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SUMMARY

Head and neck squamous cell carcinoma (HNSCC) arises through exposure to environmental
carcinogens or malignant transformation by human papillomavirus (HPV). Here, we assessed the
transcriptional profiles of 131,224 single cells from peripheral and intra-tumoral immune
populations from patients with HPV~ and HPV* HNSCC and healthy donors. Immune cells within
tumors of HPV~ and HPV* HNSCC displayed a spectrum of transcriptional signatures, with
helper CD4* T cells and B cells being relatively divergent and CD8+ T cells and CD4+ regulatory
T cells being relatively similar. Transcriptional results were contextualized through multispectral
immunofluorescence analyses and evaluating putative cell-cell communication based on spatial
proximity. These analyses defined a gene expression signature associated with CD4* T follicular
helper cells that is associated with longer progression free survival in HNSCC patients. The
datasets and analytical approaches herein provide a resource for the further study of the impact of
immune cells on viral- and carcinogen-induced cancers.
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INTRODUCTION

HNSCC occurs with an annual incidence of nearly 600,000 cases globally (Ferlay et al.,
2015), and most patients present with locally advanced disease (Argiris et al., 2008; Seiwert
and Cohen, 2005). HNSCC arises through either genetic alterations driven by exposure to
carcinogens (i.e. alcohol and/or tobacco), or through malignant transformation following
high-risk HPV infection (Carvalho et al., 2005). While the majority of HNSCC is associated
with tobacco use, the incidence of HPV* HNSCC has risen substantially in the West (Brown
etal., 2011, 2012; Colevas, 2013; LeHew et al., 2017; Weatherspoon et al., 2015), and up to
half of HNSCC cases in the United States are now caused by infection with high-risk HPV
(mostly HPV-16, but also —18, —31, and —33) (Fakhry and D'Souza, 2013; Kreimer et al.,
2005).

Clinically, patients afflicted with HPV* HNSCC have better overall survival compared to
patients with HPV™ disease (Ang et al., 2010). Differences in the tumor infiltrating immune
populations have also been observed in HNSCC, with a higher frequency of intra-tumoral B
cells present in HPV* HNSCC (Russell et al., 2013; Wood et al., 2016), and a higher
frequency of dysfunctional CD8* T cells in HPVV~ HNSCC (Kansy et al., 2017). The duality
of carcinogen- versus virally-induced cancer is a unique aspect of HNSCC, and presents an
opportunity to assess differences in the immune landscape of two distinct cancer etiologies
that occur in a similar anatomical location.

Traditionally, both HPV~ and HPV* HNSCC have been treated with a combination of
surgery, chemotherapy, and radiation (Bourhis et al., 2006; Pignon et al., 2009). These
therapies have generally been associated with significant morbidity, and many patients
relapse within 3 to 5 years, leading to poor prognosis and a lack of additional treatment
options (Jayaram et al., 2016; Vermorken et al., 2008). Immunotherapy has created a new
paradigm for the treatment of cancer, and recent clinical trials have demonstrated the
efficacy of targeting immune checkpoints (Brahmer et al., 2012; Topalian et al., 2012).
Immunotherapy for the treatment of HNSCC has similarly led to survival benefits in
patients, demonstrating that the immune system can be targeted to achieve clinical benefits
in HNSCC (Burtness et al., 2019; Ferris et al., 2016). Despite this clinical success, only
approximately 20-30% of HNSCC patients achieve a survival benefit following programmed
death 1 (PD-1) or programmed death ligand 1 (PD-L1) blockade (Burtness et al., 2019;
Ferris et al., 2016), highlighting the need to better understand the complex biology
underlying the state of the immune system within tumor microenvironment of HNSCC.
Further insight into immune cell states will help identify features associated with
responsiveness (or conversely lack of responsiveness) to currently available
immunotherapies, and will inform the development of single- and multi-agent
immunotherapy regimens in the clinic. Comparing the immune profiles in HPV~ and HPV*
HNSCC is likewise a prerequisite for prioritizing which cell types and molecules to target
for the development of novel immunotherapies.

Here, we compared the immune landscape of mutation- versus virus-driven cancer in
treatment-naive HNSCC by scRNAseq analysis and multispectral immunofluorescence to
characterize spatial localization patterns and cell neighborhoods in the TME. Our analyses
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provide insight into the immune lineages in HPV* and HPV~ HNSCC, the transcriptional
states and differentiation trajectories of these cells, and cellular cross-talk with potential
relevance to tumor progression. Moreover, our analysis defines a gene set with prognostic
potential in the clinic. Altogether, these datasets and analytical approaches provide a
resource for the further study of the immune contribution to viral- and carcinogen-induced
cancers.

Single cell survey of immune lineages in HNSCC

We analyzed the single-cell transcriptomes of all viable cells of hematological origin (i.e.
CD45™ cells) isolated immediately following surgery from paired blood and tissue obtained
from the primary tumors of 18 HPV~ HNSCC patients and 8 HPV* HNSCC patients, all of
whom were immunotherapy treatment-naive (Figure 1A and Table S1). For comparison,
single-cell transcriptomes were also generated from viable CD45* cells sorted from 5 tonsil
tissues from independent patients with sleep apnea (i.e., patients without cancer) and
peripheral blood mononuclear cells (PBMC) from 6 healthy donors. In total, we recovered
131,224 individual immune cells that passed quality control measures (Figure S1A),
expressing a mean of 1,262 genes (Figure 1A and STAR Methods).

Pseudobulk expression matrices (Figure 1B and STAR Methods) constructed from our
scRNAseq data revealed separation of samples by PBMC and tissue origin, and segregrated
clusters of tumor infiltrating leukocytes (TIL) and tonsil samples. We recovered expected
differences between PBMC and TIL, such as myeloid cells (LYZand FCGR3A) in PBMC
and immunomodulatory cytokines in TIL (Figure S1B). Between clusters of TIL (Figure
S1C), we found that clusters 3 and 4 shared a partial expression pattern with samples derived
from tonsil tissue (cluster 1) including B cells (MS4A1, CD19) and activated T cell genes
(CD3Dand HLA-DRBS), but also expressed a small cluster of cytotoxic genes (e.g.,
GZMB) distinct to TIL. Based on this pseudobulk data, we performed a bootstrapped post-
hoc power analysis (STAR methods), and found that 9 patients were required in a balanced
study design to achieve 80% power to find differentially expressed genes in TIL (Figure
S1D). Overall, this pseudobulk RNAseq analysis revealed large shifts in gene expression
between PBMC and TIL samples, and suggested substructure related to both differential
infiltration and transcriptional states between HPV~ and HPV* TIL.

We next developed and implemented a DeteRministic Annealing Gaussian mixture mQOdel
clusteriNg algorithm (DRAGON; Figure S2A and STAR methods) to identify clusters of
cells present across our dataset (Figure 1C and Table S2). DRAGON, which is a novel
implementation of deterministic annealing (Rose, 1998; Rose et al., 1990a; Rose et al.,
1990b) for scRNAseq, performs clustering using a process like the physical process of
annealing. Briefly, DRAGON performs clustering by progressively “cooling” the system at
various “temperatures”, which effectively places a constraint on the minimum disorder of
the system proportional to the “temperature”. Using DRAGON, rounds of expectation/
maximization at successively decreasing temperatures leads to a final solution at the global
minimum, but also provides intermediate solutions at decreasing temperatures as clusters are
generated (Figure S2B). This model has several advantages over other clustering algorithms
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by providing statistically principled criteria for cluster genesis, avoidance of local minima by
progressively reducing the disorder with successive rounds of expectation/maximization,
parameterization of each cluster as a component of a Gaussian mixture model, and
scalability to large datasets by using parallel processing for key components of the algorithm
(STAR Methods). Additionally, the commonly used Louvain clustering algorithm has
several known limitations including a resolution limit (Fortunato and Barthelemy, 2007) and
the potential for detection of disconnected communities (Traag et al., 2019). Benchmarking
of DRAGON versus Louvian clustering (implemented in Seurat; STAR Methods) revealed
that the two algorithms both achieved high accuracy (Louvian: 90.3%; DRAGON: 90.6%;
p=0.88 by two-sample t-test) over a wide range of simulated scRNAseq data (Figure S2C)
generated by splatter (Zappia et al., 2017). Overall, DRAGON and Louvian clustering
perform similarly, but are based on different frameworks. The 26 clusters determined by
DRAGON were visualized by FItSNE (Linderman et al., 2019), a fast interpolation-based
tSNE (Figure 1C).

We next used the clustering solution of DRAGON at a relatively high temperature of 45
(Figure S2B) to identify major immune lineages. Differential gene expression between these
four clusters was found to be strongly related to CD4* T cells, B cells, cytotoxic cells (CD8*
T cells and NK cells), and myeloid cells (Figure S2D). We next bioinformatically separated
and re-clustered cells from each of these 4 lineages to identify cell types based on canonical
gene expression patterns (Figure S2E). The inferred cell types were strongly correlated with
those identified by flow cytometry on paired samples from a subset of patients (Figure S2F-
). These inferred cell types were then projected onto the FItSNE of the full dataset (Figure
1D and Table S2). We also performed a second post-hoc power analysis, and found that
~60,000 cells are required to have an 80% chance of detecting a cluster of ~300 cells (i.e the
size of the rarest population, mast cells; Figure S1E).

We next assessed shifts in transcriptional profiles across patient samples by viewing the
same FItSNE projections with cells colored by sample types (Figure 1E). To quantify these
shifts between major immune lineages in HPV™ and HPV™* TIL, we measured the distance
between immune lineages from each tumor type using the Bhattacharyya distance (Figure
1F; STAR Methods). For comparison, we generated background distributions of each major
lineage by sampling cells independently of tumor type. This approach controls for the
number of cells present in each sample by sub-sampling the same number of cells, which
was important due to the observed numerical differences in infiltration (Figure S1F).
Strikingly, this analysis revealed large differences between B cells, myeloid cells and CD4*
Tconv between HPV™ and HPV* TIL (Figure 1F). In contrast, CD8" T cells and CD4* Treg
were much more similar between HPV~ and HPV* TIL. Overall, we characterized broad
changes in transcriptional profiles between PBMC and TIL (and between groups of TIL
samples), identified cell types from major immune lineages, and quantified differences in the
major lineages commonly found in HPV~ versus HPV* TIL.

