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SUMMARY

Head and neck squamous cell carcinoma (HNSCC) arises through exposure to environmental 

carcinogens or malignant transformation by human papillomavirus (HPV). Here, we assessed the 

transcriptional profiles of 131,224 single cells from peripheral and intra-tumoral immune 

populations from patients with HPV− and HPV+ HNSCC and healthy donors. Immune cells within 

tumors of HPV− and HPV+ HNSCC displayed a spectrum of transcriptional signatures, with 

helper CD4+ T cells and B cells being relatively divergent and CD8+ T cells and CD4+ regulatory 

T cells being relatively similar. Transcriptional results were contextualized through multispectral 

immunofluorescence analyses and evaluating putative cell-cell communication based on spatial 

proximity. These analyses defined a gene expression signature associated with CD4+ T follicular 

helper cells that is associated with longer progression free survival in HNSCC patients. The 

datasets and analytical approaches herein provide a resource for the further study of the impact of 

immune cells on viral- and carcinogen-induced cancers.

Graphical Abstract
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INTRODUCTION

HNSCC occurs with an annual incidence of nearly 600,000 cases globally (Ferlay et al., 

2015), and most patients present with locally advanced disease (Argiris et al., 2008; Seiwert 

and Cohen, 2005). HNSCC arises through either genetic alterations driven by exposure to 

carcinogens (i.e. alcohol and/or tobacco), or through malignant transformation following 

high-risk HPV infection (Carvalho et al., 2005). While the majority of HNSCC is associated 

with tobacco use, the incidence of HPV+ HNSCC has risen substantially in the West (Brown 

et al., 2011, 2012; Colevas, 2013; LeHew et al., 2017; Weatherspoon et al., 2015), and up to 

half of HNSCC cases in the United States are now caused by infection with high-risk HPV 

(mostly HPV-16, but also −18, −31, and −33) (Fakhry and D'Souza, 2013; Kreimer et al., 

2005).

Clinically, patients afflicted with HPV+ HNSCC have better overall survival compared to 

patients with HPV− disease (Ang et al., 2010). Differences in the tumor infiltrating immune 

populations have also been observed in HNSCC, with a higher frequency of intra-tumoral B 

cells present in HPV+ HNSCC (Russell et al., 2013; Wood et al., 2016), and a higher 

frequency of dysfunctional CD8+ T cells in HPV− HNSCC (Kansy et al., 2017). The duality 

of carcinogen- versus virally-induced cancer is a unique aspect of HNSCC, and presents an 

opportunity to assess differences in the immune landscape of two distinct cancer etiologies 

that occur in a similar anatomical location.

Traditionally, both HPV− and HPV+ HNSCC have been treated with a combination of 

surgery, chemotherapy, and radiation (Bourhis et al., 2006; Pignon et al., 2009). These 

therapies have generally been associated with significant morbidity, and many patients 

relapse within 3 to 5 years, leading to poor prognosis and a lack of additional treatment 

options (Jayaram et al., 2016; Vermorken et al., 2008). Immunotherapy has created a new 

paradigm for the treatment of cancer, and recent clinical trials have demonstrated the 

efficacy of targeting immune checkpoints (Brahmer et al., 2012; Topalian et al., 2012). 

Immunotherapy for the treatment of HNSCC has similarly led to survival benefits in 

patients, demonstrating that the immune system can be targeted to achieve clinical benefits 

in HNSCC (Burtness et al., 2019; Ferris et al., 2016). Despite this clinical success, only 

approximately 20-30% of HNSCC patients achieve a survival benefit following programmed 

death 1 (PD-1) or programmed death ligand 1 (PD-L1) blockade (Burtness et al., 2019; 

Ferris et al., 2016), highlighting the need to better understand the complex biology 

underlying the state of the immune system within tumor microenvironment of HNSCC. 

Further insight into immune cell states will help identify features associated with 

responsiveness (or conversely lack of responsiveness) to currently available 

immunotherapies, and will inform the development of single- and multi-agent 

immunotherapy regimens in the clinic. Comparing the immune profiles in HPV− and HPV+ 

HNSCC is likewise a prerequisite for prioritizing which cell types and molecules to target 

for the development of novel immunotherapies.

Here, we compared the immune landscape of mutation- versus virus-driven cancer in 

treatment-naïve HNSCC by scRNAseq analysis and multispectral immunofluorescence to 

characterize spatial localization patterns and cell neighborhoods in the TME. Our analyses 
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provide insight into the immune lineages in HPV+ and HPV− HNSCC, the transcriptional 

states and differentiation trajectories of these cells, and cellular cross-talk with potential 

relevance to tumor progression. Moreover, our analysis defines a gene set with prognostic 

potential in the clinic. Altogether, these datasets and analytical approaches provide a 

resource for the further study of the immune contribution to viral- and carcinogen-induced 

cancers.

RESULTS

Single cell survey of immune lineages in HNSCC

We analyzed the single-cell transcriptomes of all viable cells of hematological origin (i.e. 

CD45+ cells) isolated immediately following surgery from paired blood and tissue obtained 

from the primary tumors of 18 HPV− HNSCC patients and 8 HPV+ HNSCC patients, all of 

whom were immunotherapy treatment-naïve (Figure 1A and Table S1). For comparison, 

single-cell transcriptomes were also generated from viable CD45+ cells sorted from 5 tonsil 

tissues from independent patients with sleep apnea (i.e., patients without cancer) and 

peripheral blood mononuclear cells (PBMC) from 6 healthy donors. In total, we recovered 

131,224 individual immune cells that passed quality control measures (Figure S1A), 

expressing a mean of 1,262 genes (Figure 1A and STAR Methods).

Pseudobulk expression matrices (Figure 1B and STAR Methods) constructed from our 

scRNAseq data revealed separation of samples by PBMC and tissue origin, and segregrated 

clusters of tumor infiltrating leukocytes (TIL) and tonsil samples. We recovered expected 

differences between PBMC and TIL, such as myeloid cells (LYZ and FCGR3A) in PBMC 

and immunomodulatory cytokines in TIL (Figure S1B). Between clusters of TIL (Figure 

S1C), we found that clusters 3 and 4 shared a partial expression pattern with samples derived 

from tonsil tissue (cluster 1) including B cells (MS4A1, CD19) and activated T cell genes 

(CD3D and HLA-DRB5), but also expressed a small cluster of cytotoxic genes (e.g., 

GZMB) distinct to TIL. Based on this pseudobulk data, we performed a bootstrapped post-

hoc power analysis (STAR methods), and found that 9 patients were required in a balanced 

study design to achieve 80% power to find differentially expressed genes in TIL (Figure 

S1D). Overall, this pseudobulk RNAseq analysis revealed large shifts in gene expression 

between PBMC and TIL samples, and suggested substructure related to both differential 

infiltration and transcriptional states between HPV− and HPV+ TIL.

We next developed and implemented a DeteRministic Annealing Gaussian mixture mOdel 

clusteriNg algorithm (DRAGON; Figure S2A and STAR methods) to identify clusters of 

cells present across our dataset (Figure 1C and Table S2). DRAGON, which is a novel 

implementation of deterministic annealing (Rose, 1998; Rose et al., 1990a; Rose et al., 

1990b) for scRNAseq, performs clustering using a process like the physical process of 

annealing. Briefly, DRAGON performs clustering by progressively “cooling” the system at 

various “temperatures”, which effectively places a constraint on the minimum disorder of 

the system proportional to the “temperature”. Using DRAGON, rounds of expectation/

maximization at successively decreasing temperatures leads to a final solution at the global 

minimum, but also provides intermediate solutions at decreasing temperatures as clusters are 

generated (Figure S2B). This model has several advantages over other clustering algorithms 
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by providing statistically principled criteria for cluster genesis, avoidance of local minima by 

progressively reducing the disorder with successive rounds of expectation/maximization, 

parameterization of each cluster as a component of a Gaussian mixture model, and 

scalability to large datasets by using parallel processing for key components of the algorithm 

(STAR Methods). Additionally, the commonly used Louvain clustering algorithm has 

several known limitations including a resolution limit (Fortunato and Barthelemy, 2007) and 

the potential for detection of disconnected communities (Traag et al., 2019). Benchmarking 

of DRAGON versus Louvian clustering (implemented in Seurat; STAR Methods) revealed 

that the two algorithms both achieved high accuracy (Louvian: 90.3%; DRAGON: 90.6%; 

p=0.88 by two-sample t-test) over a wide range of simulated scRNAseq data (Figure S2C) 

generated by splatter (Zappia et al., 2017). Overall, DRAGON and Louvian clustering 

perform similarly, but are based on different frameworks. The 26 clusters determined by 

DRAGON were visualized by FItSNE (Linderman et al., 2019), a fast interpolation-based 

tSNE (Figure 1C).

We next used the clustering solution of DRAGON at a relatively high temperature of 45 

(Figure S2B) to identify major immune lineages. Differential gene expression between these 

four clusters was found to be strongly related to CD4+ T cells, B cells, cytotoxic cells (CD8+ 

T cells and NK cells), and myeloid cells (Figure S2D). We next bioinformatically separated 

and re-clustered cells from each of these 4 lineages to identify cell types based on canonical 

gene expression patterns (Figure S2E). The inferred cell types were strongly correlated with 

those identified by flow cytometry on paired samples from a subset of patients (Figure S2F-

I). These inferred cell types were then projected onto the FItSNE of the full dataset (Figure 

1D and Table S2). We also performed a second post-hoc power analysis, and found that 

~60,000 cells are required to have an 80% chance of detecting a cluster of ~300 cells (i.e the 

size of the rarest population, mast cells; Figure S1E).

