in
patients and murine models of MAFLD that is mediated by a western diet, leads to
increases in the circulating levels of bacterial products including lipopolysaccharide
(LPS). This leads to activation of TLRs, a sensor for these products[80] and results in
macrophage activation and the initiation of injury[81-85]. Serum LPS and hepatic TLR4+

macrophages are higher in steatohepatitis patients compared to those with MAFLD or
control  subjects[86].  Similarly  hepatic  TLR  2,  TLR4  and  TLR9  expression  was
upregulated  in  human  and  murine  steatohepatitis  but  not  in  simple  steatosis;
expression was localized to inflammatory cells, particularly macrophages[87]. Finally,
Tlr4 and Tlr9 KO mice are protected from steatohepatitis induced by different diet
models of MAFLD such as MCD feeding or a cholesterol rich diet[88,89]. Notably, the
TLR effects also involves interaction and activation with other intersecting pathways
with  a  role  in  inflammation.  In  a  recent  study,  LPS  treatment  induced  the
accumulation  of  yes-associated  protein  (YAP)  in  Kupffer  cells,  a  transcription
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Figure 1

Figure 1  Macrophage polarisation and activation. Macrophages polarize to sub-phenotypes with specific biological functions in response to signals from their
microenvironment. These include signals from adipocytokines and myokines, the gut liver axis and toll-like receptor activation, damaged hepatocytes, reactive oxygen
species, genetic and epigenetic factors. The process of macrophage activation is a critical determinant of disease progression and is a target for potential treatment.
ROS: Reactive oxygen species; TLR: Toll-like receptor.

coactivator that plays a role in the Hippo-YAP pathway and is implicated in the
immune response[90]. YAP accumulation in Kupffer cells in steatohepatitis enhances
the production of pro-inflammatory cytokines[90]. Furthermore, the elevated LPS in
MAFLD[84,85]  provides  a  critical  hit  for  sustained  inflammasome  activation  in
macrophages[91].

TLR4 stimulation also induces alterations in lipid homeostasis[92] and macrophage
activation as assessed by sCD163 as was found in a small trial that included 8 healthy
male subjects[93]. In that study, sCD163 correlated with accelerated lipolysis following
LPS exposure and enhanced mitochondrial reactive oxygen species (ROS) generation,
a trigger for inflammasome activation[94].

Collectively,  gut dysbiosis is  implicated in macrophage activation and hepatic
inflammation through multiple mechanisms including by alterations in the metabolic
outputs of microbiota, increased bacterial products generation and the activation of
TLRs and inflammasomes. The gut liver axis in metabolic associated fatty liver disease
is shown in Figure 2.

Adipocytokines and myokines
Both adipocytokines and myokines play an important regulatory role in macrophage
activation  and polarisation.  The  anti-inflammatory  effects  of  adipocyte-derived
adiponectin can partially be attributed to promoting the polarization of macrophages
toward  an  anti-inflammatory  phenotype[95]  as  well  as  promoting  macrophage
tolerance to pro-inflammatory stimuli[96].  Adiponectin KO mice are more prone to
steatohepatitis,  while  adiponectin  administration  attenuates  steatohepatitis
progression by reducing macrophage infiltration and skewing polarization towards
an anti-inflammatory phenotype[97]. Levels of leptin are increased in MAFLD and this
regulates macrophage phenotype including Kupffer cell activation, inflammatory
phenotype and sensitivity to LPS-induced induced inflammatory cytokine secretion
and acquisition of a fibrogenic phenotype[98-100]. A previous study showed that Kupffer
cells likely mediate leptin-induced liver fibrosis effects by inducing the upregulation
of fibrogenic gene expression such as that of TGFβ1 and connective tissue growth
factor[100]

Levels  of  fibronectin  type  III  domain-containing  5  (FNDC5)  a  myokine  with
favourable metabolic effects is decreased in MAFLD and correlates with the severity
of  hepatic  steatosis[101].  FNDC5 attenuates  adipose  tissue  insulin  resistance  and
inflammation via AMP-activated protein kinase-induced macrophage polarization in a
high fat diet mice model[102]. Another member of the fibronectin type III domain family
of proteins is FNDC4 a secreted factor with a high homology to FNDC5. This was
demonstrated  to  have  anti-inflammatory  effects  on  macrophages  by  reducing
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Figure 2