CD8* T cells have a continuous differentiation trajectory

To address the transcriptional states of CD8* T cells in viral- versus carcinogen-induced
HNSCC, we bioinformatically isolated and re-clustered CD8* T cells. A total of 8 clusters
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were derived following DRAGON clustering (Figure 2A and Table S3). CD8* T cells from
TIL were most frequently found in clusters 1-4, while those from PBMC and tonsil were
more frequently found in clusters 5-8 (Figure 2B), although there was also notable overlap
between PBMC and TIL populations in some clusters. We next performed differential gene
expression analysis, and found distinct sets of genes governing each cluster (Figure 2C).
Specifically, cluster 1 was associated with cycling cells (e.g. MKI/67); cluster 2 was
associated with IFN-response genes (e.g. /SG15); clusters 3 and 4 expressed checkpoint
markers associated with exhaustion (e.g. PDCD1 [gene for PD-1], CTLA4and HAVCRZ2
[gene for TIM3]); cluster 5 was generally quiescent and expressed low levels of effector
molecules (e.g. GZMH and KLRDZ1); cluster 6 expressed markers associated with naive or
memory cells (e.9. CCR7and CDZ27); cluster 7 expressed genes associated with early
activation (e.g. JUNB and FOSB); and cluster 8 expressed genes associated with effector
function (e.g. KLRG1 and GZMH). We next assessed the biological functions associated
with these clusters by using a competitive gene set enrichment test implemented in the new
R package SingleSeqGset developed by our lab (STAR Methods). Interestingly, we found
that the clusters containing exhausted CD8" T cells differed in several ways, such as
upregulation of co-simulation in cluster 3 and hypoxia signaling and interferon responses in
cluster 4 (Figure 2D and Table S4).

We next performed diffusion map analysis (a non-linear dimensional reduction technique;
STAR Methods) to infer differentiation trajectories (Angerer et al., 2016; Haghverdi et al.,
2016). The resulting two-dimensional diffusion map embedding uncovered a smooth
trajectory that linked PBMC to TIL (Figure 2E and Table S5), and that was overlapping for
HPV* and HPV~ TIL (Figure 2F).

To better characterize the relationship between diffusion trajectories and clusters, we
visualized each cluster of CD8* T cells on the diffusion map embedding, yielding a pattern
consistent with gene set expression analysis (Figure S3A). We next characterized the two
diffusion components (DC1 and DC2) by identifying the genes that were associated with
each component (STAR Methods and Table S5). DC1 was strongly associated with a
terminally differentiated phenotype, with progression along DC1 associated with increased
co-expression of inhibitory receptors such as LAG3, CTLA4, PDCD1 (gene for PD1) and
HAVCRZ2 (gene for TIM3) (Figure S3B). We also found high expression of ENTPDI (gene
for CD39) and CXCL 13 by these terminally differentiated CD8* T cells, suggestive of a role
of these cells in adenosine metabolism (Deaglio et al., 2007) and attempted B cell
recruitment (Ansel et al., 2002). DC2 was associated with a memory phenotype (Figure
S3C), governed by co-expression of CD27, CCR7, EOMES and other genes associated with
memory formation (Banerjee et al., 2010; Mahnke et al., 2013). In summary, we identified
clusters of CD8" T cells and inferred a differentiation trajectory that was shared between
tumor types. This suggests that immunotherapy strategies targeting CD8* T cells may be
applicable to both viral- and carcinogen-induced HNSCC.

Extensive CD4" Tconv heterogeneity and differentiation trajectories

Next, we compared the transcriptional landscape of CD4" T cells between HPV~ and HPV*
HNSCC, analyzing CD4* Tconv cells and CD4" Treg cells separately. Clustering of CD4*

Immunity. Author manuscript; available in PMC 2021 January 14.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Cilloetal.

Page 7

Tconv cells revealed 7 distinct clusters (Figure 3A and B and Table S3). Gene set
enrichment analysis (Figure S4A and Table S4) showed that PBMC-derived CD4" Tconv
were enriched for gene sets associated with naive and memory (cluster 2), effector memory
(cluster 3), and a mixture of effector and central memory (cluster 5). In CD4* Tconv from
TIL, we found that clusters 1 and 6 were comprised mostly of CD4* Tconv from HPV* TIL
and tonsil CD4" Tconv, while CD4* Tconv from HPV™ TIL were distributed between
clusters 4 and 7. Tonsil and TIL CD4* Tconv showed enrichment for a complex series of
interrelated T follicular helper (TFH) and type 1 helper (TH1) signatures, with additional
evidence of effector memory phenotypes. We statistically assessed the association between
sample types and clustering for CD4* Tconv (Figure S4B and STAR Methods), and we
found that HPV* TIL had significant enrichment of cells in this cluster versus HPV~ TIL
(p=0.0044, rank sum test).

We next performed diffusion map embedding to reconstruct differentiation trajectories of
CD4* Tconv. In contrast to CD8" T cells, visualization of the first 3 dimensions of the
resulting diffusion map yielded a branching trajectory (DC1; Figure 3C and Table S5). We
next fit regression planes between DC1, DC2 and DC3 for CD4* Tconv derived from HPV~
and HPV* TIL, and found dramatically different differentiation planes between tumor types
(Figure 3D). When viewing the first 2 dimensions of the diffusion map in conjunction with
the inferred diffusion pseudotime (DPT; Figure SAC and D) as the third dimension, it was
clear that DC1 and DC2 were both positively correlated with DPT, but were largely
orthogonal to each other. Consistent with gene set enrichment analysis, cluster 2 was the
most naive cluster, and cells then passed through a continuous intermediate phenotype
progressing towards terminal states defined by either cluster 1 or cluster 7 (Figure S4D). Top
differentially expressed genes between clusters 1 and 7 uncovered TFH-related genes
associated with cluster 1, and activation, interferon response and memory genes associated
with cluster 7 (Figure 3E).

We next evaluated the genes associated with each of the diffusion components, and found a
strong association between expression of CXCR5and PDCDI with DC1, consistent with the
proposed TFH signature of these cells (Figure 3E). However, when viewing the expression
of CXCR5and PDCD1 in a three-dimensional embedding with DC1 and DPT, we found
that co-expression of CXCR5and PDCDI is bimodal, with co-expression at early and late
DC1 with respect to DPT (Figure S4E). Interestingly, we also found co-expression of other
known inhibitory receptors (LAG3and HAVCRZ) at the same point where CXCR5 and
PDCD1 co-expression is evident. This suggests a fate decision at this early point in DPT,
where cells can either progress to CD4* TFH or adopt a phenotype with co-expression of
inhibitory receptors that potentially inhibits further differentiation. In summary, we found
unique differentiation trajectories of CD4" Tconv associated with HPV* and HPV~ HNSCC.

Reciprocal IFN- and TNFR-related signaling in CD4* Treg

CD4™" Treg suppress anti-tumor immune responses in the TME, and recent studies in lung
(Guo et al., 2018) and breast (Azizi et al., 2018) cancers have described unique
transcriptional states of Treg in the TME. Using DRAGON, we found 6 distinct clusters that
were largely dominated by TIL Treg (Figure 3F and G; Figure S5A and Table S3). We next
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performed gene set enrichment analysis to characterize the general biological activities in
each cluster (Figure 3H and Table S4). Interestingly, clusters 2 and 4 had enrichment for
gene sets associated with IFNa-response (IFN response genes [Browne]) and general IFN-
response genes (IFN-induced antiviral module [Bosco]), while clusters 3 and 6 were
enriched for tumor necrosis factor receptor (TNFR) family signaling pathways. The modules
associated with IFN-response and TNFR signaling were mutually exclusive, suggesting that
these cells respond to different signals depending on their differentiation state.

Diffusion map embedding of CD4" Treg revealed that DPT was strongly correlated with
DC1 (Figure 3I, Figure S5B and Table S5). There was a subtle difference in density of HPV
~ versus HPV* TIL Treg along the DC1 axis, with more Treg from HPV™ TIL at earlier DPT
(Figure 3J). Consistent with the expression pattern inferred by gene set enrichment and
cluster progression, we found that 7MFRSF18(GITR), TNFRSF9(CD137; 4-1BB) and
TINFRSF4 (0X40) were positively correlated with DC1 and were co-expressed at late DPT
(Figure S5C). This observation supports the notion that the TNFR super-family is important
for the maintenance of effector Treg cell populations (Vasanthakumar et al., 2017).
Conversely, we found that IFN-response genes /F/TM1, IFIT1, IFIT3, and /SG20were
expressed at early DPT and were turned off as pseudotime progressed (Figure S5D),
suggesting a potential role of IFN-signaling in early activation of Tyeq. Taken together, this
analysis suggests that Tyeq share a similar trajectory between HPV™ and HPV* HNSCC
(although are more frequent at different states), and that IFN-related signaling and TNFR-
family signaling are reciprocally related during differentiation.

Germinal-center B cells are found in HPV* TIL

B cells within the TME have been found to correlate positively with overall survival across
human tumor types (Al-Shibli et al., 2008; Milne et al., 2009; Nedergaard et al., 2008; Shi et
al., 2013; Shimabukuro-Vornhagen et al., 2014; Woo et al., 2014), and can affect CD4*
Tconv cell phenotypes (Bruno et al., 2017). Clustering of B cells revealed 11 clusters
(Figure 4A and Table S3). B cells from HPV* TIL and tonsil tissue were strongly enriched
in clusters 1-4, while B cells from HPV™ TIL were mostly present in clusters 5 and 7 (Figure
4B). Gene set enrichment analysis identified naive (clusters 6 and 9), memory (clusters 8
and 11), plasma cells (cluster 5), and germinal center B cells (clusters 1-4) (Figure 4C and
Table S4). Overlapping enrichment of cell cycle and germinal center gene sets implies that
clusters 3 and 4 are centroblasts, consistent with rapidly proliferating B cells found in the
dark zone (Victora, 2014). Conversely, clusters 1 and 2 are also enriched for germinal center
gene sets, but lack expression of cell cycle genes, suggesting these cells are centrocytes in
the light zone, where they are subjected to selection by CD4" TFH. B cells in HPV~ TIL, in
contrast to HPV* TIL, were commonly found to be either plasma cells (cluster 5) or
switched memory B cells (cluster 7). The presence of only plasma or early switched memory
B cells in HPV~ TIL states may be consistent with lack of CD4* TFH help.

Diffusion map embedding of B cells (Figure 4D and E and Table S5) revealed a complex
process of differentiation across multiple axes. Inspection of the clusters (Figure 4D) and
sample types (Figure 4E) revealed that DC4 was associated with progression from naive to
memory B cells. However, DC1 intersects DC4 halfway between the minimum and
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maximum of DC4, with progression from right to left along DC1 associated with germinal
center formation. Consistent with the lack of germinal center B cells in HPV~™ HNSCC, B
cells from HPVV~ HNSCC were more enriched towards positive values of DC1 (Figure 4F).
Plasma cells (cluster 5) are located closer to memory B cell clusters, consistent with exit
from germinal center reactions. Our analysis of B cells in the TME of HPV~ versus HPV*
HNSCC led to the conclusion that germinal center B cells are present across various stages
of progression through germinal center reactions in HPV* HNSCC, while B cells are found
in fewer numbers and non-germinal center states in HPV~ HNSCC.