We next assessed shifts in transcriptional profiles across patient samples by viewing the 

same FItSNE projections with cells colored by sample types (Figure 1E). To quantify these 

shifts between major immune lineages in HPV− and HPV+ TIL, we measured the distance 

between immune lineages from each tumor type using the Bhattacharyya distance (Figure 

1F; STAR Methods). For comparison, we generated background distributions of each major 

lineage by sampling cells independently of tumor type. This approach controls for the 

number of cells present in each sample by sub-sampling the same number of cells, which 

was important due to the observed numerical differences in infiltration (Figure S1F). 

Strikingly, this analysis revealed large differences between B cells, myeloid cells and CD4+ 

Tconv between HPV− and HPV+ TIL (Figure 1F). In contrast, CD8+ T cells and CD4+ Treg 

were much more similar between HPV− and HPV+ TIL. Overall, we characterized broad 

changes in transcriptional profiles between PBMC and TIL (and between groups of TIL 

samples), identified cell types from major immune lineages, and quantified differences in the 

major lineages commonly found in HPV− versus HPV+ TIL.

CD8+ T cells have a continuous differentiation trajectory

To address the transcriptional states of CD8+ T cells in viral- versus carcinogen-induced 

HNSCC, we bioinformatically isolated and re-clustered CD8+ T cells. A total of 8 clusters 
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were derived following DRAGON clustering (Figure 2A and Table S3). CD8+ T cells from 

TIL were most frequently found in clusters 1-4, while those from PBMC and tonsil were 

more frequently found in clusters 5-8 (Figure 2B), although there was also notable overlap 

between PBMC and TIL populations in some clusters. We next performed differential gene 

expression analysis, and found distinct sets of genes governing each cluster (Figure 2C). 

Specifically, cluster 1 was associated with cycling cells (e.g. MKI67); cluster 2 was 

associated with IFN-response genes (e.g. ISG15); clusters 3 and 4 expressed checkpoint 

markers associated with exhaustion (e.g. PDCD1 [gene for PD-1], CTLA4 and HAVCR2 
[gene for TIM3]); cluster 5 was generally quiescent and expressed low levels of effector 

molecules (e.g. GZMH and KLRD1); cluster 6 expressed markers associated with naïve or 

memory cells (e.g. CCR7 and CD27); cluster 7 expressed genes associated with early 

activation (e.g. JUNB and FOSB); and cluster 8 expressed genes associated with effector 

function (e.g. KLRG1 and GZMH). We next assessed the biological functions associated 

with these clusters by using a competitive gene set enrichment test implemented in the new 

R package SingleSeqGset developed by our lab (STAR Methods). Interestingly, we found 

that the clusters containing exhausted CD8+ T cells differed in several ways, such as 

upregulation of co-simulation in cluster 3 and hypoxia signaling and interferon responses in 

cluster 4 (Figure 2D and Table S4).

We next performed diffusion map analysis (a non-linear dimensional reduction technique; 

STAR Methods) to infer differentiation trajectories (Angerer et al., 2016; Haghverdi et al., 

2016). The resulting two-dimensional diffusion map embedding uncovered a smooth 

trajectory that linked PBMC to TIL (Figure 2E and Table S5), and that was overlapping for 

HPV+ and HPV− TIL (Figure 2F).

To better characterize the relationship between diffusion trajectories and clusters, we 

visualized each cluster of CD8+ T cells on the diffusion map embedding, yielding a pattern 

consistent with gene set expression analysis (Figure S3A). We next characterized the two 

diffusion components (DC1 and DC2) by identifying the genes that were associated with 

each component (STAR Methods and Table S5). DC1 was strongly associated with a 

terminally differentiated phenotype, with progression along DC1 associated with increased 

co-expression of inhibitory receptors such as LAG3, CTLA4, PDCD1 (gene for PD1) and 

HAVCR2 (gene for TIM3) (Figure S3B). We also found high expression of ENTPD1 (gene 

for CD39) and CXCL13 by these terminally differentiated CD8+ T cells, suggestive of a role 

of these cells in adenosine metabolism (Deaglio et al., 2007) and attempted B cell 

recruitment (Ansel et al., 2002). DC2 was associated with a memory phenotype (Figure 

S3C), governed by co-expression of CD27, CCR7, EOMES and other genes associated with 

memory formation (Banerjee et al., 2010; Mahnke et al., 2013). In summary, we identified 

clusters of CD8+ T cells and inferred a differentiation trajectory that was shared between 

tumor types. This suggests that immunotherapy strategies targeting CD8+ T cells may be 

applicable to both viral- and carcinogen-induced HNSCC.

Extensive CD4+ Tconv heterogeneity and differentiation trajectories

Next, we compared the transcriptional landscape of CD4+ T cells between HPV− and HPV+ 

HNSCC, analyzing CD4+ Tconv cells and CD4+ Treg cells separately. Clustering of CD4+ 
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Tconv cells revealed 7 distinct clusters (Figure 3A and B and Table S3). Gene set 

enrichment analysis (Figure S4A and Table S4) showed that PBMC-derived CD4+ Tconv 

were enriched for gene sets associated with naïve and memory (cluster 2), effector memory 

(cluster 3), and a mixture of effector and central memory (cluster 5). In CD4+ Tconv from 

TIL, we found that clusters 1 and 6 were comprised mostly of CD4+ Tconv from HPV+ TIL 

and tonsil CD4+ Tconv, while CD4+ Tconv from HPV− TIL were distributed between 

clusters 4 and 7. Tonsil and TIL CD4+ Tconv showed enrichment for a complex series of 

interrelated T follicular helper (TFH) and type 1 helper (TH1) signatures, with additional 

evidence of effector memory phenotypes. We statistically assessed the association between 

sample types and clustering for CD4+ Tconv (Figure S4B and STAR Methods), and we 

found that HPV+ TIL had significant enrichment of cells in this cluster versus HPV− TIL 

(p=0.0044, rank sum test).

We next performed diffusion map embedding to reconstruct differentiation trajectories of 

CD4+ Tconv. In contrast to CD8+ T cells, visualization of the first 3 dimensions of the 

resulting diffusion map yielded a branching trajectory (DC1; Figure 3C and Table S5). We 

next fit regression planes between DC1, DC2 and DC3 for CD4+ Tconv derived from HPV− 

and HPV+ TIL, and found dramatically different differentiation planes between tumor types 

(Figure 3D). When viewing the first 2 dimensions of the diffusion map in conjunction with 

the inferred diffusion pseudotime (DPT; Figure S4C and D) as the third dimension, it was 

clear that DC1 and DC2 were both positively correlated with DPT, but were largely 

orthogonal to each other. Consistent with gene set enrichment analysis, cluster 2 was the 

most naïve cluster, and cells then passed through a continuous intermediate phenotype 

progressing towards terminal states defined by either cluster 1 or cluster 7 (Figure S4D). Top 

differentially expressed genes between clusters 1 and 7 uncovered TFH-related genes 

associated with cluster 1, and activation, interferon response and memory genes associated 

with cluster 7 (Figure 3E).

We next evaluated the genes associated with each of the diffusion components, and found a 

strong association between expression of CXCR5 and PDCD1 with DC1, consistent with the 

proposed TFH signature of these cells (Figure 3E). However, when viewing the expression 

of CXCR5 and PDCD1 in a three-dimensional embedding with DC1 and DPT, we found 

that co-expression of CXCR5 and PDCD1 is bimodal, with co-expression at early and late 

DC1 with respect to DPT (Figure S4E). Interestingly, we also found co-expression of other 

known inhibitory receptors (LAG3 and HAVCR2) at the same point where CXCR5 and 

PDCD1 co-expression is evident. This suggests a fate decision at this early point in DPT, 

where cells can either progress to CD4+ TFH or adopt a phenotype with co-expression of 

inhibitory receptors that potentially inhibits further differentiation. In summary, we found 

unique differentiation trajectories of CD4+ Tconv associated with HPV+ and HPV− HNSCC.

Reciprocal IFN- and TNFR-related signaling in CD4+ Treg

CD4+ Treg suppress anti-tumor immune responses in the TME, and recent studies in lung 

(Guo et al., 2018) and breast (Azizi et al., 2018) cancers have described unique 

transcriptional states of Treg in the TME. Using DRAGON, we found 6 distinct clusters that 

were largely dominated by TIL Treg (Figure 3F and G; Figure S5A and Table S3). We next 
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performed gene set enrichment analysis to characterize the general biological activities in 

each cluster (Figure 3H and Table S4). Interestingly, clusters 2 and 4 had enrichment for 

gene sets associated with IFNa-response (IFN response genes [Browne]) and general IFN-

response genes (IFN-induced antiviral module [Bosco]), while clusters 3 and 6 were 

enriched for tumor necrosis factor receptor (TNFR) family signaling pathways. The modules 

associated with IFN-response and TNFR signaling were mutually exclusive, suggesting that 

these cells respond to different signals depending on their differentiation state.

Diffusion map embedding of CD4+ Treg revealed that DPT was strongly correlated with 

DC1 (Figure 3I, Figure S5B and Table S5). There was a subtle difference in density of HPV
− versus HPV+ TIL Treg along the DC1 axis, with more Treg from HPV− TIL at earlier DPT 

(Figure 3J). Consistent with the expression pattern inferred by gene set enrichment and 

cluster progression, we found that TNFRSF18 (GITR), TNFRSF9 (CD137; 4-1BB) and 

TNFRSF4 (OX40) were positively correlated with DC1 and were co-expressed at late DPT 

(Figure S5C). This observation supports the notion that the TNFR super-family is important 

for the maintenance of effector Treg cell populations (Vasanthakumar et al., 2017). 

Conversely, we found that IFN-response genes IFITM1, IFIT1, IFIT3, and ISG20 were 

expressed at early DPT and were turned off as pseudotime progressed (Figure S5D), 

suggesting a potential role of IFN-signaling in early activation of Treg. Taken together, this 

analysis suggests that Treg share a similar trajectory between HPV− and HPV+ HNSCC 

(although are more frequent at different states), and that IFN-related signaling and TNFR-

family signaling are reciprocally related during differentiation.