Figure 2  The gut liver axis in metabolic associated fatty liver disease and the central role of macrophages. A western diet  alters gut permeability and causes
dysbioisis. This increases hepatic exposure to lipopolysaccharide and bacterial products and leads to toll-like receptor activation in hepatocytes, hepatic stellate cells
and macrophages; the latter are the main responsive cells. Hepatocyte injury leads to the generation of apoptotic bodies, reactive oxygen species and cytokines.
Engulfment of apoptotic bodies by macrophages increases expression of death ligands such as tumor-necrosis-factor-related apoptosis-inducing ligand, Fas, and
tumour necrosis factor-α leading to a feed-forward loop that promotes further hepatocyte apoptosis. Engulfment of apoptotic bodies by hepatic stellate cells promotes
their activation and the secretion of transforming growth factor β1 and extracellular matrix, promoting fibrosis and subsequently cirrhosis. Activated macrophages also
lead to increased activation of stellate cells. Cholesterol, bacterial products and cytokines can stimulate myelopoiesis in bone marrow. Infiltrating monocytes lead to
amplification of the inflammatory response. Increased bile acid and reactive oxygen species production by the injured liver also contributes to damage to gut epithelial
cells and to detrimental alterations in microbiota setting up a vicious cycle of injury. LPS: Lipopolysaccharide; TLR: Toll-like receptor; TGF-β: Transforming growth
factor β; HCC: Hepatocellular carcinoma.

proinflammatory chemokine expression and dampening macrophage activity[103]. The
role  of  FNDC4  in  MAFLD  is  unknown.  In  sum,  adipocytokines  and  myokines
represent another crucial regulator of macrophage biology in the context of metabolic
disorders.

Damaged hepatocytes and ROS and macrophage activation
Damaged hepatocytes are a trigger for macrophage activation. Data from mice fed a
HFD suggest that steatotic hepatocytes promote the release of pro-inflammatory
cytokines by macrophages, indicating that hepatocyte damage elicits macrophage
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activation[104]. In turn, apoptotic body engulfment by Kupffer cells is a potent trigger
for  inflammation  and  fibrosis  and  for  activation  of  macrophages  via  pattern
recognition receptors such as TLRs[105]. Trying to elucidate the link between damaged
hepatocytes  and  macrophage  activation  and  inflammation,  a  recent  study  has
suggested that proapoptotic lipotoxic signaling by death receptor 5 (also known as
tumor  necrosis  factor  receptor  superfamily  member  10b)  induces  the  release  of
extracellular  vesicles  from hepatocytes.  These in turn activate macrophages and
promotes  an  inflammatory  phenotype[106].  Similarly,  another  study showed that
hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles under
lipotoxic conditions that promote macrophage recruitment to the liver[107].  Recent
reports  have  also  demonstrated  increased  expression  of  the  G  proteincoupled
transmembrane  receptor  Smoothened  and  gliomaassociated  oncogene  (Gli)
transcription factors (components of the hedgehog signaling pathway) in primary
hepatocytes  from damaged livers[108].  Pharmacological  and genetic  liver  specific
inhibition of Smoothened prevented hepatic inflammation in MAFLD models through
decreased macrophage recruitment and activation[109].

ROS are another potential mechanism for macrophage activation. ROS impacts
Kupffer cells both directly and indirectly. ROS prompts tumour necrosis factor-α
generation in Kupffer cells and they can increase the susceptibility of these cells to
endotoxin[110,111].