A common trajectory yields divergent myeloid states

Myeloid cells play important roles in shaping the immune response in the TME, and can be
broadly classified as tumor associated macrophages (TAMs) and dendritic cells. TAMSs are
generally considered to be either anti- or pro-tumor (i.e. M1-like or M2-like, respectively)
(YYang and Zhang, 2017). Recent studies have revealed more extensive heterogeneity among
myeloid cells in the TME, with TAMs co-expressing features of both M1 and M2 in breast
cancer (Azizi et al., 2018), and unique states of myeloid cells lung cancer (Lavin et al.,
2017). We identified 8 clusters of myeloid cells, with clusters 2-4 primarily present in
PBMC and clusters 1 and 5-8 present in TIL (Figure 5A and B and Table S3).

To better understand TIL populations of myeloid cells, we investigated top differentially
expressed genes across clusters (Figure 5C and Table S3). This led to identification of
cluster 2 as CD16* monocytes, and two clusters of CD14* monocytes (clusters 3 and 4).
Importantly, cluster 3 had low expression of FCGR3A (gene for CD16), suggesting that it
was a unique CD14* monocyte cluster and not a transitional population of CD14*CD16*
monocytes. Within TIL, clusters 5 and 7 appeared to be highly secretory, expressing high
levels of chemokines and cytokines. Clusters 1, 6, and 8 expressed relatively high levels of
HLA molecules, consistent with antigen presenting cells, but differed in several ways.
Cluster 1 had high expression of /DO, CCL17and CCRY7, cluster 6 expressed CD1C
(consistent with conventional DCs) and cluster 8 expressed complement. Cluster 8 also
expressed the canonical M2 marker MRCI (gene for CD206), although it was not among the
top differentially expressed genes. Clusters 1 and 8 were more frequently found in HPV™
TIL, suggestive of a potential immunosuppressive role in patients with HPV™ disease.

We next performed diffusion map embedding, and identified several branches (Figure 5D
and E and Table S5). Cluster 5 is central to the fate of myeloid cells in the TME, as it
connects CD14* monocytes from PBMC to TIL populations, and suggests a surprisingly
smooth transition in expression states between PBMC and TIL CD14* cells (Figure 5F). In
the positive direction on the DC1 and DC2 axes, cluster 5 progresses towards clusters 7 and
8, which represent one terminal branch of this trajectory (Figure 5E-G). Cluster 6 appears to
emerge from cluster 5 broadly across the trajectory towards clusters 7 and 8, suggestive of
possible plasticity along this differentiation trajectory (Figure 5G). Cluster 8 appeared to an
immature DC cluster, as it precedes more mature DCs on a shared trajectory (cluster 6). Our
characterization of myeloid lineages in TME identified TAMs beyond the standard M1/M2
paradigm, smooth transitions between cell states, and several DC populations.
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Global crosstalk between immune cells

Single cell transcriptomic analysis not only reveals cell intrinsic information, but can also
probe putative cell extrinsic interactions through interrogation of ligand (surface or secreted)
and receptor expression. To map possible cell-cell interactions, we first identified expression
of ligands/receptors using a list of 708 unique ligands and 691 unique receptors that together
can form a combined 2,557 potential interaction pairs (STAR Methods) (Ramilowski et al.,
2015). We first evaluated the top ligands and receptors expressed in HPV~ and HPV*
HNSCC (Figure 6A and B).

Of the larger potential set of ligands and receptors, we next identified those that participated
in putative interactions within and between immune lineages using a new R package that we
have developed called CellTalker (for evaluating cell-cell communication). Using CellTalker,
we identified 168 ligands and 194 receptors that participated in 481 unique interactions. We
next used the results from CellTalker to generate circos plots (Zhang et al., 2013) for
visualization of these interactions. In the circos plots, each interaction is depicted as a line
linking a ligand to a receptor across cell types (Figure 6C-F and Table S6). Interactions were
broadly classified into three types: common interactions (those occurring in at least one
other sample type), unique versus healthy donor PBMC, or unique versus all other sample
types. Although there were many putative interactions in PBMC and tonsil samples, we
found massive expansion of putative interactions across TIL populations. In addition to
expanded cell-cell communication in the TME, we found unique axes of communication in
HPV~ and HPV™* TIL. While useful from a global perspective, understanding the spatial
localization of immune cells to each other would provide a more rigorous framework for
assessing putative cell-cell communication based on proximity.

Spatial organization is consistent with transcriptional signatures

Single cell transcriptomic analysis provides high-dimensional insight into the transcriptional
states of individual cells, but provides no information about the spatial localization of cells
in situ. As a complement to our sScRNAseq analysis, we performed multispectral
immunofluorescence (IF) on paired tissue sections from the same patient cohort (STAR
Methods; Figure S6A). We captured 2-5 regions of interest (ROI) per slide, resulting in a
total of 90 ROI from 24 patients.

After downstream processing (STAR Methods), we hierarchically clustered individual ROI
based on the frequency of each immune cell subset present (Figure 7A, Figure S6B), reveal
clusters associated with enrichment for specific immune lineages (Figure S6C and Figures
7B-F, left panels). From each image, we performed Delunay triangulation to identify the
nearest neighbors of each cell in 2 dimensions (STAR Methods and Figure S6D), with the
goal of identifying cells types that were most likely to interact with each other based on
proximity. The odds of a cell type interacting with another given cell type was expressed as
the log-odds ratio (Figure 7B-F, right panels). In clusters with the highest frequencies of B
cells (clusters 3 and 5), B cells had the highest odds of interacting with other B cells,
followed by interacting with CD4* Tconv (Figure 7D and F). Indeed, in cluster 5 ROls, we
identified an organization pattern of immune cells reflective of tertiary lymphoid structures
(TLS). Based on these spatial relationship, we next used CellTalker to infer specific
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differences in putative cell-cell communication networks between B cells and CD4* Tconv
in HPV~ versus HPV* TIL (Figure 7G and H and Table S7). Interestingly, and consistent
with scRNAseq and IF analyses, we found putative ligand/receptor interactions between B
cells and CD4* Tconv in both HPV™ and HPV™* TIL, but only HPV* TIL had putative
interactions between germinal center B cells (clusters B-1 through B-4) and TFH (cluster
CD4-1).

We next utilized clinical data and bulk mRNAseq data from The Cancer Genome Atlas
(TCGA) (Liu et al., 2018) to determine if CD4* TFH signatures in HNSCC were related to
survival (STAR Methods). We first filtered TCGA data to only include patients that
underwent testing for p16, a surrogate for HPV* HNSCC. Consistent with previously
published data (Ang et al., 2010), we found a trend towards improved overall survival
(HR=0.40 for HPV* vs HPV~, p=0.071; data not shown), and significantly better
progression-free survival (PFS) (HR=0.35 for HPV* versus HPVV~ HNSCC, p=0.019; data
not shown) in patients with HPVV* HNSCC (STAR Methods). We next evaluated enrichment
of TFH gene signatures (derived from the differentially expressed genes associated with
effector TFH from our scRNAseq data) across patients, and used stratification based on TFH
scores to perform a monovariate progression-free survival (PFS) analysis (Figure 71; STAR
Methods). PFS probability was statistically significant in monovariate analysis, with a
hazard ratio of 0.34 for high TFH versus low TFH enrichment (p=0.0029). Importantly,
improved survival remained significantly associated with high TFH enrichment (HR=0.41,
p=0.024) in a multivariate survival analysis after correction for 8 co-variates including T cell
infiltration (Figure S7A). Taken together, we have identified unique patterns of immune
infiltration across tissue sections, have characterized unique TFH effector and germinal
center interactions using CellTalker and our scRNAseq data in HPV* and HPV~ HNSCC,
and found that a transcriptional signature of Tgy enrichment correlated with improved PFS.

Immunotherapy has had unprecedented success, but still only substantively benefits a small
proportion of patients and tumor types (Brahmer et al., 2012; Ferris et al., 2016; Ferris et al.,
2018; Wolchok et al., 2017). Analysis of pre-therapy states of immune lineages is required
to rationally identify new therapeutic strategies, as TME of different tumor types have
unique immune signatures (Thorsson et al., 2018). In this study, we have used new
bioinformatics tools and approaches to pursue an in-depth analysis of all CD45+* immune
cells in the TME of patients with HNSCC of either carcinogen- (HPV™) or viral- (HPV™)
mediated carcinogenesis. More generally, our experimental and analytical approaches can be
applied to the dissection of any heterogeneous population of cells that differ in cell
composition and transcriptional states between sample groups.

First, we found a spectrum of differences between immune lineages in HPV~ versus HPV*
HNSCC. This has implications for the design of immunotherapy, as immune lineages that
are similar in both types of HNSCC (i.e. CD8" T cells and CD4* Treg) can be targeted
similarly, while those that are different (i.e. CD4* Tconv, B cells and myeloid cells) may
require more tailored therapies. The differences in immune lineages present in the TME of
HPV™ versus HPV~ HNSCC are potentially due to the presence of viral antigens throughout
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carcinogenesis, leading to activation of innate immune responses early on and enhanced T-
and B-cell adaptive immune responses. The presence of viral antigens throughout
carcinogenesis (Kobayashi et al., 2018), and perhaps in the tumor itself through episomal or
integrated viral components (Koneva et al., 2018), may prime HPV* patients for enhanced
anti-tumor immunity.

Next, we identified subpopulations present within major immune lineages within HNSCC
tumors. Recent work has characterized states of CD8* T cells in various tumor types, in both
treated and untreated conditions (Guo et al., 2018; Sade-Feldman et al., 2018; C. Zheng et
al., 2017). Consistent with previous reports, CD8* T cells co-expressed inhibitory receptors
at terminal differentiation (Azizi et al., 2018; Guo et al., 2018). Interestingly, we also found
two clusters of exhausted CD8* T cells with different biological functions, including
response to hypoxia in cluster 4. Hypoxia inducible factors have previously been shown
enhance CD8* T cell effector functions (Doedens et al., 2013; Finlay et al., 2012),
suggesting that this cluster may retain higher anti-tumor activity versus cluster 3 which does
not have enrichment of hypoxia signaling.

Enrichment of CD137M9" Treg was recently found to be associated with poorer overall
survival (Guo et al., 2018), consistent with expression of TNFR-family receptors on Treg
reflecting an underlying effector state (Vasanthakumar et al., 2017). Treg in our study were
characterized by reciprocal expression of both IFNa-signaling and general IFN-response
genes early during differentiation, in contrast to TNF-family receptors late in differentiation.
Given that IFN-y drives Treg fragility (Overacre-Delgoffe et al., 2017), it seems that early
activated subpopulations of Treg may be amenable to IFN-y based therapy, while
chronically activated Treg may be more sensitive to blockade of TNFR-family mediated
signaling.