Germinal-center B cells are found in HPV+ TIL

B cells within the TME have been found to correlate positively with overall survival across 

human tumor types (Al-Shibli et al., 2008; Milne et al., 2009; Nedergaard et al., 2008; Shi et 

al., 2013; Shimabukuro-Vornhagen et al., 2014; Woo et al., 2014), and can affect CD4+ 

Tconv cell phenotypes (Bruno et al., 2017). Clustering of B cells revealed 11 clusters 

(Figure 4A and Table S3). B cells from HPV+ TIL and tonsil tissue were strongly enriched 

in clusters 1-4, while B cells from HPV− TIL were mostly present in clusters 5 and 7 (Figure 

4B). Gene set enrichment analysis identified naïve (clusters 6 and 9), memory (clusters 8 

and 11), plasma cells (cluster 5), and germinal center B cells (clusters 1-4) (Figure 4C and 

Table S4). Overlapping enrichment of cell cycle and germinal center gene sets implies that 

clusters 3 and 4 are centroblasts, consistent with rapidly proliferating B cells found in the 

dark zone (Victora, 2014). Conversely, clusters 1 and 2 are also enriched for germinal center 

gene sets, but lack expression of cell cycle genes, suggesting these cells are centrocytes in 

the light zone, where they are subjected to selection by CD4+ TFH. B cells in HPV− TIL, in 

contrast to HPV+ TIL, were commonly found to be either plasma cells (cluster 5) or 

switched memory B cells (cluster 7). The presence of only plasma or early switched memory 

B cells in HPV− TIL states may be consistent with lack of CD4+ TFH help.

Diffusion map embedding of B cells (Figure 4D and E and Table S5) revealed a complex 

process of differentiation across multiple axes. Inspection of the clusters (Figure 4D) and 

sample types (Figure 4E) revealed that DC4 was associated with progression from naïve to 

memory B cells. However, DC1 intersects DC4 halfway between the minimum and 
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maximum of DC4, with progression from right to left along DC1 associated with germinal 

center formation. Consistent with the lack of germinal center B cells in HPV− HNSCC, B 

cells from HPV− HNSCC were more enriched towards positive values of DC1 (Figure 4F). 

Plasma cells (cluster 5) are located closer to memory B cell clusters, consistent with exit 

from germinal center reactions. Our analysis of B cells in the TME of HPV− versus HPV+ 

HNSCC led to the conclusion that germinal center B cells are present across various stages 

of progression through germinal center reactions in HPV+ HNSCC, while B cells are found 

in fewer numbers and non-germinal center states in HPV− HNSCC.

A common trajectory yields divergent myeloid states

Myeloid cells play important roles in shaping the immune response in the TME, and can be 

broadly classified as tumor associated macrophages (TAMs) and dendritic cells. TAMs are 

generally considered to be either anti- or pro-tumor (i.e. M1-like or M2-like, respectively) 

(Yang and Zhang, 2017). Recent studies have revealed more extensive heterogeneity among 

myeloid cells in the TME, with TAMs co-expressing features of both M1 and M2 in breast 

cancer (Azizi et al., 2018), and unique states of myeloid cells lung cancer (Lavin et al., 

2017). We identified 8 clusters of myeloid cells, with clusters 2-4 primarily present in 

PBMC and clusters 1 and 5-8 present in TIL (Figure 5A and B and Table S3).

To better understand TIL populations of myeloid cells, we investigated top differentially 

expressed genes across clusters (Figure 5C and Table S3). This led to identification of 

cluster 2 as CD16+ monocytes, and two clusters of CD14+ monocytes (clusters 3 and 4). 

Importantly, cluster 3 had low expression of FCGR3A (gene for CD16), suggesting that it 

was a unique CD14+ monocyte cluster and not a transitional population of CD14+CD16+ 

monocytes. Within TIL, clusters 5 and 7 appeared to be highly secretory, expressing high 

levels of chemokines and cytokines. Clusters 1, 6, and 8 expressed relatively high levels of 

HLA molecules, consistent with antigen presenting cells, but differed in several ways. 

Cluster 1 had high expression of IDO1, CCL17 and CCR7, cluster 6 expressed CD1C 
(consistent with conventional DCs) and cluster 8 expressed complement. Cluster 8 also 

expressed the canonical M2 marker MRC1 (gene for CD206), although it was not among the 

top differentially expressed genes. Clusters 1 and 8 were more frequently found in HPV− 

TIL, suggestive of a potential immunosuppressive role in patients with HPV− disease.

We next performed diffusion map embedding, and identified several branches (Figure 5D 

and E and Table S5). Cluster 5 is central to the fate of myeloid cells in the TME, as it 

connects CD14+ monocytes from PBMC to TIL populations, and suggests a surprisingly 

smooth transition in expression states between PBMC and TIL CD14+ cells (Figure 5F). In 

the positive direction on the DC1 and DC2 axes, cluster 5 progresses towards clusters 7 and 

8, which represent one terminal branch of this trajectory (Figure 5E-G). Cluster 6 appears to 

emerge from cluster 5 broadly across the trajectory towards clusters 7 and 8, suggestive of 

possible plasticity along this differentiation trajectory (Figure 5G). Cluster 8 appeared to an 

immature DC cluster, as it precedes more mature DCs on a shared trajectory (cluster 6). Our 

characterization of myeloid lineages in TME identified TAMs beyond the standard M1/M2 

paradigm, smooth transitions between cell states, and several DC populations.
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Global crosstalk between immune cells

Single cell transcriptomic analysis not only reveals cell intrinsic information, but can also 

probe putative cell extrinsic interactions through interrogation of ligand (surface or secreted) 

and receptor expression. To map possible cell-cell interactions, we first identified expression 

of ligands/receptors using a list of 708 unique ligands and 691 unique receptors that together 

can form a combined 2,557 potential interaction pairs (STAR Methods) (Ramilowski et al., 

2015). We first evaluated the top ligands and receptors expressed in HPV− and HPV+ 

HNSCC (Figure 6A and B).

Of the larger potential set of ligands and receptors, we next identified those that participated 

in putative interactions within and between immune lineages using a new R package that we 

have developed called CellTalker (for evaluating cell-cell communication). Using CellTalker, 

we identified 168 ligands and 194 receptors that participated in 481 unique interactions. We 

next used the results from CellTalker to generate circos plots (Zhang et al., 2013) for 

visualization of these interactions. In the circos plots, each interaction is depicted as a line 

linking a ligand to a receptor across cell types (Figure 6C-F and Table S6). Interactions were 

broadly classified into three types: common interactions (those occurring in at least one 

other sample type), unique versus healthy donor PBMC, or unique versus all other sample 

types. Although there were many putative interactions in PBMC and tonsil samples, we 

found massive expansion of putative interactions across TIL populations. In addition to 

expanded cell-cell communication in the TME, we found unique axes of communication in 

HPV− and HPV+ TIL. While useful from a global perspective, understanding the spatial 

localization of immune cells to each other would provide a more rigorous framework for 

assessing putative cell-cell communication based on proximity.

Spatial organization is consistent with transcriptional signatures

Single cell transcriptomic analysis provides high-dimensional insight into the transcriptional 

states of individual cells, but provides no information about the spatial localization of cells 

in situ. As a complement to our scRNAseq analysis, we performed multispectral 

immunofluorescence (IF) on paired tissue sections from the same patient cohort (STAR 

Methods; Figure S6A). We captured 2-5 regions of interest (ROI) per slide, resulting in a 

total of 90 ROI from 24 patients.

After downstream processing (STAR Methods), we hierarchically clustered individual ROI 

based on the frequency of each immune cell subset present (Figure 7A, Figure S6B), reveal 

clusters associated with enrichment for specific immune lineages (Figure S6C and Figures 

7B-F, left panels). From each image, we performed Delunay triangulation to identify the 

nearest neighbors of each cell in 2 dimensions (STAR Methods and Figure S6D), with the 

goal of identifying cells types that were most likely to interact with each other based on 

proximity. The odds of a cell type interacting with another given cell type was expressed as 

the log-odds ratio (Figure 7B-F, right panels). In clusters with the highest frequencies of B 

cells (clusters 3 and 5), B cells had the highest odds of interacting with other B cells, 

followed by interacting with CD4+ Tconv (Figure 7D and F). Indeed, in cluster 5 ROIs, we 

identified an organization pattern of immune cells reflective of tertiary lymphoid structures 

(TLS). Based on these spatial relationship, we next used CellTalker to infer specific 
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differences in putative cell-cell communication networks between B cells and CD4+ Tconv 

in HPV− versus HPV+ TIL (Figure 7G and H and Table S7). Interestingly, and consistent 

with scRNAseq and IF analyses, we found putative ligand/receptor interactions between B 

cells and CD4+ Tconv in both HPV− and HPV+ TIL, but only HPV+ TIL had putative 

interactions between germinal center B cells (clusters B-1 through B-4) and TFH (cluster 

CD4-1).