Genetic variants that influence macrophage function and thereby liver inflammation
There is strong evidence that MAFLD has high heritability with a shared genetic basis
between MAFLD and other liver diseases as well as with other metabolic disorders[11].
The genetic basis of macrophage activation is still not known, however several genetic
variants implicated in MAFLD have been demonstrated to regulate macrophage
phenotype.  For  example,  the  interferon  lambda  3/4  (IFNL3/IFNL4)  genotype  is
strongly associated with hepatic inflammation and fibrosis in MAFLD as well  as
hepatitis C and B[112,113]  and scores incorporating these variants with other clinical
variables can predict liver fibrosis in patients[114]. A correlation between IFNL3/IFNL4
genotype and hepatic macrophage infiltration as well as macrophage activation as
assessed by the activation marker sCD163 has been reported[115-119]. Recently, increases
in hepatic IFNL3 expression in liver tissues from patients with MAFLD compared to
controls was also reported[120]. IFNL3 skews macrophages toward a proinflammatory
phenotype orchestrating their interaction with other immune cells including T-cells to
mediate hepatic inflammation[120].

Another example is of variants in the Membrane Bound O-Acyltransferase Domain
Containing 7 (MBOAT7) gene that encodes an acyltransferase enzyme and catalyses
the transfer of an acyl-CoA to lysophosphatidylinositol. This regulates the availability
of arachidonic acid for pro-inflammatory eicosanoids production[121-124].  A variant
(rs641738) in the MBOAT7 gene is associated with liver injury in MAFLD as well as in
viral hepatitis[121-124]. MBOAT7 is robustly expressed by inflammatory cells including
macrophages and this variant associates with macrophage activation as assessed by
sCD163; the detailed mechanisms for this association are unknown[121-124]. A recent
study showed that Mboat7 loss of function promotes the progression of MAFLD and
hepatic inflammatory and fibrotic phenotypes in response to a high fat diet[125].

Another example is a variant (rs4374383) in the MER Proto-Oncogene, Tyrosine
Kinase (MERTK) gene, a member of the Tyro-Axl-MerTK family of receptor tyrosine
kinases. By a genome-wide association study this polymorphism has been associated
with fibrosis in patients with hepatitis C[126]. Similar findings were later observed in
patients  with  MAFLD[127].  A  recent  study  has  shown that  this  variant  regulates
MERTK  expression  in  circulating  and  hepatic  macrophages  and  that  total  and
myeloid specific MERTK deficiency decreased liver fibrosis in mice[128].

Epigenetic regulation
Epigenetic modifications include DNA methylation, histone modification and non-
coding  RNA[8].  Growing  evidence  suggests  an  important  role  for  epigenetic
mechanisms in the regulation of macrophage phenotype, polarization, inflammatory
and profibrotic gene production. A recent work used reduced representation bisulfite
sequencing in a mouse carbon tetrachloride (CCL4) fibrosis model and identified that
hypermethylation of proline–serine–threonine–phosphatase-interacting protein2 links
it to hepatic fibrosis[129]. In another study, the histone methyltransferase Suv39h2 was
found to  contribute  to  steatohepatitis  in  mouse  models  through suppression  of
PPARγ. This leads to macrophage polarisation towards a proinflammatory M1 over
an anti-inflammatory M2 phenotype[130]. miRNAs are also implicated in macrophage
activation and polarisation. For example, lipotoxic hepatocyte-derived exosomal miR-
192-5p plays a pivotal role in the activation of proinflammatory macrophages and in
disease progression of MAFLD via Rictor/Akt/FoxO1 signaling[131].
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ADIPOSE TISSUE AND FATTY LIVER CROSS TALK: ROLE
OF MACROPHAGES
A pivotal role for macrophages in the crosstalk between adipose tissue and liver in
fatty liver disease has been suggested. Thus, adipose tissue insulin resistance and free
fatty acid flux to liver activates hepatic macrophages in MAFLD independent of
obesity and diabetes[132]. It has also been suggested that adipose tissue inflammation
might precede hepatic inflammation since in high fat and cholesterol diet fed mice,
the upregulation of genes associated with macrophage recruitment and inflammation
occurred earlier in adipose tissue compared to the liver[133].  During obesity,  both
adipose  tissue  macrophage  (ATM)  numbers  and  activation  are  enhanced[134].  In
humans,  in a  cohort  of  obese patients  undergoing bariatric  surgery,  ATMs from
patients with MAFLD and steatohepatitis produced higher levels of inflammatory
cytokines compared to controls[135]. In animal models, ablation of these ATMs led to
normalization of whole-body insulin sensitivity[136] while ATMs from obese visceral
adipose tissue amplified hepatic  inflammation through augmentation of  hepatic
macrophage infiltration[137].