In contrast to CD8* T cells and CD4* Treg, CD4* Tconv were highly dissimilar between
types of HNSCC. CD4" Tconv exhibited a differentiation trajectory where cells pass through
a common early activation state before branching into terminal states associated with TFH or
exhausted signatures. Whether TFH and TH1 are unique lineages or share plasticity is
controversial (Hale et al., 2013; Liu et al., 2012; Pepper et al., 2011), but our data suggest
there is plasticity during early stages of activation. Appreciation of the complexity and
heterogeneity present in CD4* Tconv in the TME can provide new avenues for therapeutic
intervention based on manipulating CD4* Tconv responses. Recent work has highlighted the
importance of TFH in vaccine design (Linterman and Hill, 2016), and our transcriptional
analysis can further inform our understanding of TFH in distinct tissue sites.

Recent studies have suggested that tumor-associated myeloid cells are more heterogeneous
than previously appreciated (Azizi et al., 2018; Lavin et al., 2017). We characterized 5 sub-
populations of myeloid cells in the TME, consisting of IDO1* DCs, transitional monocytes,
DCs, inflammatory macrophages and complement-expressing DCs. While CCR7* DCs can
secrete 1L-12 and possess antitumor activities (Garris et al., 2018), this population of DCs
identified here also co-express IDO1, and may have the potential to inhibit antitumor
immunity (Li et al., 2016). Interestingly, we found that TME-resident myeloid cells shared a
continuous trajectory with CD14* monocytes, and that this trajectory extended to divergent
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terminal states of myeloid cells. One terminal population expressed CDICand HLA
molecules, while the other expressed complement, cytokines and chemokines. A high level
of complement expression is associated with immature DCs (Son et al., 2012) that are poor
T cell simulators (Castellano et al., 2007), suggesting that maturation of this DC subset
could improve anti-tumor T cell responses. Finally, the highly secretory macrophage
population we observed likely contributes to increased invasiveness through /L6 (Chang et
al., 2013), pro-metastatic conditions through /LB (Guo et al., 2016), and angiogenesis
through CXCL8 (Li et al., 2003). Although myeloid derived suppressor cells (MDSCs) are
an important population in the TME of HNSCC (Pak et al., 1995; Weed et al., 2015), we did
not recover cells consistent with an MDSC phenotype in our sScRNAseq analysis. MDSCs
have been reported to be associated with immunosuppressive features including expression
of PD-L1 and FOXP3 and inversely correlated with CD8* T cells and helper responses in
the TME (Campbell et al., 2018). Future studies should seek to specifically interrogate the
roles of MDSC populations in the peripheral blood and TME of patients with HNSCC.

Cell intrinsic phenotypes provide useful information on the potential states that can be
occupied by a given lineage, but do not provide information about cell-cell communication
or spatial proximity between cells. We therefore performed both global and cell-type specific
analysis of putative cell-cell communication using our CellTalker algorithm. Several groups
have recently begun to evaluate putative receptor/ligand signaling by scRNAseq (Kumar et
al., 2018; Vento-Tormo et al., 2018), but have yet to thoroughly examine immune
interactions in the TME. Our global analysis revealed baseline interactions between cell
types in healthy donor PBMC, but massive expansions of putative cross-talk in the TME. In
depth analysis and validation of the putative interactions described here can be pursued
further to better understand the ecosystem fostered by intercellular communication in the
TME.

To further contextualize our findings, we performed IF analysis on sections obtained from
the same cohort of HNSCC patients. We used this analysis to characterize the spatial
locations of immune and tumor cells, and identified immune populations that likely
participated in cell-cell communication based on proximity. In several instances, we found
that CD4" Tconv were likely to participate in interactions with B cells, and most notably we
identified tertiary lymphoid structures (TLS) in regions that contained high numbers of B
cells. TLS have been associated with improved survival across many cancer types (Sautes-
Fridman et al., 2016), and specifically in HNSCC (Wirsing et al., 2014). Finally, we assessed
the clinical significance of TIL CD4* TFH, utilizing a gene set derived from our data. This
mono- and multi-variate analysis revealed that enrichment of a CD4* TFH signature was
associated with superior PFS, implicating TFH as a potentially favorable biomarker.

This study provides in depth analysis of individual immune lineages, cross talk between
these lineages, and spatial localization that together form a clinically relevant and unified
picture of the immune landscape in HNSCC. Overall, our study contributes to the
understanding of the pan-immune landscape in patients with carcinogen- versus virally-
induced cancers, and serves as a foundational framework, reference dataset and essential
resource for future in-depth exploration of the roles of immune cells in HNSCC and other
tumor types.
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STAR Methods

Contact for reagent and resource sharing

Additional information and requests for resources should be directed to the Lead Contact,
Dario A.A. Vignali (dvignali@pitt.edu).

Experimental Model and Subject Details

Patient samples were obtained from consecutive HPV™ and HPV* HNSCC patients, all of
whom were immunotherapy treatment naive. Peripheral blood was drawn by venipuncture
into tubes with EDTA anticoagulant. Tumor specimens for experiments involving fresh
tissue were resected in the operating room and immediately collected in RPMI with 10%
fetal bovine serum (FBS), 1% amphotericin B and 1% penicillin/streptomycin. Paired tumor
specimens were also collected into formalin for downstream immunohistochemistry and
immunofluorescence analysis. Similarly, tonsils were obtained from patients undergoing
tonsillectomy as treatment for sleep apnea, and were collected in the same media used for
tumor collection. Healthy donor peripheral blood was collected by venipuncture, using
EDTA as the anticoagulant. All patients provided informed written consent, and this study
was approved by our Institutional Review Board (University of Pittsburgh Cancer Institute,
Protocol 99-069).

Method Details

Processing of patient samples—~Peripheral blood mononuclear cells (PBMC) were
isolated from whole blood by density gradient centrifugation in Ficoll/Hypaque for 20
minutes at 400xg with the brake off. PBMC were then washed with Hanks Buffered Saline
Solution and resuspended in staining buffer (phosphate buffered saline [PBS] with 0.1%
azide, 10 mM HEPES, and 2% FBS). Single cell suspensions were generated from tumor or
tonsil tissue by either mechanical disruption or mechanical disruption followed by
enzymatic digestion with 50 mg/mL of Liberase DL (Roche) in 5 mL of serum-free RPMI
for 15 minutes at 37°C. After initial isolation from tissue, cells were passed through a
100pum filter and spun at 500xg for 10 minutes to yield single cell suspensions. No
discernable difference was present in cell yields, viability, or transcriptional signatures of
samples that were either mechanically disrupted or disrupted and treated with Liberase.
Carryover red blood cells were lysed with BD Pharm Lyse, and samples were then
resuspended in staining buffer. Cells were stained for sorting by incubation with PE-
conjugated mouse anti-human CD45 (clone: 2D1; Biolegend) at a 1:100 dilution for 15
minutes at 4°C, spun down at 500xg for 5 minutes, and incubated in PBS with 1:4000 eFluor
780 viability dye (eBioscience) for 15 minutes at 4°C. Cells were then resuspended in
staining buffer, and sorted for live CD45* cells on a MoFlo Astrios at the Hillman Cancer
Center Cytometry Facility. Samples were collected in RPMI supplemented with 10% FBS,
nonessential amino acids, L-glutamine, penicillin/streptomycin and sodium pyruvate. All
samples were processed as soon as possible following surgery.

Flow cytometry of major cell lineages—Flow cytometry was used to assess the
following major cell lineages: CD8* T cells, conventional CD4* T cells, regulatory T cells,
B cells, myeloid cells (monocytes, dendritic cells and plasmacytoid dendritic cells), natural
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killer cells and granulocytes. Staining was performed as per preparation for cell sorting
described above, with the addition of fixation and permeabilization for intracellular staining
with the Foxp3/Transcription Factor kit (eBioscience). The antibodies and viability dyes
used are described in the Key Resources Table.

Immunofluorescence staining of tissue sections—Formalin-fixed paraffin
embedded tissues were mounted on slides, followed by deparaffinization using xylene and
ethanol. Tissues were then fixed in neutral buffered formalin for 15 minutes, followed by
antigen retrieval. Heat induced epitope retrieval was performed using repeated cycles in AR6
or AR9 citrate buffers (Perkin EImer), followed by 10 minutes of blocking prior to
incubation with primary antibodies for 30 mins. Secondary antibodies conjugated to
horseradish peroxidase were added after washing, and were incubated for 10 minutes. The
following Opal detection fluorophores were used: CD4::0Opal540, CD8::Opal570,
CD20::0pal520, CD68::0pal650, FOXP3::0pal620, and Pan-cytokeratin::Opal690. A final
round of antigen retrieval was carried out to counterstain nuclei with 4’,6-diamidino-2-
phenylindole (DAPI). Slides were then sealed using the Diamond Anti-fade mountant
(Thermo Fisher).

Acquisition of immunofluorescence images—Immunofluorescence (IF) images
were captured on the Vectra (Perkin Elmer), first as whole side scans, and then as regions of
interest based on the presence or absence of immune structures on each slide. Immune
structures were identified by a pathologist based on standard H&E staining of tissues, and a
minimum of 3 and maximum of 6 regions of interest were captured from each slide. These
regions encompassed both the tumor bed and tumor stroma, and included regions containing
tertiary lymphoid structures and those that did not. Regions of interest were captured at 10x
magnification on the Vectra to incorporate a large area of the slide for analysis.

Generation of single cell libraries—Single-cell libraries were generated from sorted
live CD45™ cells using the Chromium Single Cell 3° Reagent (V2 Chemistry) as previously
described (G.X. Zheng et al., 2017). Briefly, sorted cells were resuspended in PBS with
0.04% bovine serum albumin (BSA; Sigma) and were counted using the Cellometer
Auto2000 (Nexcelom). Cells were then loaded into the Single Cell Chip and processed
through the 10X controller for droplet generation (targeting a recovery of 2,000 cells per
sample), resulting in droplets containing a single cell and bead per droplet. After droplet
generation, cells were subjected to in-drop lysis and reverse transcription, resulting in single-
cell transcriptomes bearing bead-specific sequences to identify the cell of origin. Following
reverse transcription, cDNA was isolated and amplified by 12 cycles of PCR. Amplified
cDNA was then size-selected by SPRISelect Beads, and subjected to enzymatic
fragmentation, end repair, and A-tailing. Adaptors were then ligated, and sample indices
were added by PCR. Samples were then size-selected by SPRISelect, and the concentration
was determined by KAPA DNA Quantification. The end result of this process is library
constructs containing P5 and P7 Illumina sequencing adaptors, a 16 base pair cell barcode,
10 base pair unique molecular identifier (UMI), a gene insert and an i7 sample index.
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Sequencing of single cell libraries—Following generation of single cell libraries,
samples were diluted to 2 nM and pooled into sets of 2. Libraries generated from PBMC and
TIL were pooled together from all HNSCC patients, and healthy donor PBMC and tonsil
were paired with each other. These pooled libraries were further diluted to 2 pM, then were
denatured and loaded on a NextSegq500 at the Health Sciences Sequencing Core at
Children’s Hospital of Pittsburgh. Samples were run using NextSeq 500/550 High Output v2
kits (150 cycles) with the following sequencing run parameters: Read 1: 26 cycles; i7 Index
8 cycles; Read 2: 98 cycles.