We next utilized clinical data and bulk mRNAseq data from The Cancer Genome Atlas 

(TCGA) (Liu et al., 2018) to determine if CD4+ TFH signatures in HNSCC were related to 

survival (STAR Methods). We first filtered TCGA data to only include patients that 

underwent testing for p16, a surrogate for HPV+ HNSCC. Consistent with previously 

published data (Ang et al., 2010), we found a trend towards improved overall survival 

(HR=0.40 for HPV+ vs HPV−, p=0.071; data not shown), and significantly better 

progression-free survival (PFS) (HR=0.35 for HPV+ versus HPV− HNSCC, p=0.019; data 

not shown) in patients with HPV+ HNSCC (STAR Methods). We next evaluated enrichment 

of TFH gene signatures (derived from the differentially expressed genes associated with 

effector TFH from our scRNAseq data) across patients, and used stratification based on TFH 

scores to perform a monovariate progression-free survival (PFS) analysis (Figure 7I; STAR 

Methods). PFS probability was statistically significant in monovariate analysis, with a 

hazard ratio of 0.34 for high TFH versus low TFH enrichment (p=0.0029). Importantly, 

improved survival remained significantly associated with high TFH enrichment (HR=0.41, 

p=0.024) in a multivariate survival analysis after correction for 8 co-variates including T cell 

infiltration (Figure S7A). Taken together, we have identified unique patterns of immune 

infiltration across tissue sections, have characterized unique TFH effector and germinal 

center interactions using CellTalker and our scRNAseq data in HPV+ and HPV− HNSCC, 

and found that a transcriptional signature of TFH enrichment correlated with improved PFS.

Discussion

Immunotherapy has had unprecedented success, but still only substantively benefits a small 

proportion of patients and tumor types (Brahmer et al., 2012; Ferris et al., 2016; Ferris et al., 

2018; Wolchok et al., 2017). Analysis of pre-therapy states of immune lineages is required 

to rationally identify new therapeutic strategies, as TME of different tumor types have 

unique immune signatures (Thorsson et al., 2018). In this study, we have used new 

bioinformatics tools and approaches to pursue an in-depth analysis of all CD45++ immune 

cells in the TME of patients with HNSCC of either carcinogen- (HPV−) or viral- (HPV+) 

mediated carcinogenesis. More generally, our experimental and analytical approaches can be 

applied to the dissection of any heterogeneous population of cells that differ in cell 

composition and transcriptional states between sample groups.

First, we found a spectrum of differences between immune lineages in HPV− versus HPV+ 

HNSCC. This has implications for the design of immunotherapy, as immune lineages that 

are similar in both types of HNSCC (i.e. CD8+ T cells and CD4+ Treg) can be targeted 

similarly, while those that are different (i.e. CD4+ Tconv, B cells and myeloid cells) may 

require more tailored therapies. The differences in immune lineages present in the TME of 

HPV+ versus HPV− HNSCC are potentially due to the presence of viral antigens throughout 
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carcinogenesis, leading to activation of innate immune responses early on and enhanced T- 

and B-cell adaptive immune responses. The presence of viral antigens throughout 

carcinogenesis (Kobayashi et al., 2018), and perhaps in the tumor itself through episomal or 

integrated viral components (Koneva et al., 2018), may prime HPV+ patients for enhanced 

anti-tumor immunity.

Next, we identified subpopulations present within major immune lineages within HNSCC 

tumors. Recent work has characterized states of CD8+ T cells in various tumor types, in both 

treated and untreated conditions (Guo et al., 2018; Sade-Feldman et al., 2018; C. Zheng et 

al., 2017). Consistent with previous reports, CD8+ T cells co-expressed inhibitory receptors 

at terminal differentiation (Azizi et al., 2018; Guo et al., 2018). Interestingly, we also found 

two clusters of exhausted CD8+ T cells with different biological functions, including 

response to hypoxia in cluster 4. Hypoxia inducible factors have previously been shown 

enhance CD8+ T cell effector functions (Doedens et al., 2013; Finlay et al., 2012), 

suggesting that this cluster may retain higher anti-tumor activity versus cluster 3 which does 

not have enrichment of hypoxia signaling.

Enrichment of CD137high Treg was recently found to be associated with poorer overall 

survival (Guo et al., 2018), consistent with expression of TNFR-family receptors on Treg 

reflecting an underlying effector state (Vasanthakumar et al., 2017). Treg in our study were 

characterized by reciprocal expression of both IFNα-signaling and general IFN-response 

genes early during differentiation, in contrast to TNF-family receptors late in differentiation. 

Given that IFN-γ drives Treg fragility (Overacre-Delgoffe et al., 2017), it seems that early 

activated subpopulations of Treg may be amenable to IFN-γ based therapy, while 

chronically activated Treg may be more sensitive to blockade of TNFR-family mediated 

signaling.

In contrast to CD8+ T cells and CD4+ Treg, CD4+ Tconv were highly dissimilar between 

types of HNSCC. CD4+ Tconv exhibited a differentiation trajectory where cells pass through 

a common early activation state before branching into terminal states associated with TFH or 

exhausted signatures. Whether TFH and TH1 are unique lineages or share plasticity is 

controversial (Hale et al., 2013; Liu et al., 2012; Pepper et al., 2011), but our data suggest 

there is plasticity during early stages of activation. Appreciation of the complexity and 

heterogeneity present in CD4+ Tconv in the TME can provide new avenues for therapeutic 

intervention based on manipulating CD4+ Tconv responses. Recent work has highlighted the 

importance of TFH in vaccine design (Linterman and Hill, 2016), and our transcriptional 

analysis can further inform our understanding of TFH in distinct tissue sites.

Recent studies have suggested that tumor-associated myeloid cells are more heterogeneous 

than previously appreciated (Azizi et al., 2018; Lavin et al., 2017). We characterized 5 sub-

populations of myeloid cells in the TME, consisting of IDO1+ DCs, transitional monocytes, 

DCs, inflammatory macrophages and complement-expressing DCs. While CCR7+ DCs can 

secrete IL-12 and possess antitumor activities (Garris et al., 2018), this population of DCs 

identified here also co-express IDO1, and may have the potential to inhibit antitumor 

immunity (Li et al., 2016). Interestingly, we found that TME-resident myeloid cells shared a 

continuous trajectory with CD14+ monocytes, and that this trajectory extended to divergent 

Cillo et al. Page 12

Immunity. Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terminal states of myeloid cells. One terminal population expressed CD1C and HLA 
molecules, while the other expressed complement, cytokines and chemokines. A high level 

of complement expression is associated with immature DCs (Son et al., 2012) that are poor 

T cell simulators (Castellano et al., 2007), suggesting that maturation of this DC subset 

could improve anti-tumor T cell responses. Finally, the highly secretory macrophage 

population we observed likely contributes to increased invasiveness through IL6 (Chang et 

al., 2013), pro-metastatic conditions through IL1B (Guo et al., 2016), and angiogenesis 

through CXCL8 (Li et al., 2003). Although myeloid derived suppressor cells (MDSCs) are 

an important population in the TME of HNSCC (Pak et al., 1995; Weed et al., 2015), we did 

not recover cells consistent with an MDSC phenotype in our scRNAseq analysis. MDSCs 

have been reported to be associated with immunosuppressive features including expression 

of PD-L1 and FOXP3 and inversely correlated with CD8+ T cells and helper responses in 

the TME (Campbell et al., 2018). Future studies should seek to specifically interrogate the 

roles of MDSC populations in the peripheral blood and TME of patients with HNSCC.

Cell intrinsic phenotypes provide useful information on the potential states that can be 

occupied by a given lineage, but do not provide information about cell-cell communication 

or spatial proximity between cells. We therefore performed both global and cell-type specific 

analysis of putative cell-cell communication using our CellTalker algorithm. Several groups 

have recently begun to evaluate putative receptor/ligand signaling by scRNAseq (Kumar et 

al., 2018; Vento-Tormo et al., 2018), but have yet to thoroughly examine immune 

interactions in the TME. Our global analysis revealed baseline interactions between cell 

types in healthy donor PBMC, but massive expansions of putative cross-talk in the TME. In 

depth analysis and validation of the putative interactions described here can be pursued 

further to better understand the ecosystem fostered by intercellular communication in the 

TME.

To further contextualize our findings, we performed IF analysis on sections obtained from 

the same cohort of HNSCC patients. We used this analysis to characterize the spatial 

locations of immune and tumor cells, and identified immune populations that likely 

participated in cell-cell communication based on proximity. In several instances, we found 

that CD4+ Tconv were likely to participate in interactions with B cells, and most notably we 

identified tertiary lymphoid structures (TLS) in regions that contained high numbers of B 

cells. TLS have been associated with improved survival across many cancer types (Sautes-

Fridman et al., 2016), and specifically in HNSCC (Wirsing et al., 2014). Finally, we assessed 

the clinical significance of TIL CD4+ TFH, utilizing a gene set derived from our data. This 

mono- and multi-variate analysis revealed that enrichment of a CD4+ TFH signature was 

associated with superior PFS, implicating TFH as a potentially favorable biomarker.

This study provides in depth analysis of individual immune lineages, cross talk between 

these lineages, and spatial localization that together form a clinically relevant and unified 

picture of the immune landscape in HNSCC. Overall, our study contributes to the 

understanding of the pan-immune landscape in patients with carcinogen- versus virally-

induced cancers, and serves as a foundational framework, reference dataset and essential 

resource for future in-depth exploration of the roles of immune cells in HNSCC and other 

tumor types.
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STAR Methods

Contact for reagent and resource sharing

Additional information and requests for resources should be directed to the Lead Contact, 

Dario A.A. Vignali (dvignali@pitt.edu).

Experimental Model and Subject Details

Patient samples were obtained from consecutive HPV− and HPV+ HNSCC patients, all of 

whom were immunotherapy treatment naïve. Peripheral blood was drawn by venipuncture 

into tubes with EDTA anticoagulant. Tumor specimens for experiments involving fresh 

tissue were resected in the operating room and immediately collected in RPMI with 10% 

fetal bovine serum (FBS), 1% amphotericin B and 1% penicillin/streptomycin. Paired tumor 

specimens were also collected into formalin for downstream immunohistochemistry and 

immunofluorescence analysis. Similarly, tonsils were obtained from patients undergoing 

tonsillectomy as treatment for sleep apnea, and were collected in the same media used for 

tumor collection. Healthy donor peripheral blood was collected by venipuncture, using 

EDTA as the anticoagulant. All patients provided informed written consent, and this study 

was approved by our Institutional Review Board (University of Pittsburgh Cancer Institute, 

Protocol 99-069).