TRANSLATIONAL IMPLICATIONS
Although  MAFLD  is  a  major  clinical  problem,  to  date  there  are  no  approved
treatments.  Recently,  obeticholic  acid  was  reported  to  improve  MAFLD related
fibrosis and will likely be the first drug to be approved for its treatment[138,139]. With
multiple other investigational drugs in Phase 3 clinical trials, it can be expected that
other  drugs  will  follow and be  approved.  However,  the  efficacy  of  these  drugs
appears modest suggesting that more novel approaches to drug development are
required[140]. Given the central role of macrophages in the transition to steatohepatitis
and to fibrosis, macrophages might be a suitable target for therapy and as a biomarker
of disease severity, as discussed below. The central role of macrophages is shown in
Figure 2.

Macrophage based diagnostic biomarkers
Soluble CD163, a macrophage activation marker was reported to correlate with liver
injury and demonstrated good predictive ability for advanced fibrosis (≥ F3) with an
area under the receiver operating curve (AUROC) of 0.77 and 0.80 in two independent
cohorts. This was further increased in combination with the MAFLD fibrosis score
(AUROC of 0.83 for both cohorts)[56]. However, macrophage activation markers such
as sCD163 and soluble mannose receptor demonstrated poor associations with liver
histology in two cross-sectional paediatric MAFLD cohorts (n= 155 and 36) suggesting
a  differential  role  for  macrophage  activation  in  adult  and  paediatric  disease  or
perhaps indicates that  disease severity is  different between adult  and paediatric
patients at least in the cohorts examined[141].

A recent study also suggested that the circulating activity of adenosine deaminase
(a macrophage-derived deaminase that converts adenosine or deoxyadenosine to
inosine and derivatives) can predict MAFLD cirrhosis, advanced fibrosis (≥ F3), and
significant  fibrosis  (≥  F2)  with  AUROCs  of  0.94,  0.82,  and  0.84,  respectively[142].
However, the molecular mechanisms for this association are yet to be determined.

Macrophage based therapeutic targets
Some macrophage-targeted therapies for liver diseases have been investigated in the
clinic[143]. One of these is limiting monocyte and macrophage recruitment. Many of the
pathways characterized in mice for monocyte recruitment are also strongly regulated
in patients with liver diseases suggesting well conserved mechanisms across species.
For  instance,  cenicriviroc,  an  oral  dual  inhibitor  of  the  chemokine  receptor  C-C
ligand/ receptor 2 and 5 pathway (inhibits hepatic monocyte infiltration)[144]  was
evaluated in a phase 2b clinical trial  in patients with MAFLD and fibrosis.  Early
results suggest that patients receiving cenicriviroc oral therapy were twice as likely to
have improvement of fibrosis (without worsening of steatohepatitis) after 1 year of
follow up[141]. However, the differences did not appear to be significant by the second
year of follow up.

Another approach for  treatment is  to promote anti-inflammatory macrophage
polarization. The PPAR family that includes α, β/δ, and γ is a member of the nuclear
receptor superfamily and polarizes macrophages towards an anti-inflammatory state.
This can explain at least partially their role in MAFLD[145,146].  For example, among
modulators  of  the  PPARs,  PPARγ  agonists  such  as  pioglitazone  have  insulin
sensitizing effects but also induces polarization of macrophages towards an anti-
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inflammatory phenotype thereby improving hepatic steatosis[145,146].  Similarly, the
PPARα/PPARγ agonist saroglitazar reverses fibrosis in MAFLD[147] and elafibranor,
an agonist  of  PPARα and δ attenuates  hepatic  inflammation without  worsening
fibrosis [148].  PPARδ  induces  polarization  of  macrophages  towards  an  anti-
inflammatory M2 phenotype[145]  while elafibranor decreases hepatic  macrophage
infiltration in animal models of MAFLD[149].