Demultiplexing, alignment, and generation of gene/barcode matrices—
Following sequencing, runs were processed through the CellRanger (10X Genomics, version
2.1.0) pipeline to generate gene/barcode matrices. This was achieved by first demultiplexing
samples using the sample indices present in the sequencing libraries, and converting
Illumina BCL files to FASTQ. Reads from these FASTQ files were then aligned using the
GRCh38 reference using STAR (Dobin et al., 2013), as implemented in CellRanger.

Quality control metrics and filtering—After alignment using CellRanger, key
sequencing metrics including the frequency of valid cell barcodes, transcriptome mapping
rate, and the frequency of Q30 bases across each of the read groups was interrogated to
ensure high-quality sequencing and alignment results. Samples were then combined into a
unified gene/barcode matrix. After creation of the gene/barcode matrix, a cell-level filtering
step was performed to remove cells with either few genes per cell (<200) or many molecules
per cell (>20,000). Next, genes that were lowly expressed (fewer reads than 3 counts in 1%
of cells, or genes expressed in fewer than 1% of cells) across all samples were removed.

Pseudobulk analysis—We performed an initial analysis of the data by treating the
single-cell RNA profiles as pseudobulk expression matrices to evaluate high-level trends in
the data. Pseudobulk expression profiles were generated for each sample by summing the
gene counts across cells, to form an expression matrix consisting of one expression profile
per patient. Gene expression counts x, were converted into the natural log of transcripts per
million (transcripts per million) plus one by:

6

TPM, =logel(xg+1) * 107 7].

We then identified differentially expressed genes between PBMC, TIL and tonsil tissue by
comparing linear models for each gene using the tissue type as a predictor versus a null
model. We assessed statistical difference between the null model and the full model using
the likelihood ratio. Genes were considered to be differentially expressed if the false
discovery rate corrected p-value across all genes was 1% or less. We next formed a
correlation matrix using Spearman’s correlation across all samples using all differentially
expressed genes, and clustered the samples using hierarchal clustering with one minus the
correlation matrix as the distance measure. The resulting inter-sample correlation was then
visualized using the R package heatmap3 (http://CRAN.R-prject.org/package=heatmap3).
Next, we evaluated genes that were differentially expressed between PBMC and TIL as
described above, and performed clustering and visualization of the gene-gene correlation
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matrices using a union of the top 50 genes that were expressed in both PBMC and TIL. We
performed a similar analysis to identify gene-gene correlations between genes that were
differentially expressed between clusters of TIL, using a union of the top 50 differentially
expressed genes between each cluster of TIL.

Post-hoc power analysis using pseudobulk RNAseq data—\We next performed a
post-hoc power analysis for the identification of differentially expressed genes between the
TIL and tonsil clusters. This was accomplished by determining the mean and standard
deviation of the expression of each gene across clusters, and then performing bootstrapped
sampling of genes to form /n silico patient groups with a balanced experimental design (e.g.
3 vs 3 vs 3). A total of 20 bootstrapped comparisons were performed with sample sizes
ranging from 3 to 10 samples per group. The number of differentially expressed genes in
each bootstrapped group was evaluated using the likelihood ratio model as described above,
and was compared to the actual number of recovered differentially expressed genes from the
experimental data. The power was determined by taking the ratio of number of bootstrapped
differentially expressed genes versus the actual number of differentially expressed genes.

Library size normalization for single-cell RNAseq analysis—Gene expression
counts within each cell were normalized for library size by multiplying the raw count for
each gene in each cell by the number of molecules detected in that cell, dividing by 10,000
and then taking the log of the normalized count value plus 1. That is, for a given gene ain
cell x, the normalized count x,, is:

Rq=logelxg * Y1 xg * 10,000 +1].

Dimensional reduction and visualization—After generating the library-size
normalized gene/barcode matrix, we next sought to reduce the dimensionality of the data for
downstream visualization and clustering. First, highly variable genes were identified based
on high dispersion when controlling for the relationship between expression magnitude and
variance. The top 500 to 1000 genes (depending on the cell type) by dispersion were carried
forward into scaling and principal component analysis (PCA). Prior to PCA, unwanted
sources of variation (i.e. the number of genes per cell, percent of mitochondrial genes per
cell, and percent of ribosomal genes per cell) were controlled for using an approach
implemented in Seurat and based on single-cell latent variable models (Buettner et al.,
2015), resulting in scaled and centered corrected values. Notably, controlling for the library
size of each cell and regressing out the above mentioned known sources of variation reduced
sample-specific biases. PCA was then performed using the augmented implicitly restarted
Lanczos bidiagonalization algorithm (Baglama and Reichel, 2006) using scaled and centered
expression values of the identified highly variable genes as input. PCs were heuristically
selected for downstream analysis based on the magnitude of variation explained, including
all PCs until a negligible increase in the variation explained was achieved.

For low-dimensional visualization of the high-dimensional differences in expression
between cells, we utilized two approaches. The first is a fast Fourier transform Interpolation-
based t-distributed stochastic neighbor embedding (FItSNE) that greatly accelerates the time
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required to calculate the cell embeddings (Linderman et al., 2019). Additionally, FItSNE
performs both early- and late-exaggeration steps that leads to superior separation of groups
of cells compared with standard Barnes-Hut tSNE (Maaten, 2014; Maaten and Hinton,
2008). The second visualization approach utilized was the result of non-linear
dimensionality reduction using diffusion map embedding, as described below (see Diffusion
map embedding).

Deterministic annealing Gaussian Mixture Model clustering—We have developed
and implemented a DeteRministic Annealing Gaussian mixture mOdel clusteriNg algorithm
clustering (DRAGON) for single-cell RNAseq data based on deterministic annealing (Rose,
1998; Rose et al., 1990a; Rose et al., 1990b). In the most general sense, deterministic
annealing seeks to minimize a specific cost function based on a constraint on the
randomness of the solution, and reduces the constraint on the randomness with each
successive step of the algorithm. In the context of clustering, deterministic annealing solves
a nonconvex optimization problem by finding the global minimum under decreasing
restrictions on the entropy of the system. In practice, this approach has several favorable
features, including the avoidance of local minima, progressive clustering results at each
stage of the algorithm describing the strongest trends in the data, a statistical framework (in
our case, a Gaussian mixture model [GMM]), and steps that are highly parallelizable,
leading to increased speed for large datasets.

Deterministic annealing is analogous to the physical process of annealing, where a system is
kept at thermal equilibrium as the temperature is gradually lowered, ultimately resulting in
the global minimum of the system when the temperature reaches zero. To apply this physical
principal to clustering, we seek to minimize the energy of a system at a given value of
randomness (defined in our clustering algorithm as “temperature”, 7), and progressively
decrease the temperature. The minimum energy at a given 7 depends on both the strength of
the associated between a point and a distribution, and the entropy of the system, as described
below. To assess the strength of the association between a given cell X', and a distribution

y(x ) we define the following cost function:

=37, p(XpdX p y(X p)

Where X, is a point vector and yj(?n) is a given distribution from one of /distributions. We
define d(x",,, y(x ) as the squared Euclidean distance between a point vector X", and the

centroid of cluster %/ ;.

We seek to minimize Cat a given level of disorder of the system, and define this as a
minimization of the Lagrangian £= C—- TH, where Cis the cost function, Tis the
temperature of the system, and His the disorder of the system given by Shannon’s entropy.
Minimization of £with K components of a GMM can be rewritten as a centroid condition
with respect to the association probabilities (Rose, 1998), which leads naturally to an
expectation/maximization (EM) framework where the minimization of £ at each temperature
T is achieved through the maximization of —£.
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To perform EM, we define our system as a GMM at each T:

K
P(X |u,S,a)= ) ajN(X |u}S))
Jj=1

where Xrepresents (x'j, X 2,...,x ) cells, ajis the mixing parameter of the jcomponent of K

mixtures such that Zsz 1a9x = 1, and Sjis the covariance matrix for the fcomponent. We

begin deterministic annealing with K=2 components, and increase the number of
components up to a maximum value of K'as 7 is decreased, as discussed below.
Additionally, we use cell embeddings in principal component space to initially reduce the
dimensionality of the dataset.

To achieve minimization of £through EM, we first set the a;mixing parameters, values of
the mean (7’ ;), and covariance matrices (2)) for each K. Then, we perform expectation to

determine the association probabilities between each cell X, for each K at a given 7 using
the Gibbs distribution:

dxX . 7 )

— — n» J

Py ek Ty = inl xn€K) 7
S P(X ) P(Xp)

We defined the log likelihood as:

K
nPX [uS.a)= D11y i1 ajNKp|u;S))

To perform maximization, we define each cell as belonging to the nearest K distribution. We
then calculate the parameters of each K'component:

- YIPX, K| ?n).
aj= P )

— YIPGREK;| XXy
Hj= ;

— — ’
SIPXnEKj| Xy

-1 - - -1 -1 - -
[[X—ﬁj] P(x, | Xp€K)) *[X—Vj] P(xy | Xp€K))

Sj= Py -
ZIP(XnEKjlxn)

We note here that the covariance of each K'component is related to 7 through
Pxy|xp,€ K ). We perform EM iterations at a given 7 until either convergence of the log

likelihood or a set number of iterations. Then we decrease the temperature and repeat EM
iteratively until 7=0.
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Another favorable attribute of deterministic annealing is that the K components can be
predictably split based on 7, as previously described (Rose, 1998). Briefly, the critical value
of 7at which a component should be split into two daughter components is:

To =24

where A is the largest eigenvalue of the covariance matrix of the component K. In other
words, when 7 crosses a threshold below 21 for a given component, that component is
subsequently split.