Method Details

Processing of patient samples—Peripheral blood mononuclear cells (PBMC) were 

isolated from whole blood by density gradient centrifugation in Ficoll/Hypaque for 20 

minutes at 400xg with the brake off. PBMC were then washed with Hanks Buffered Saline 

Solution and resuspended in staining buffer (phosphate buffered saline [PBS] with 0.1% 

azide, 10 mM HEPES, and 2% FBS). Single cell suspensions were generated from tumor or 

tonsil tissue by either mechanical disruption or mechanical disruption followed by 

enzymatic digestion with 50 mg/mL of Liberase DL (Roche) in 5 mL of serum-free RPMI 

for 15 minutes at 37°C. After initial isolation from tissue, cells were passed through a 

100μm filter and spun at 500xg for 10 minutes to yield single cell suspensions. No 

discernable difference was present in cell yields, viability, or transcriptional signatures of 

samples that were either mechanically disrupted or disrupted and treated with Liberase. 

Carryover red blood cells were lysed with BD Pharm Lyse, and samples were then 

resuspended in staining buffer. Cells were stained for sorting by incubation with PE-

conjugated mouse anti-human CD45 (clone: 2D1; Biolegend) at a 1:100 dilution for 15 

minutes at 4°C, spun down at 500xg for 5 minutes, and incubated in PBS with 1:4000 eFluor 

780 viability dye (eBioscience) for 15 minutes at 4°C. Cells were then resuspended in 

staining buffer, and sorted for live CD45+ cells on a MoFlo Astrios at the Hillman Cancer 

Center Cytometry Facility. Samples were collected in RPMI supplemented with 10% FBS, 

nonessential amino acids, L-glutamine, penicillin/streptomycin and sodium pyruvate. All 

samples were processed as soon as possible following surgery.

Flow cytometry of major cell lineages—Flow cytometry was used to assess the 

following major cell lineages: CD8+ T cells, conventional CD4+ T cells, regulatory T cells, 

B cells, myeloid cells (monocytes, dendritic cells and plasmacytoid dendritic cells), natural 
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killer cells and granulocytes. Staining was performed as per preparation for cell sorting 

described above, with the addition of fixation and permeabilization for intracellular staining 

with the Foxp3/Transcription Factor kit (eBioscience). The antibodies and viability dyes 

used are described in the Key Resources Table.

Immunofluorescence staining of tissue sections—Formalin-fixed paraffin 

embedded tissues were mounted on slides, followed by deparaffinization using xylene and 

ethanol. Tissues were then fixed in neutral buffered formalin for 15 minutes, followed by 

antigen retrieval. Heat induced epitope retrieval was performed using repeated cycles in AR6 

or AR9 citrate buffers (Perkin Elmer), followed by 10 minutes of blocking prior to 

incubation with primary antibodies for 30 mins. Secondary antibodies conjugated to 

horseradish peroxidase were added after washing, and were incubated for 10 minutes. The 

following Opal detection fluorophores were used: CD4∷Opal540, CD8∷Opal570, 

CD20∷Opal520, CD68∷Opal650, FOXP3∷Opal620, and Pan-cytokeratin∷Opal690. A final 

round of antigen retrieval was carried out to counterstain nuclei with 4’,6-diamidino-2-

phenylindole (DAPI). Slides were then sealed using the Diamond Anti-fade mountant 

(Thermo Fisher).

Acquisition of immunofluorescence images—Immunofluorescence (IF) images 

were captured on the Vectra (Perkin Elmer), first as whole side scans, and then as regions of 

interest based on the presence or absence of immune structures on each slide. Immune 

structures were identified by a pathologist based on standard H&E staining of tissues, and a 

minimum of 3 and maximum of 6 regions of interest were captured from each slide. These 

regions encompassed both the tumor bed and tumor stroma, and included regions containing 

tertiary lymphoid structures and those that did not. Regions of interest were captured at 10x 

magnification on the Vectra to incorporate a large area of the slide for analysis.

Generation of single cell libraries—Single-cell libraries were generated from sorted 

live CD45+ cells using the Chromium Single Cell 3’ Reagent (V2 Chemistry) as previously 

described (G.X. Zheng et al., 2017). Briefly, sorted cells were resuspended in PBS with 

0.04% bovine serum albumin (BSA; Sigma) and were counted using the Cellometer 

Auto2000 (Nexcelom). Cells were then loaded into the Single Cell Chip and processed 

through the 10X controller for droplet generation (targeting a recovery of 2,000 cells per 

sample), resulting in droplets containing a single cell and bead per droplet. After droplet 

generation, cells were subjected to in-drop lysis and reverse transcription, resulting in single-

cell transcriptomes bearing bead-specific sequences to identify the cell of origin. Following 

reverse transcription, cDNA was isolated and amplified by 12 cycles of PCR. Amplified 

cDNA was then size-selected by SPRISelect Beads, and subjected to enzymatic 

fragmentation, end repair, and A-tailing. Adaptors were then ligated, and sample indices 

were added by PCR. Samples were then size-selected by SPRISelect, and the concentration 

was determined by KAPA DNA Quantification. The end result of this process is library 

constructs containing P5 and P7 Illumina sequencing adaptors, a 16 base pair cell barcode, 

10 base pair unique molecular identifier (UMI), a gene insert and an i7 sample index.
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Sequencing of single cell libraries—Following generation of single cell libraries, 

samples were diluted to 2 nM and pooled into sets of 2. Libraries generated from PBMC and 

TIL were pooled together from all HNSCC patients, and healthy donor PBMC and tonsil 

were paired with each other. These pooled libraries were further diluted to 2 pM, then were 

denatured and loaded on a NextSeq500 at the Health Sciences Sequencing Core at 

Children’s Hospital of Pittsburgh. Samples were run using NextSeq 500/550 High Output v2 

kits (150 cycles) with the following sequencing run parameters: Read 1: 26 cycles; i7 Index 

8 cycles; Read 2: 98 cycles.

Demultiplexing, alignment, and generation of gene/barcode matrices—
Following sequencing, runs were processed through the CellRanger (10X Genomics, version 

2.1.0) pipeline to generate gene/barcode matrices. This was achieved by first demultiplexing 

samples using the sample indices present in the sequencing libraries, and converting 

Illumina BCL files to FASTQ. Reads from these FASTQ files were then aligned using the 

GRCh38 reference using STAR (Dobin et al., 2013), as implemented in CellRanger.

Quality control metrics and filtering—After alignment using CellRanger, key 

sequencing metrics including the frequency of valid cell barcodes, transcriptome mapping 

rate, and the frequency of Q30 bases across each of the read groups was interrogated to 

ensure high-quality sequencing and alignment results. Samples were then combined into a 

unified gene/barcode matrix. After creation of the gene/barcode matrix, a cell-level filtering 

step was performed to remove cells with either few genes per cell (<200) or many molecules 

per cell (>20,000). Next, genes that were lowly expressed (fewer reads than 3 counts in 1% 

of cells, or genes expressed in fewer than 1% of cells) across all samples were removed.

Pseudobulk analysis—We performed an initial analysis of the data by treating the 

single-cell RNA profiles as pseudobulk expression matrices to evaluate high-level trends in 

the data. Pseudobulk expression profiles were generated for each sample by summing the 

gene counts across cells, to form an expression matrix consisting of one expression profile 

per patient. Gene expression counts xa were converted into the natural log of transcripts per 

million (transcripts per million) plus one by:

TPMa = loge[(xa + 1) ∗ 10−6] .

We then identified differentially expressed genes between PBMC, TIL and tonsil tissue by 

comparing linear models for each gene using the tissue type as a predictor versus a null 

model. We assessed statistical difference between the null model and the full model using 

the likelihood ratio. Genes were considered to be differentially expressed if the false 

discovery rate corrected p-value across all genes was 1% or less. We next formed a 

correlation matrix using Spearman’s correlation across all samples using all differentially 

expressed genes, and clustered the samples using hierarchal clustering with one minus the 

correlation matrix as the distance measure. The resulting inter-sample correlation was then 

visualized using the R package heatmap3 (http://CRAN.R-prject.orq/package=heatmap3). 

Next, we evaluated genes that were differentially expressed between PBMC and TIL as 

described above, and performed clustering and visualization of the gene-gene correlation 
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matrices using a union of the top 50 genes that were expressed in both PBMC and TIL. We 

performed a similar analysis to identify gene-gene correlations between genes that were 

differentially expressed between clusters of TIL, using a union of the top 50 differentially 

expressed genes between each cluster of TIL.

Post-hoc power analysis using pseudobulk RNAseq data—We next performed a 

post-hoc power analysis for the identification of differentially expressed genes between the 

TIL and tonsil clusters. This was accomplished by determining the mean and standard 

deviation of the expression of each gene across clusters, and then performing bootstrapped 

sampling of genes to form in silico patient groups with a balanced experimental design (e.g. 

3 vs 3 vs 3). A total of 20 bootstrapped comparisons were performed with sample sizes 

ranging from 3 to 10 samples per group. The number of differentially expressed genes in 

each bootstrapped group was evaluated using the likelihood ratio model as described above, 

and was compared to the actual number of recovered differentially expressed genes from the 

experimental data. The power was determined by taking the ratio of number of bootstrapped 

differentially expressed genes versus the actual number of differentially expressed genes.

Library size normalization for single-cell RNAseq analysis—Gene expression 

counts within each cell were normalized for library size by multiplying the raw count for 

each gene in each cell by the number of molecules detected in that cell, dividing by 10,000 

and then taking the log of the normalized count value plus 1. That is, for a given gene a in 

cell x, the normalized count xa is:

xa = loge[xa ∗ ∑1
a xa ∗ 10, 000−1 + 1] .