An  alternative  approach  is  targeting  activating  signals  for  macrophages.  For
example, NLRP3 inflammasome pharmacological blockade using MCC950 attenuates
hepatic  inflammation and fibrosis  in mouse models and reduces the numbers of
macrophages  in  liver[150].  Currently,  a  clinical  trial  (NCT03676231)  using  an
inflammasome inhibitor SGM-1019 is recruiting. TLR4 is a key regulator of MAFLD[151]

however the results of a phase-2 study failed to discern a beneficial effect of JKB-121, a
small molecule TLR-4 receptor antagonist in human MAFLD[152].

The growing body of knowledge on immunometabolism and epigenetic regulation
indicates that metabolic reprogramming and epigenetic regulation may be a target for
regulating macrophage responses such as polarization and activation. Two recent
reports demonstrate that digoxin improves steatohepatitis in mice models through
regulation of the pyruvate kinase muscle isozyme M2-hypoxia-inducible factors axis
in hepatocytes and macrophages[153,154]. Pyruvate kinase muscle isozyme M2 is a rate
limiting glycolytic enzyme that catalyzes the final step in glycolysis[155] and promotes
NLRP3 and AIM2 inflammasome activation in macrophages[156].

In  a  recent  study  of  mice  fed  a  MCD  diet,  miR-141  and  miR-200c  deficiency
attenuated hepatic steatosis and inflammation via multiple mechanisms including
reprogramming of macrophages toward anti-inflammatory phenotype[157]. Although
several epigenetic drugs are currently approved for treating different type of cancers,
data  are  still  limited  on  effects  of  these  drugs  on  macrophage  activation  and
polarisation.  Histone deacetylase  inhibition was demonstrated to  improve post-
myocardial  infraction  healing  through modulating  macrophage  polarization[158].
Another study showed that targeting histone deacetylases in myeloid cells using
CHR-4487 (ESM-HDAC528) a small molecule that can inhibits their inflammatory
phenotype has a limited impact in atherosclerosis[159]; there is no data on MAFLD.

CHALLENGES AND OPEN QUESTIONS
Although targeting macrophages is attractive, a major obstacle for the development of
therapies is that of macrophage heterogeneity and differences between mice and
humans [143 ,160].  Macrophages  exhibit  remarkable  plasticity  and  phenotypic
heterogeneity and different subsets have distinct and sometimes opposite properties
(pro-  vs  anti-inflammatory,  pro-  vs  antifibrotic).  Further,  environmental  factors
including cytokines control the polarization of macrophages but are not well defined.
It is very likely that the functionality of hepatic macrophage subsets is also influenced
by the nature of the underlying liver disease and this will  hinder their use in an
etiology independent manner. Another challenge for translating findings from murine
models  to  humans  is  the  fact  that  murine  and  human  monocyte/macrophage
subpopulations  do  not  share  the  same  surface-marker  profiles.  However  new
technologies including single cell RNA-Seq can help to de-convolute macrophage
heterogeneity  and  may  enable  the  development  of  specific  therapies.  Further,
clarifying  the  basis  of  modulation  of  epigenetic  and  metabolic  programs  in
macrophages  can  guide  therapeutics.  Delivery  modalities  represents  another
challenge,  with  multiple  delivery  platforms  having  been  explored  including
nanoparticles, liposomes and oligopeptide complexes. These methods can be used to
target macrophages for delivery of agents such as gene-silencing siRNA and miRNA
inhibitors.  While  CRISPR-Cas9  technology  might  revolutionize  medicine,  their
application for modulating macrophage biology is not well explored.

CONCLUSION
Macrophages  play  a  central  role  at  all  stages  of  MAFLD and contributes  to  the
pathology in extrahepatic sites that are simultaneously affected. Thus, macrophage
directed therapeutics  have  unique  potential  in  MAFLD,  but  their  heterogeneity
represents  a  challenge.  Metabolic  and epigenetic  programming and gene-based
therapies are attractive approaches to manipulate macrophage function for clinical
benefit,  though the optimal delivery methods are still  not defined. In the future,
combined approaches consisting of multiple drugs that target different key pathways
are likely to provide a better strategy to treat MAFLD. It remains to be elucidated
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which combinations should to be used, but macrophage targeted therapies are one
viable option.
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