With these principles, we can define an outline of DRAGON as follows:

Algorithm 1: DRAGON

INPUT PCA components derived from highly variable genes

PARAMETERS Set maximum number of clusters (K), vector of temperatures ( 7), number of iterations (2),
convergence criterion

1 FOR Tin initial to final temperature
2 IF >0

3 /FNumber of clusters < Maximum clusters
4 Split clusters with 24 > T
5 FOR Ziterations or convergence
6 Expectation

7 Maximization

8 END

9 IF T=0

10 FOR Ziterations or convergence
11 Expectation

12 Maximization

13 END

14 END

Benchmarking of Seurat versus DRAGON clustering—We performed a
benchmarking analysis of DRAGON versus Louvian clustering to determine the relative
robustness and reliability of these two clustering algorithms. To benchmark these two
algorithms, we used simulated data generated from the R package splatter (Zappia et al.,
2017). Briefly, splatter generates simulated single-cell count matrices based on input
parameters derived from a given data set (or generated randomly), and takes additional
parameters to describe the number of clusters, the frequency of cells in each cluster, and the
degree of differential gene expression between clusters. We sampled 5000 cells from our
overall count matrix to generate baseline input parameters for splatter, and create a diverse
variety of simulated cluster sizes and differential expression. To generate frequencies of cells
in clusters that sum to 1, we randomly drew 4 values from a Poisson distribution centered at
5, then divided these values by the sum of the 4 values. To generate differential gene
expression values, we took the absolute value of 4 values drawn from a normal distribution
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centered at 0.25 and with a standard deviation of 0.25. We repeated this sampling process 50
times. Next, we performed normalization and dimensionality reduction, and performed
Louvian (as implemented in Seurat) and DRAGON clustering on each set of simulated data.
For Louvian clustering, we set the resolution parameter in Seurat to 0.3, 0.4, 0.5, 0.6 and 0.7
to ensure that 4 clusters were recovered. Results were compared to the ground truth cluster
identities from the splatter simulations using confusion matrices from the R package caret
(Kuhn et al., 2019).

Identification of major canonical immune lineages—Identification of major
immune cell lineages was performed using DRAGON in conjugation with the expression of
canonical lineage markers. One of the favorable features of DRAGON is the ability to
evaluate clustering solutions at varying levels of entropy using the temperature term 7. At
high levels of T, only strong separations of clusters are permitted based on the required
minimum entropy of the system. In our data, these differences are largely those given by
differences in immune lineages (e.g. B cells vs T cells, myeloid cells vs B cells). As such,
we identified a solution with 4 clusters that was largely representative of differences in
immune lineages. These 4 clusters were then bioinformatically isolated, and re-clustered to
identify finer separations between the clusters. For convenience, the Phenograph-based
clustering algorithm implement in Seurat (Levine et al., 2015; Xu and Su, 2015) was used to
quickly perform sub-clustering. Differentially expressed genes across clusters were then
compared to canonically expressed genes associated with major immune lineages to classify
all individual cells.

Quantifying differences between immune lineages in HPV~ versus HPV* TIL—
After major immune lineages were identified, we next evaluated the differences in
expression between lineages derived from HPV~ versus HPV* TIL. This was accomplished
by measuring the similarity of the distributions of immune lineages derived from each type
of TIL. We used the Bhattacharyya distance to measure the distance between lineages from
each type of TIL. We only evaluated distances between lineages that had 500 or more cells
present across all samples from each tumor type. We embedded all lineages in a new PCA
space based on highly variable genes present in the dataset, and retained the top 50 PCs for
each analysis. We then sampled 500 cells from each tumor type 100 times, and calculated
the Bhattacharyya distance as:

1
1 — 1 ——
DBhatta =5 (H1-#2) 2\ @1-F+ 50121 (1511 1321)72)

1+

2
we also assessed the Bhattacharyya distance between cells sampled independently of sample
group to generate a background distribution for statistical comparison.

Where %1 and 7, are the mean vectors of each distribution, and £ = . Importantly,

Overall clustering and clustering of lineage subpopulations—Initially, DRAGON
was performed on the entire dataset to identify the major trends, and to identify the major
immune lineages. Following the identification of the major lineages, cells were
bioinformatically segregated into the following groups: CD8" T cells, CD4™ T¢gny and Tieg,

Immunity. Author manuscript; available in PMC 2021 January 14.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Cilloetal.

Page 22

B cells, myeloid cells, natural killer cells, plasmacytoid DCs (pDC) and mast cells.
Segregating cells into individual lineages, then identifying highly variable genes and
reducing the dimensionality with PCA as described above allowed for a more refined
identification of trends within each immune lineage.

Identification of cluster markers—\We identified differentially expressed genes
between clustering using a Wilcoxon rank sum test, comparing natural log transformed and
library size normalized expression values between the cluster of interest and all other
clusters, or between two targeted clusters. Genes were required to be expressed in 10% of
cells in each cluster with an average log-fold change greater than 0.5 to be considered
differentially expressed, as implemented in Seurat (Butler et al., 2018). The Wilcoxon rank
sum test has the advantage of being nonparametric and therefore not sensitive to the
underlying distribution of gene expression.

Gene set enrichment to describe clusters—Gene set enrichment analysis was used to
determine the relationship between gene expression within clusters and sets of genes of
known biological significance. Gene set enrichment was performed using a modification of
the competitive gene set enrichment test CAMERA (Wu and Smyth, 2012), implemented in
our R package SingleSetGset. Briefly, gene set enrichment testing was performed by
determining the mean gene expression per cluster, and assessing the log fold-change in gene
expression between a given cluster and mean expression of the same gene in all cells outside
the given cluster as the test statistic. Gene sets used for analysis were derived from either the
C2 (curated gene sets) or C7 (immunologic gene sets) database available through the
MSigDB Collections at the Broad Institute for all gene set analysis. For subpopulations in
which the C7 gene sets were utilized, gene sets were curated from the C7 immunologic
signatures based on relevance to the cell type of interest, and only contained comparisons
between cells of the same type. This gene set enrichment analysis is implemented in the
SingleSeqGset R package.

Diffusion pseudotime analysis—To infer differentiation trajectories, diffusion analysis
was applied as implemented in the R package Destiny (Angerer et al., 2016; Haghverdi et
al., 2016). Briefly, a symmetric transition matrix was constructed based on cell adjacency
using a locally-scaled Gaussian kernel, the eigenvectors of which correspond to diffusion
components. Pseudotime was calculated by time evolution of a probability density function
described by a graph Laplacian matrix, where the first eigenvalue of the transition matrix
was removed to create a new matrix M, and diffusion pseudotime was calculated as a
distance metric between the rows of M. Input genes were selected for diffusion analysis
based on significant differential expression between clusters. Cells in CD8* T cells and
CD4* Tyeq that were in the cell cycle were excluded from diffusion analysis. Genes were
evaluated for significant associations with diffusion components by a likelihood ratio test
comparing a null model with just gene expression versus a model with gene expression and
the diffusion component of interest. Genes with a false discovery rate <1% were considered
significant. Trajectory lines were fit using locally weighted scatterplot smoothing (LOESS)
regression to demonstrate differentiation trajectories.
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Statistical assessment of cluster and sample associations—To determine
whether there were statistically significant relationships between clusters and sample types
for CD4* T¢opny, We developed a metric for cluster enrichment. This metric determines the
ratio of observed versus expected cells within a cluster, using the frequency of cells from
patient associated with each sample type. The expected frequency of cells in each cluster for
each patient was inferred by dividing the total number of cells in each cluster by the total
number of patients. The observed frequency was then divided by the expected frequency for
each patient within each group. Analysis of variance (ANOVA) was then performed to
determine if any group was statistically significantly different within a cluster. Finally, we
performed a rank sum test between the observed versus expected frequency for HPV™ and
HPV* CD4* Teony in cluster 1.

Assessment of receptor/ligand interactions—To evaluate putative interactions
between cells, we developed the CellTalker algorithm. CellTalker uses a recently described
list of receptors and ligands (including soluble ligands such as cytokines) (Ramilowski et al.,
2015) to identify putative ligand/receptor interactions between cell types. Putative receptor/
ligand interactions were assessed by first determining which receptors/ligands were
expressed on each cell, using a minimum number of reads based on an expression count of 5
in either 1% of cells (for overall interactions) or 3% of cells (B cell and CD4* Tconv
specific interactions). Additionally, ligands and receptors were only included if they were
expressed on either >5% of cells (for overall interactions) or >3% of cells (B cell and CD4*
Tconv specific interactions) from >25% of patients within a group (e.g. healthy donor
PBMC or HPV™* TIL). After a list of ligands and receptors was identified as expressed with
the above criteria, putative interaction pairs were identified by taking ligand x on cell
population )y and looking for expression of receptor zon populations within a given group of
cells (e.g. healthy donor PBMC). Interactions were evaluated for all groups, and were
displayed as circos plots (Zhang et al., 2013). Interactions were classified as either those that
were shared with healthy donor PBMC (common), those that were distinct from healthy
donor PBMC but present in more than one group, or those that were uniquely present only
within one group. This procedure for calculating putative interactions is general to groups of
cells expressions sets of ligands and receptors, and as such was extended to interactions
between clusters of B cells and clusters of CD4* Tconv.

High throughput analysis of immunofluorescence images—After images were
captured using the Vectra imaging platform, images were spectrally deconvoluted into their
component channels using inForm and Phenochart for downstream analysis in FI1JI
(Schindelin et al., 2012) and R. In F1JI, custom macro commands were written and
implemented to facilitate standardized image processing. Briefly, color image processing
was performed by removing putative spillover between adjacent channels and then
standardizing the brightness and contrast for each channel across slides. Images were then
convert to 32-bit stacks and merged into a composite image. For segmentation of B cells,
CD4* Tconv, CD4* Treg, and CD8* T cells, each independent channel was converted into
an 8-bit binary image and segmented via watershed analysis. For myeloid cells, a Gaussian
blur was used prior to converting the 8-bit image to binary. Cells were automatically counted
from each channel using Analyze Particles in FIJI. Cells were classified as CD4* Treg if
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they co-expressed CD4 and FOXP3, and were classified as CD4* Tconv otherwise, and cells
were classified as macrophages if the expressed CD68. In addition to the output of cell
counts and composite images for each slide, the F1JI macro also yielded the locations of
each cell in the x/y plane of the image. The cell counts and locations were then imported
into R for downstream analysis.

We were motivated by a recently described analytic approach (Goltsev et al., 2018) to
identify putative cell-cell proximity be identifying the neighbors of each given cell, and
calculating the odds of a cell type being associated with a neighbor. To accomplish this, we
imported the x/y positions of each cell from the FIJI macro output, and used the R package
trimesh to determine the first-tier neighbors of each cell by Delaunay triangulation. The
Delaunay triangluation was then used to determine the odds of interactions between given
cell types based on immediate proximity (Goltsev et al., 2018). Briefly, the odds ratio of co-
occurrence was calculated as the ratio between the frequency of co-occurrence with a given
cell type divided by the frequency of co-occurrence with all cell types. The odds of co-
occurrence was defined as the mean of the beta-distribution with alpha equal to the number
of edges connecting the two given cell types and parameter beta as the total number of edges
minus those connecting the two given cell types. The frequency of co-occurrence with all
cell types was defined as the total number of connections to the first cell type times the total
frequency of connections to the second cell type.