Dimensional reduction and visualization—After generating the library-size 

normalized gene/barcode matrix, we next sought to reduce the dimensionality of the data for 

downstream visualization and clustering. First, highly variable genes were identified based 

on high dispersion when controlling for the relationship between expression magnitude and 

variance. The top 500 to 1000 genes (depending on the cell type) by dispersion were carried 

forward into scaling and principal component analysis (PCA). Prior to PCA, unwanted 

sources of variation (i.e. the number of genes per cell, percent of mitochondrial genes per 

cell, and percent of ribosomal genes per cell) were controlled for using an approach 

implemented in Seurat and based on single-cell latent variable models (Buettner et al., 

2015), resulting in scaled and centered corrected values. Notably, controlling for the library 

size of each cell and regressing out the above mentioned known sources of variation reduced 

sample-specific biases. PCA was then performed using the augmented implicitly restarted 

Lanczos bidiagonalization algorithm (Baglama and Reichel, 2006) using scaled and centered 

expression values of the identified highly variable genes as input. PCs were heuristically 

selected for downstream analysis based on the magnitude of variation explained, including 

all PCs until a negligible increase in the variation explained was achieved.

For low-dimensional visualization of the high-dimensional differences in expression 

between cells, we utilized two approaches. The first is a fast Fourier transform Interpolation-

based t-distributed stochastic neighbor embedding (FItSNE) that greatly accelerates the time 
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required to calculate the cell embeddings (Linderman et al., 2019). Additionally, FItSNE 

performs both early- and late-exaggeration steps that leads to superior separation of groups 

of cells compared with standard Barnes-Hut tSNE (Maaten, 2014; Maaten and Hinton, 

2008). The second visualization approach utilized was the result of non-linear 

dimensionality reduction using diffusion map embedding, as described below (see Diffusion 
map embedding).

Deterministic annealing Gaussian Mixture Model clustering—We have developed 

and implemented a DeteRministic Annealing Gaussian mixture mOdel clusteriNg algorithm 

clustering (DRAGON) for single-cell RNAseq data based on deterministic annealing (Rose, 

1998; Rose et al., 1990a; Rose et al., 1990b). In the most general sense, deterministic 

annealing seeks to minimize a specific cost function based on a constraint on the 

randomness of the solution, and reduces the constraint on the randomness with each 

successive step of the algorithm. In the context of clustering, deterministic annealing solves 

a nonconvex optimization problem by finding the global minimum under decreasing 

restrictions on the entropy of the system. In practice, this approach has several favorable 

features, including the avoidance of local minima, progressive clustering results at each 

stage of the algorithm describing the strongest trends in the data, a statistical framework (in 

our case, a Gaussian mixture model [GMM]), and steps that are highly parallelizable, 

leading to increased speed for large datasets.

Deterministic annealing is analogous to the physical process of annealing, where a system is 

kept at thermal equilibrium as the temperature is gradually lowered, ultimately resulting in 

the global minimum of the system when the temperature reaches zero. To apply this physical 

principal to clustering, we seek to minimize the energy of a system at a given value of 

randomness (defined in our clustering algorithm as “temperature”, T), and progressively 

decrease the temperature. The minimum energy at a given T depends on both the strength of 

the associated between a point and a distribution, and the entropy of the system, as described 

below. To assess the strength of the association between a given cell x n and a distribution 

y(x n) we define the following cost function:

C = ∑x n p(x n)d(x n, y(x n))

Where x n is a point vector and yj(x n) is a given distribution from one of j distributions. We 

define d(x n, y(x n)) as the squared Euclidean distance between a point vector x n and the 

centroid of cluster j μ j.

We seek to minimize C at a given level of disorder of the system, and define this as a 

minimization of the Lagrangian E = C – TH, where C is the cost function, T is the 

temperature of the system, and H is the disorder of the system given by Shannon’s entropy. 

Minimization of E with K components of a GMM can be rewritten as a centroid condition 

with respect to the association probabilities (Rose, 1998), which leads naturally to an 

expectation/maximization (EM) framework where the minimization of E at each temperature 

T is achieved through the maximization of −E.
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To perform EM, we define our system as a GMM at each T:

P (X ∣ u, S, a) = ∑
j = 1

K
ajN(X ∣ uj, Sj)

where X represents (x 1, x 2,…,x n) cells, aj is the mixing parameter of the j component of K 

mixtures such that ∑j = 1
K ak = 1, and Sj is the covariance matrix for the j component. We 

begin deterministic annealing with K=2 components, and increase the number of 

components up to a maximum value of K as T is decreased, as discussed below. 

Additionally, we use cell embeddings in principal component space to initially reduce the 

dimensionality of the dataset.

To achieve minimization of E through EM, we first set the aj mixing parameters, values of 

the mean (μ j), and covariance matrices (Σj) for each K. Then, we perform expectation to 

determine the association probabilities between each cell x n for each K at a given T using 

the Gibbs distribution:

P (x n ϵ Kj ∣ x n) =
P (x n ∣ x n ∈ Kj)

P (x n)
= e−

d(x n, μ j)
T

P (x n)

We defined the log likelihood as:

ln P (X ∣ u, S, a) = ∑1
n ln ∑j = 1

K ajN(x n ∣ uj, Sj)

To perform maximization, we define each cell as belonging to the nearest K distribution. We 

then calculate the parameters of each K component:

αj =
∑1

nP (x n ∈ Kj ∣ x n)
n ;

μ j =
∑1

nP (x n ∈ Kj ∣ x n)x n
∑i

nP (x n ∈ Kj ∣ x n)
;

Sj =
X − μ j

−1P (x n ∣ x n ∈ Kj)
−1

∗ X − μ j
−1P (x n ∣ x n ∈ Kj)

∑1
nP (x n ∈ Kj ∣ x n)

We note here that the covariance of each K component is related to T through 

P (x n ∣ x n ∈ Kj). We perform EM iterations at a given T until either convergence of the log 

likelihood or a set number of iterations. Then we decrease the temperature and repeat EM 

iteratively until T=0.
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Another favorable attribute of deterministic annealing is that the K components can be 

predictably split based on T, as previously described (Rose, 1998). Briefly, the critical value 

of T at which a component should be split into two daughter components is:

Tc = 2λ

where λ is the largest eigenvalue of the covariance matrix of the component K. In other 

words, when T crosses a threshold below 2λ for a given component, that component is 

subsequently split.

With these principles, we can define an outline of DRAGON as follows:

Algorithm 1: DRAGON

INPUT PCA components derived from highly variable genes

PARAMETERS Set maximum number of clusters (K), vector of temperatures (T), number of iterations (Z), 
convergence criterion

1 FOR T in initial to final temperature

2   IF T>0

3    IF Number of clusters < Maximum clusters

4      Split clusters with 2λ > T

5   FOR Z iterations or convergence

6      Expectation

7      Maximization

8   END

9 IF T=0

10   FOR Z iterations or convergence

11      Expectation

12      Maximization

13   END

14 END

Benchmarking of Seurat versus DRAGON clustering—We performed a 

benchmarking analysis of DRAGON versus Louvian clustering to determine the relative 

robustness and reliability of these two clustering algorithms. To benchmark these two 

algorithms, we used simulated data generated from the R package splatter (Zappia et al., 

2017). Briefly, splatter generates simulated single-cell count matrices based on input 

parameters derived from a given data set (or generated randomly), and takes additional 

parameters to describe the number of clusters, the frequency of cells in each cluster, and the 

degree of differential gene expression between clusters. We sampled 5000 cells from our 

overall count matrix to generate baseline input parameters for splatter, and create a diverse 

variety of simulated cluster sizes and differential expression. To generate frequencies of cells 

in clusters that sum to 1, we randomly drew 4 values from a Poisson distribution centered at 

5, then divided these values by the sum of the 4 values. To generate differential gene 

expression values, we took the absolute value of 4 values drawn from a normal distribution 
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centered at 0.25 and with a standard deviation of 0.25. We repeated this sampling process 50 

times. Next, we performed normalization and dimensionality reduction, and performed 

Louvian (as implemented in Seurat) and DRAGON clustering on each set of simulated data. 

For Louvian clustering, we set the resolution parameter in Seurat to 0.3, 0.4, 0.5, 0.6 and 0.7 

to ensure that 4 clusters were recovered. Results were compared to the ground truth cluster 

identities from the splatter simulations using confusion matrices from the R package caret 

(Kuhn et al., 2019).

Identification of major canonical immune lineages—Identification of major 

immune cell lineages was performed using DRAGON in conjugation with the expression of 

canonical lineage markers. One of the favorable features of DRAGON is the ability to 

evaluate clustering solutions at varying levels of entropy using the temperature term T. At 

high levels of T, only strong separations of clusters are permitted based on the required 

minimum entropy of the system. In our data, these differences are largely those given by 

differences in immune lineages (e.g. B cells vs T cells, myeloid cells vs B cells). As such, 

we identified a solution with 4 clusters that was largely representative of differences in 

immune lineages. These 4 clusters were then bioinformatically isolated, and re-clustered to 

identify finer separations between the clusters. For convenience, the Phenograph-based 

clustering algorithm implement in Seurat (Levine et al., 2015; Xu and Su, 2015) was used to 

quickly perform sub-clustering. Differentially expressed genes across clusters were then 

compared to canonically expressed genes associated with major immune lineages to classify 

all individual cells.

Quantifying differences between immune lineages in HPV− versus HPV+ TIL—
After major immune lineages were identified, we next evaluated the differences in 

expression between lineages derived from HPV− versus HPV+ TIL. This was accomplished 

by measuring the similarity of the distributions of immune lineages derived from each type 

of TIL. We used the Bhattacharyya distance to measure the distance between lineages from 

each type of TIL. We only evaluated distances between lineages that had 500 or more cells 

present across all samples from each tumor type. We embedded all lineages in a new PCA 

space based on highly variable genes present in the dataset, and retained the top 50 PCs for 

each analysis. We then sampled 500 cells from each tumor type 100 times, and calculated 

the Bhattacharyya distance as:

DBhatta = 1
8 (μ 1 − μ 2)TΣ−1(μ 1 − μ 2) + 1

2ln( ∣ Σ ∣ ( ∣ Σ1 ∣ ∣ Σ2 ∣ )−
1
2)

Where μ 1 and μ 2 are the mean vectors of each distribution, and Σ =
Σ1 + Σ2

2 . Importantly, 

we also assessed the Bhattacharyya distance between cells sampled independently of sample 

group to generate a background distribution for statistical comparison.

Overall clustering and clustering of lineage subpopulations—Initially, DRAGON 

was performed on the entire dataset to identify the major trends, and to identify the major 

immune lineages. Following the identification of the major lineages, cells were 

bioinformatically segregated into the following groups: CD8+ T cells, CD4+ Tconv and Treg, 
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B cells, myeloid cells, natural killer cells, plasmacytoid DCs (pDC) and mast cells. 

Segregating cells into individual lineages, then identifying highly variable genes and 

reducing the dimensionality with PCA as described above allowed for a more refined 

identification of trends within each immune lineage.

Identification of cluster markers—We identified differentially expressed genes 

between clustering using a Wilcoxon rank sum test, comparing natural log transformed and 

library size normalized expression values between the cluster of interest and all other 

clusters, or between two targeted clusters. Genes were required to be expressed in 10% of 

cells in each cluster with an average log-fold change greater than 0.5 to be considered 

differentially expressed, as implemented in Seurat (Butler et al., 2018). The Wilcoxon rank 

sum test has the advantage of being nonparametric and therefore not sensitive to the 

underlying distribution of gene expression.

Gene set enrichment to describe clusters—Gene set enrichment analysis was used to 

determine the relationship between gene expression within clusters and sets of genes of 

known biological significance. Gene set enrichment was performed using a modification of 

the competitive gene set enrichment test CAMERA (Wu and Smyth, 2012), implemented in 

our R package SingleSetGset. Briefly, gene set enrichment testing was performed by 

determining the mean gene expression per cluster, and assessing the log fold-change in gene 

expression between a given cluster and mean expression of the same gene in all cells outside 

the given cluster as the test statistic. Gene sets used for analysis were derived from either the 

C2 (curated gene sets) or C7 (immunologic gene sets) database available through the 

MSigDB Collections at the Broad Institute for all gene set analysis. For subpopulations in 

which the C7 gene sets were utilized, gene sets were curated from the C7 immunologic 

signatures based on relevance to the cell type of interest, and only contained comparisons 

between cells of the same type. This gene set enrichment analysis is implemented in the 

SingleSeqGset R package.

Diffusion pseudotime analysis—To infer differentiation trajectories, diffusion analysis 

was applied as implemented in the R package Destiny (Angerer et al., 2016; Haghverdi et 

al., 2016). Briefly, a symmetric transition matrix was constructed based on cell adjacency 

using a locally-scaled Gaussian kernel, the eigenvectors of which correspond to diffusion 

components. Pseudotime was calculated by time evolution of a probability density function 

described by a graph Laplacian matrix, where the first eigenvalue of the transition matrix 

was removed to create a new matrix M, and diffusion pseudotime was calculated as a 

distance metric between the rows of M. Input genes were selected for diffusion analysis 

based on significant differential expression between clusters. Cells in CD8+ T cells and 

CD4+ Treg that were in the cell cycle were excluded from diffusion analysis. Genes were 

evaluated for significant associations with diffusion components by a likelihood ratio test 

comparing a null model with just gene expression versus a model with gene expression and 

the diffusion component of interest. Genes with a false discovery rate <1% were considered 

significant. Trajectory lines were fit using locally weighted scatterplot smoothing (LOESS) 

regression to demonstrate differentiation trajectories.
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Statistical assessment of cluster and sample associations—To determine 

whether there were statistically significant relationships between clusters and sample types 

for CD4+ Tconv, we developed a metric for cluster enrichment. This metric determines the 

ratio of observed versus expected cells within a cluster, using the frequency of cells from 

patient associated with each sample type. The expected frequency of cells in each cluster for 

each patient was inferred by dividing the total number of cells in each cluster by the total 

number of patients. The observed frequency was then divided by the expected frequency for 

each patient within each group. Analysis of variance (ANOVA) was then performed to 

determine if any group was statistically significantly different within a cluster. Finally, we 

performed a rank sum test between the observed versus expected frequency for HPV− and 

HPV+ CD4+ Tconv in cluster 1.

Assessment of receptor/ligand interactions—To evaluate putative interactions 

between cells, we developed the CellTalker algorithm. CellTalker uses a recently described 

list of receptors and ligands (including soluble ligands such as cytokines) (Ramilowski et al., 

2015) to identify putative ligand/receptor interactions between cell types. Putative receptor/

ligand interactions were assessed by first determining which receptors/ligands were 

expressed on each cell, using a minimum number of reads based on an expression count of 5 

in either 1% of cells (for overall interactions) or 3% of cells (B cell and CD4+ Tconv 

specific interactions). Additionally, ligands and receptors were only included if they were 

expressed on either >5% of cells (for overall interactions) or >3% of cells (B cell and CD4+ 

Tconv specific interactions) from >25% of patients within a group (e.g. healthy donor 

PBMC or HPV+ TIL). After a list of ligands and receptors was identified as expressed with 

the above criteria, putative interaction pairs were identified by taking ligand x on cell 

population y and looking for expression of receptor z on populations within a given group of 

cells (e.g. healthy donor PBMC). Interactions were evaluated for all groups, and were 

displayed as circos plots (Zhang et al., 2013). Interactions were classified as either those that 

were shared with healthy donor PBMC (common), those that were distinct from healthy 

donor PBMC but present in more than one group, or those that were uniquely present only 

within one group. This procedure for calculating putative interactions is general to groups of 

cells expressions sets of ligands and receptors, and as such was extended to interactions 

between clusters of B cells and clusters of CD4+ Tconv.

High throughput analysis of immunofluorescence images—After images were 

captured using the Vectra imaging platform, images were spectrally deconvoluted into their 

component channels using inForm and Phenochart for downstream analysis in FIJI 

(Schindelin et al., 2012) and R. In FIJI, custom macro commands were written and 

implemented to facilitate standardized image processing. Briefly, color image processing 

was performed by removing putative spillover between adjacent channels and then 

standardizing the brightness and contrast for each channel across slides. Images were then 

convert to 32-bit stacks and merged into a composite image. For segmentation of B cells, 

CD4+ Tconv, CD4+ Treg, and CD8+ T cells, each independent channel was converted into 

an 8-bit binary image and segmented via watershed analysis. For myeloid cells, a Gaussian 

blur was used prior to converting the 8-bit image to binary. Cells were automatically counted 

from each channel using Analyze Particles in FIJI. Cells were classified as CD4+ Treg if 
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they co-expressed CD4 and FOXP3, and were classified as CD4+ Tconv otherwise, and cells 

were classified as macrophages if the expressed CD68. In addition to the output of cell 

counts and composite images for each slide, the FIJI macro also yielded the locations of 

each cell in the x/y plane of the image. The cell counts and locations were then imported 

into R for downstream analysis.

We were motivated by a recently described analytic approach (Goltsev et al., 2018) to 

identify putative cell-cell proximity be identifying the neighbors of each given cell, and 

calculating the odds of a cell type being associated with a neighbor. To accomplish this, we 

imported the x/y positions of each cell from the FIJI macro output, and used the R package 

trimesh to determine the first-tier neighbors of each cell by Delaunay triangulation. The 

Delaunay triangluation was then used to determine the odds of interactions between given 

cell types based on immediate proximity (Goltsev et al., 2018). Briefly, the odds ratio of co-

occurrence was calculated as the ratio between the frequency of co-occurrence with a given 

cell type divided by the frequency of co-occurrence with all cell types. The odds of co-

occurrence was defined as the mean of the beta-distribution with alpha equal to the number 

of edges connecting the two given cell types and parameter beta as the total number of edges 

minus those connecting the two given cell types. The frequency of co-occurrence with all 

cell types was defined as the total number of connections to the first cell type times the total 

frequency of connections to the second cell type.

Relationship between outcomes and derived gene sets—To assess the clinical 

significance of expression of a given gene set, we utilized RSEM normalized log2 bulk 

mRNAseq expression data available from TCGA through the Firehose pipeline hosted by the 

Broad (Center, 2016). We also utilized clinical and outcomes data available through the 

recently published Pan-Cancer Clinical Data (Liu et al., 2018). From these resources, we 

filtered our analysis by patients that underwent testing for HPV status via p16 

immunohistochemistry. We then scaled and centered the log2 bulk mRNAseq data for these 

patients, and used this dataset for gene set enrichment analysis.

To assess whether there was a relationship between expression of a T follicular helper 

related gene set and clinical outcomes in patients with HPV− and HPV+ disease, we first 

defined our TFH gene set based on the top 200 differentially upregulated genes between 

CD4+ Tconv cluster 1 and CD4+ Tconv cluster 7, which represent the two terminal-most 

differentiated states of CD4+ T cells. As a test statistic for enrichment in the bulk expression 

profile from each patient, we used the Kolmogorov-Smirnov (KS) test to compare genes in 

the gene set versus those not in the gene set. We note that we used the KS test here for gene 

set enrichment, and the correlation-adjusted Mann-Whitney test for gene set enrichment 

within individual lineages. We use the KS test here, as it is more appropriate for data with 

higher variance and more noise (i.e. the bulk mRNAseq data consisting of both immune and 

non-immune cells) since it requires expression of fewer genes to achieve a significant 

enrichment score (Subramanian et al., 2005). We then used the cutp function in the R 

package survMisc to identify outpoints for high and low expression of our TFH signature 

based on the KS statistic. For proportional hazards regression, we performed both 

monovariate and multivariate analysis based on progression free survival.