Relationship between outcomes and derived gene sets—To assess the clinical
significance of expression of a given gene set, we utilized RSEM normalized log, bulk
MRNAseq expression data available from TCGA through the Firehose pipeline hosted by the
Broad (Center, 2016). We also utilized clinical and outcomes data available through the
recently published Pan-Cancer Clinical Data (Liu et al., 2018). From these resources, we
filtered our analysis by patients that underwent testing for HPV status via p16
immunohistochemistry. We then scaled and centered the log, bulk mRNAseq data for these
patients, and used this dataset for gene set enrichment analysis.

To assess whether there was a relationship between expression of a T follicular helper
related gene set and clinical outcomes in patients with HPV~ and HPV* disease, we first
defined our TFH gene set based on the top 200 differentially upregulated genes between
CD4" Tconv cluster 1 and CD4* Tconv cluster 7, which represent the two terminal-most
differentiated states of CD4* T cells. As a test statistic for enrichment in the bulk expression
profile from each patient, we used the Kolmogorov-Smirnov (KS) test to compare genes in
the gene set versus those not in the gene set. We note that we used the KS test here for gene
set enrichment, and the correlation-adjusted Mann-Whitney test for gene set enrichment
within individual lineages. We use the KS test here, as it is more appropriate for data with
higher variance and more noise (i.e. the bulk mMRNAseq data consisting of both immune and
non-immune cells) since it requires expression of fewer genes to achieve a significant
enrichment score (Subramanian et al., 2005). We then used the cutp function in the R
package survMisc to identify outpoints for high and low expression of our TFH signature
based on the KS statistic. For proportional hazards regression, we performed both
monovariate and multivariate analysis based on progression free survival.
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Quantification and statistical analysis

Statistical analysis—Specific statistical tests applied in this study included identification
of cluster markers using a Wilcoxon rank sum test, gene set enrichment based using a
competitive gene set enrichment algorithm described above and the Kolmogorov-Smirnov
test for TCGA data, and likelihood ratio tests for pseudobulk analysis and for analysis of
genes associated with diffusion components. We also analyzed mono- and multi-variate Cox
proportional hazard regression models to relate expression profiles to outcomes from TCGA.
Correlations between cell populations determined by flow cytometry versus single-cell
RNAseq were assessed by Pearson’s correlation. In all appropriate instances, p-values were
corrected for multiple comparisons using a false discovery rate with a threshold for
significance of <1%.

Data and Software Availability

Data availability—Raw sequencing data are available through the NCBI Sequence Read
Archive (BioProject ID 579178) and processed gene barcode matrices will be available
through the Gene Expression Omnibus database (GSE139324).

Code availability—Code for all custom algorithms are publically available in GitHub
repositories. DRAGON is available at https://github.com/arc85/dragonsc, SingleSeqGSet is
available at https://github.com/arc85/singleseqgset, and CellTalker is available at https://
github.com/arc85/celltalker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Assessment of bulk changes in transcriptional profiles between patients and overall
clustering and identification of single cells.

A total of 131,224 single cells were recovered from 63 samples. (A) Live CD45* cells were
sorted from PBMC and single-cell suspensions prepared from tissues samples, and were
subjected to single-cell RNAseq. (B) Clustering of samples by pseudobulk expression
profiles reveals strong separation between PBMC and TIL, and distinct patterns of clustering
of TIL samples by the tissue of origin. (C) FItSNE visualization and DRAGON clustering of
all single cells identified 26 unique clusters across all samples. (D) The same FItSNE plot as
(C), but with all immune cell types identified. (E) The same FItSNE embedding as (C) and
(D) with all cells from each sample type shown. Shifts in density of cells are evident
between PBMC, tonsil, and TIL samples, reflective of differences in transcriptional profiles
between PBMC and tissues. (F) Quantification of differences between major immune
lineages in HPV~ and HPV* TIL. Each dot represents a subsample of 500 cells from PCA
space for HPV~ and HPV* TIL or a sample of 500 cells regardless of sample type (i.e.
random), and the height of the bar is the mean of the subsamples. All comparisons were
statistically significant due to 100 replicates of testing, but the mean fold-change between
HPV~ and HPV* TIL and random samples varied from 3.9-fold (B cells) to 1.1-fold (CD8*
T cells).
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Figure 2. CD8" T cells share a differentiation trajectory towards co-expression of inhibitory

receptors between HPV™ and HPV™* TIL.

A total of 32,734 CD8* T cells were recovered across all samples. (A) Clustering of CD8* T
cells by DRAGON revealed a total of 8 clusters across all samples. (B) Enrichment of
clusters by sample types showed that clusters 1-4 were predominantly of TIL origin, while
clusters 5-7 were composed of mixtures of PBMC, tonsil and TIL, and cluster 8 was
predominantly TIL. (C) Differential gene expression analysis revealed signature genes
associated with each cluster. Specifically, cluster 1 expressed genes associated with the cell
cycle, cluster 2 was associated with interferon responses, and clusters 3 and 4 expressed
immune checkpoints. (D) Gene set enrichment analysis to evaluate biological functions of
each cluster. Interestingly, the 2 clusters of exhausted CD8* T cells showing distinct
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biological functions. (E) Diffusion mapping embedding of CD8* T cells revealed an
activation trajectory beginning with naive peripheral CD8* T cells, and progressing to
terminally differentiated CD8" T cells. (F) The trajectories of CD8* T cells from HPV™ and
HPV* TIL were largely overlapping.

Immunity. Author manuscript; available in PMC 2021 January 14.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Cillo et al. Page 35
A B Conventional CD4* T cells F Regulatory CD4* T cells
_Z 100 — = SE1° —
£8 l || =2
58 5 40 58 75
50 50 2% @ R
o~ o S5 & S5
{ w £2 | | £
w g £E 50 w £5 %
sz 2 32 Z 0 0 2
2 o 2 o Zs i Z=
il T £8 e €3
w 23 25 i 23 %
| M=l H
2 S5
- - 40
50 50 SE o A0 85 o
£ 12 3 45 6 7 < 1 2 3 4 5 6
BIHD PBMC EIHD Tonsil @ HNSCC, BIHD PBMC BIHD Tonsil @ HNSCC, |
Oipv-C mHNSCC  gHNsce e TPy O mHNSCC g HNsce
HPV-TIL p - HPV* - -
C HEVE HPV- TIL H MG HPV-TIL ™ Py TIL

Dc3
-003 -002 -001 000 001 002

T X o
&S
DC1

%,

o

DC3

]
004 002 000 002
DC1

HPV- CD4* Tconv TIL HPV+ CD4* Tconv TIL

000 _ 002

-002

0.02
01
600
~5.02°°1 DC2
503

[N

IL-2 signaling
up (Marzec)

EIHD PBMC [ HD Tonsi
HNSCC nsce

BHey Wy
PBMC Cell cycle

(KEGG)

Cell cycle
(Reactome)

C
SHpy - mHNSCC
PBMC HPV* TIL

TNF targets
up (Phong)

TNF signaling
via NFkB (Tian) E /
Hypoxia up -0.04 -0.02 0.02 004
(Elvidge) DC1

Response to TIL Density

DC1 Axis
LPS up (Nemeth) -HNSC’"C
Hi

(RN

IFN response mHNScC
genes (Browne) HPV*TIL
IFN induced
antiviral module
(Bosco)

002 1-TFH effector 7-Effector memory

Clusters

002
02 000" 02
pCt Scaled Clusters Doz 0 o002

E Scaled
xpression 5401 2 sscores L DC1

Figure 3. Dissection of transcriptional states and differentiation trajectories in CD4* Tconv and
Treg.
A total of 45,640 CD4* T cells were recovered from all samples, with 41,889 CD4* Tconv

and 3,751 Treg. (A-B) Tconv cells were separated into 7 clusters by DRAGON. (C) Three-
dimensional diffusion map embedding of all CD4* Tconv samples reveals a branching
between CD4* Tconv from HPV* and HPV™ TIL. (D) Two-dimensional regression planes
show the differences in trajectories for CD4* Tconv from HPV™ and HPV™* TIL. (E)
Heatmap showing the top 50 differentially expressed genes from clusters 1 and 7, the two
terminal branches by diffusion analysis. Cluster 1 is associated with at T follicular helper
(TFH) phenotype, while cluster 7 has an effector memory phenotype. (F-G) We identified 6
clusters of CD4" Treg cells from all patients. The majority (89%) of CD4* Treg were
derived from TIL. (H) Gene set enrichment revealed IFN-responsive clusters (2 and 4) and
clusters enriched for TNF targets/signaling (3 and 6). (1) Diffusion map embedding of CD4*
Treg from HPV~ and HPV* TIL revealed a consistent differentiation trajectory. (J) The
density of CD4* Treg along the DC1 axis was similar for HPV~ and HPV* TIL, but a
slightly higher frequency of CD4" Treg from HPV™ TIL were earlier on the differentiation
trajectory versus HPV* TIL.
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Figure 4. Analysis of tonsil and TIL B cells reveals granular details of germinal center B cells,
and a unique B cell population associated with HPV™ TIL.

A total of 16,736 B cells were recovered from all samples. (A-B) We identified a total of 11
clusters of B cell from tonsils, TIL and PBMC. (C) Gene set enrichment revealed a germinal
center phenotype associated with clusters 1-4, enrichment of genes for plasma cells in
cluster 5, and combinations of naive, memory and switched B cells in other clusters. (D)
Diffusion map embedding of all B cells colored by clusters as in (A). This three-dimensional
embedding yielded axes related to germinal center formation (DC1), transition from naive to
memory B cells (DC4) and progression to plasma cells (DC3). Few HPV™ B cells progress
along DC1 to become germinal center B cells. (E) Same diffusion map embedding of as in
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(D), but colored by sample types. (F) The majority of HPV/™ B cells are concentrated on the
right side of the DC1 axis, while HPV* cells have a bimodal distribution along the DC1 axis
(note log scale on the y axis in [F]).
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Figure 5. Unique states and potential plasticity of myeloid cells in the TME.
We identified a total of 26,599 myeloid cells consisting of 21,737 CD14+ monocytes/

macrophages, 3,946 CD16+ monocytes, and 916 dendritic cells (DCs). (A) We identified 8
clusters of myeloid cells in PBMC, TIL and tonsil tissue by DRAGON. (B) Clusters 1 and
5-8 were enriched in tissue sites, while clusters 2-4 were largely present in PBMC. (C)
Heatmap of the top 20 genes in each cluster was used to identify states of myeloid cells
across clusters. Cluster 1 cells expressed characteristics of DCs, but also expressed /DO1.
Cluster 6 was associated with a dendritic cell phenotype, while cluster 7 was strongly
associated with cytokine and chemokine secretion. Cluster 8 was characterized by
expression of complement and MRC1 (typically associated with type 2 macrophages).
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Cluster 5 appears to express genes associated with clusters 6-8, suggestive of a possible
precursor relationship. (D-E) Three-dimensional diffusion map embedding of myeloid cells
(colored by sample type [D] and clusters [E]) reveals separation between PBMC and TIL
myeloid cells, but also differentiation from cluster 4 to 5 to 6/7/8. (F) The DC1 axis is
associated with differentiation from peripheral to tissue myeloid cells, with overlapping
portions from peripheral blood and tissue myeloid cells. (G) Two-dimensional regression
planes show differentiation from cluster 5 to 6 and 7/8. It appears that cluster 6 can either
differentiate from a spectrum of points along the 2D regression plane, or conversely that
myeloid cells can transition from cluster 6 to cluster 7/8 states.
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Figure 6. Expression patterns of receptors and ligands differ between HPV™ and HPV* TIL, and
extensive putative cell-cell communication occurs in TIL.

Expression of genes for receptors and both cell-surface and secreted ligands was evaluated,
as well as the cell-cell communication within and between cell types. (A) Log, fold change
in ligand expression between HPV~ and HPV™ TIL reveals differences associated with
chemokines/cytokines from HPV™ TIL and CD40L G and other B cell activating stimuli
from HPV* TIL. (B) Myeloid-associated receptors are highly expressed in HPV™ TIL, while
receptors associated with B cells and germinal center activity are upregulated in HPV* TIL.
(C-F) Circos plots derived from the CellTalker algorithm, showing networks of interactions
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between ligands and receptors from different sample types. Extensive putative cell-cell
communication is observable in healthy donor PBMC and tonsil tissue, and there is a
massive expansion of cell-cell communication in TIL.
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Figure 7. Immunofluorescence analysis of sections from HNSCC provides insight into putative
cell-cell communication based on spatial localization.

We performed immunofluorescence (IF) staining on tissue sections obtained from patients in
our study. (A) Slides were clustered based on the frequency of cell types present, yielding a
total of 5 clusters. (B-F) Representative IF images from each of the clusters identified in (A)
shown on the left side of each panel, and the log odds of cell-cell proximity are shown for
each image on the right side of each panel. A higher log odds of proximity implies that the
cells tend to be in close in 2 dimensions. (G-H) CellTalker was used to identify putative
interactions between the 7 clusters of CD4" Tconv (Figure 3; CD4-1 to CD4-7) and 11
clusters of B cells (Figure 4; B-1 to B-11) identified by DRAGON. Ligand/receptor
interactions between B cells and CD4* Tconv were present in both HPV~ and HPV* TIL,
but interactions between germinal center B cells (B-1 through B-4) and effector TFH cells
(CD4-1) were exclusively present in HPV* TIL. (1) Progression free survival analysis based
on gene set enrichment for TFH signature (defined in Figure 3E) from HNSCC patients from
the TCGA. Patients with higher TFH enrichment had significantly longer progression free
survival.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Fixable viability dye eFluor450 eBioscience Catalog number: 65-0863-14

Fixable viability dye eFluor780 eBioscience Catalog number: 65-0865-14

Monoclonal mouse anti-human CD45, clone 2D1, Biolegend Catalog number: 368510, RRID: AB_2566370

PE conjugated

Monoclonal rat anti-human CD4, clone RPA-T4, Biolegend Catalog number: 100552, RRID: AB_2563053
BV785 conjugated

Monoclonal mouse anti-human CD8, clone RPA- Biolegend Catalog number: 301042, RRID: AB_2563505

T8, BV650 conjugated

Monoclonal ratanti-human FOXP3, clonePCH101, eBioscience Catalog number: 48-4776-42, RRID: AB_1834364
eFluor450 conjugated

Monoclonal mouse anti-human CD25, clone BC96, | Biolegend Catalog number: 302636, RRID: AB_2562910
BV711 conjugated

Monoclonal mouse anti-human CD56, clone Biolegend Catalog number: 318316, RRID: AB_604104
HCD56, Alexa700 conjugated

Monoclonal mouse anti-human CD19, clone Biolegend Catalog number: 302216, RRID: AB_314246
HIB19, PE-Cy7 conjugated

Monoclonal mouse anti-human CD20, clone 2H7, eBioscience Catalog number: 45-0209-42, RRID: AB_10717086
PerCP-Cy5.5 conjugated

Monoclonal mouse anti-human HLA-DR, clone eBioscience Catalog number: 11-9952-41, RRID: AB_2572542
L243, FITC conjugated

Monoclonal mouse anti-human CD123, clone 6H6, Biolegend Catalog number: 306020, RRID: AB_2563827
BV650 conjugated

Monoclonal mouse anti-human CD14, clone 63D3, Biolegend Catalog number: 367114, RRID: AB_2566716
Alexa700 conjugated

Monoclonal mouse anti-human CD11C, clone 3.9, Biolegend Catalog number: 301642, RRID: AB_2564083

PE-Dazzle conjugated

Monoclonal mouse anti-human CD15, clone
W63D, BV711 conjugated

BD Bioscience

Catalog number:

563142

Monoclonal mouse anti-human CD66b, clone
G10F5, APC conjugated

Biolegend

Catalog number:

305118, RRID: AB_2566607

Monoclonal mouse anti-human CDS8, clone
ACI3160A

Biocare Medical

Catalog number:

ACI3160A

Monoclonal mouse anti-human CD20, clone L26

Leica Biosystems

Catalog number:
AB_10983209

CD20-L26-L-CE, RRID:

Monoclonal rabbit anti-human CD68, clone Cell Signaling Catalog number: 76437S
D4B9C
Monoclonal rabbit anti-human FOXP3, clone Cell Signaling Catalog number: 12653S

D608R

Monoclonal rabbit anti-human CD4, clone RM

Biocare Medical

Catalog number:

API3209 AA

Monoclonal mouse anti-human Pan-Cytokeratin,
clone AE1/AE3

Santa Cruz

Catalog number:

AEL/AE3

Biological Samples

See Table S1 for a list of study subjects.

Chemicals, Peptides, and Recombinant Proteins

Foxp3 / Transcription Factor Staining Buffer Set

| eBioscience

Catalog number:

00-5523-00
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Critical Commercial Assays

Chromium Single Cell 3' Library & Gel Bead Kit
V2, 16 rxns

10X Genomics

Catalog number: 120237

Perkin Elmer 7 color manual kit

Perkin Elmer

Catalog number: NEL811001KT

Illumina NextSeq 500/550 High Output Kit v2
(150 cycles)

Illumina

Catalog number: TG-160-2004

Deposited Data

Raw sequencing data are available through the NCBI Sequence Read Archive (BioProject ID 579178) and processed gene barcode matrices will
be accessible via the Gene Expression Omnibus (GSE139324).

Software and Algorithms

CellRanger (version 2.1.0)

10X Genomics

https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-
ranger

FlowJo version 10

TreeStar

https://www.flowjo.com/

R version 3.5.1 (“Feather Spray”)

The R Foundation for
Statistical Computing

https://www.r-project.org/

Seurat

Andrew Butler, Paul Hoffman,
Peter Smibert, Efthymia
Papalexi, Rahul Satija

Citation: Butler et al (Butler et al., 2018)
Hosted on: https://satijalab.org/seurat/

caret

Kuhn, M.
Wing, J.
Weston, S.
Williams, A.
Keefer, C.
Engelhardt, A.
Cooper, T.
Mayer, Z.
Kenkel, B.

R Core Team.
Benesty, M.
Lescarbeau, R.
Ziem, A.
Scrucca, L.
Tang, Y.
Candan, C.
Hunt, T.

Citation: Kuhn et al (Kuhn et al, 2019)

Destiny

Philipp Angerer, Laleh
Haghverdi, Maren Bdttner,
Fabian Theis, Carsten Marr,
Florian Bittner

Citation: Angerer et al (Angerer et al., 2016) and
Haghverdi et al (Haghverdi et al., 2016)
Hosted on: https://bioconductor.org/

DeteRministic Annealing Gaussian mixture mOdel
clusteriNg algorithm (DRAGON)

Anthony Cillo, Vignali Lab

Hosted on: http://www.github.com/arc85/dragonsc

CellTalker

Anthony Cillo, Vignali Lab

Hosted on: http://www.github.com/arc85/celltalker

SingleSeqGset

Anthony Cillo, Vignali Lab

Hosted on: http://www.github.com/arc85/
singleseqgset

Phenochart version 1.0.9 Perkin Elmer www.perkinelmer.com
inForm version 2.3 Perkin Elmer www.perkinelmer.com
Fiji 64-bit ImageJ http://imagej.net/Fiji

Citation: Schindelin et al (Schindelin et al., 2012);
RRID: SCR_003070

Immunity. Author manuscript; available in PMC 2021 January 14.


https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://www.flowjo.com/
https://www.r-project.org/
https://satijalab.org/seurat/
https://bioconductor.org/
http://www.github.com/arc85/dragonsc
http://www.github.com/arc85/celltalker
http://www.github.com/arc85/singleseqgset
http://www.github.com/arc85/singleseqgset
http://www.perkinelmer.com/
http://www.perkinelmter.com/
http://imagej.net/Fiji

	SUMMARY
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Single cell survey of immune lineages in HNSCC
	CD8+ T cells have a continuous differentiation trajectory
	Extensive CD4+ Tconv heterogeneity and differentiation trajectories
	Reciprocal IFN- and TNFR-related signaling in CD4+ Treg
	Germinal-center B cells are found in HPV+ TIL
	A common trajectory yields divergent myeloid states
	Global crosstalk between immune cells
	Spatial organization is consistent with transcriptional signatures
	Discussion

	STAR Methods
	Contact for reagent and resource sharing
	Experimental Model and Subject Details
	Method Details
	Processing of patient samples
	Flow cytometry of major cell lineages
	Immunofluorescence staining of tissue sections
	Acquisition of immunofluorescence images
	Generation of single cell libraries
	Sequencing of single cell libraries
	Demultiplexing, alignment, and generation of gene/barcode matrices
	Quality control metrics and filtering
	Pseudobulk analysis
	Post-hoc power analysis using pseudobulk RNAseq data
	Library size normalization for single-cell RNAseq analysis
	Dimensional reduction and visualization
	Deterministic annealing Gaussian Mixture Model clustering


	Table T1
	Quantification and statistical analysis
	Statistical analysis

	Data and Software Availability
	Data availability
	Code availability


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T2