Cillo et al. Page 24

Immunity. Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quantification and statistical analysis

Statistical analysis—Specific statistical tests applied in this study included identification 

of cluster markers using a Wilcoxon rank sum test, gene set enrichment based using a 

competitive gene set enrichment algorithm described above and the Kolmogorov-Smirnov 

test for TCGA data, and likelihood ratio tests for pseudobulk analysis and for analysis of 

genes associated with diffusion components. We also analyzed mono- and multi-variate Cox 

proportional hazard regression models to relate expression profiles to outcomes from TCGA. 

Correlations between cell populations determined by flow cytometry versus single-cell 

RNAseq were assessed by Pearson’s correlation. In all appropriate instances, p-values were 

corrected for multiple comparisons using a false discovery rate with a threshold for 

significance of <1%.

Data and Software Availability

Data availability—Raw sequencing data are available through the NCBI Sequence Read 

Archive (BioProject ID 579178) and processed gene barcode matrices will be available 

through the Gene Expression Omnibus database (GSE139324).

Code availability—Code for all custom algorithms are publically available in GitHub 

repositories. DRAGON is available at https://github.com/arc85/dragonsc, SingleSeqGSet is 

available at https://github.com/arc85/singleseqgset, and CellTalker is available at https://

github.com/arc85/celltalker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Assessment of bulk changes in transcriptional profiles between patients and overall 
clustering and identification of single cells.
A total of 131,224 single cells were recovered from 63 samples. (A) Live CD45+ cells were 

sorted from PBMC and single-cell suspensions prepared from tissues samples, and were 

subjected to single-cell RNAseq. (B) Clustering of samples by pseudobulk expression 

profiles reveals strong separation between PBMC and TIL, and distinct patterns of clustering 

of TIL samples by the tissue of origin. (C) FItSNE visualization and DRAGON clustering of 

all single cells identified 26 unique clusters across all samples. (D) The same FItSNE plot as 

(C), but with all immune cell types identified. (E) The same FItSNE embedding as (C) and 

(D) with all cells from each sample type shown. Shifts in density of cells are evident 

between PBMC, tonsil, and TIL samples, reflective of differences in transcriptional profiles 

between PBMC and tissues. (F) Quantification of differences between major immune 

lineages in HPV− and HPV+ TIL. Each dot represents a subsample of 500 cells from PCA 

space for HPV− and HPV+ TIL or a sample of 500 cells regardless of sample type (i.e. 

random), and the height of the bar is the mean of the subsamples. All comparisons were 

statistically significant due to 100 replicates of testing, but the mean fold-change between 

HPV− and HPV+ TIL and random samples varied from 3.9-fold (B cells) to 1.1-fold (CD8+ 

T cells).
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Figure 2. CD8+ T cells share a differentiation trajectory towards co-expression of inhibitory 
receptors between HPV− and HPV+ TIL.
A total of 32,734 CD8+ T cells were recovered across all samples. (A) Clustering of CD8+ T 

cells by DRAGON revealed a total of 8 clusters across all samples. (B) Enrichment of 

clusters by sample types showed that clusters 1-4 were predominantly of TIL origin, while 

clusters 5-7 were composed of mixtures of PBMC, tonsil and TIL, and cluster 8 was 

predominantly TIL. (C) Differential gene expression analysis revealed signature genes 

associated with each cluster. Specifically, cluster 1 expressed genes associated with the cell 

cycle, cluster 2 was associated with interferon responses, and clusters 3 and 4 expressed 

immune checkpoints. (D) Gene set enrichment analysis to evaluate biological functions of 

each cluster. Interestingly, the 2 clusters of exhausted CD8+ T cells showing distinct 
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biological functions. (E) Diffusion mapping embedding of CD8+ T cells revealed an 

activation trajectory beginning with naïve peripheral CD8+ T cells, and progressing to 

terminally differentiated CD8+ T cells. (F) The trajectories of CD8+ T cells from HPV− and 

HPV+ TIL were largely overlapping.
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Figure 3. Dissection of transcriptional states and differentiation trajectories in CD4+ Tconv and 
Treg.
A total of 45,640 CD4+ T cells were recovered from all samples, with 41,889 CD4+ Tconv 

and 3,751 Treg. (A-B) Tconv cells were separated into 7 clusters by DRAGON. (C) Three-

dimensional diffusion map embedding of all CD4+ Tconv samples reveals a branching 

between CD4+ Tconv from HPV+ and HPV− TIL. (D) Two-dimensional regression planes 

show the differences in trajectories for CD4+ Tconv from HPV− and HPV+ TIL. (E) 

Heatmap showing the top 50 differentially expressed genes from clusters 1 and 7, the two 

terminal branches by diffusion analysis. Cluster 1 is associated with at T follicular helper 

(TFH) phenotype, while cluster 7 has an effector memory phenotype. (F-G) We identified 6 

clusters of CD4+ Treg cells from all patients. The majority (89%) of CD4+ Treg were 

derived from TIL. (H) Gene set enrichment revealed IFN-responsive clusters (2 and 4) and 

clusters enriched for TNF targets/signaling (3 and 6). (I) Diffusion map embedding of CD4+ 

Treg from HPV− and HPV+ TIL revealed a consistent differentiation trajectory. (J) The 

density of CD4+ Treg along the DC1 axis was similar for HPV− and HPV+ TIL, but a 

slightly higher frequency of CD4+ Treg from HPV− TIL were earlier on the differentiation 

trajectory versus HPV+ TIL.
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Figure 4. Analysis of tonsil and TIL B cells reveals granular details of germinal center B cells, 
and a unique B cell population associated with HPV− TIL.
A total of 16,736 B cells were recovered from all samples. (A-B) We identified a total of 11 

clusters of B cell from tonsils, TIL and PBMC. (C) Gene set enrichment revealed a germinal 

center phenotype associated with clusters 1-4, enrichment of genes for plasma cells in 

cluster 5, and combinations of naïve, memory and switched B cells in other clusters. (D) 

Diffusion map embedding of all B cells colored by clusters as in (A). This three-dimensional 

embedding yielded axes related to germinal center formation (DC1), transition from naïve to 

memory B cells (DC4) and progression to plasma cells (DC3). Few HPV− B cells progress 

along DC1 to become germinal center B cells. (E) Same diffusion map embedding of as in 
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(D), but colored by sample types. (F) The majority of HPV− B cells are concentrated on the 

right side of the DC1 axis, while HPV+ cells have a bimodal distribution along the DC1 axis 

(note log scale on the y axis in [F]).
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Figure 5. Unique states and potential plasticity of myeloid cells in the TME.
We identified a total of 26,599 myeloid cells consisting of 21,737 CD14+ monocytes/

macrophages, 3,946 CD16+ monocytes, and 916 dendritic cells (DCs). (A) We identified 8 

clusters of myeloid cells in PBMC, TIL and tonsil tissue by DRAGON. (B) Clusters 1 and 

5-8 were enriched in tissue sites, while clusters 2-4 were largely present in PBMC. (C) 

Heatmap of the top 20 genes in each cluster was used to identify states of myeloid cells 

across clusters. Cluster 1 cells expressed characteristics of DCs, but also expressed IDO1. 

Cluster 6 was associated with a dendritic cell phenotype, while cluster 7 was strongly 

associated with cytokine and chemokine secretion. Cluster 8 was characterized by 

expression of complement and MRC1 (typically associated with type 2 macrophages). 
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Cluster 5 appears to express genes associated with clusters 6-8, suggestive of a possible 

precursor relationship. (D-E) Three-dimensional diffusion map embedding of myeloid cells 

(colored by sample type [D] and clusters [E]) reveals separation between PBMC and TIL 

myeloid cells, but also differentiation from cluster 4 to 5 to 6/7/8. (F) The DC1 axis is 

associated with differentiation from peripheral to tissue myeloid cells, with overlapping 

portions from peripheral blood and tissue myeloid cells. (G) Two-dimensional regression 

planes show differentiation from cluster 5 to 6 and 7/8. It appears that cluster 6 can either 

differentiate from a spectrum of points along the 2D regression plane, or conversely that 

myeloid cells can transition from cluster 6 to cluster 7/8 states.
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Figure 6. Expression patterns of receptors and ligands differ between HPV− and HPV+ TIL, and 
extensive putative cell-cell communication occurs in TIL.
Expression of genes for receptors and both cell-surface and secreted ligands was evaluated, 

as well as the cell-cell communication within and between cell types. (A) Log2 fold change 

in ligand expression between HPV− and HPV+ TIL reveals differences associated with 

chemokines/cytokines from HPV− TIL and CD40LG and other B cell activating stimuli 

from HPV+ TIL. (B) Myeloid-associated receptors are highly expressed in HPV− TIL, while 

receptors associated with B cells and germinal center activity are upregulated in HPV+ TIL. 

(C-F) Circos plots derived from the CellTalker algorithm, showing networks of interactions 
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between ligands and receptors from different sample types. Extensive putative cell-cell 

communication is observable in healthy donor PBMC and tonsil tissue, and there is a 

massive expansion of cell-cell communication in TIL.

Cillo et al. Page 41

Immunity. Author manuscript; available in PMC 2021 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Immunofluorescence analysis of sections from HNSCC provides insight into putative 
cell-cell communication based on spatial localization.
We performed immunofluorescence (IF) staining on tissue sections obtained from patients in 

our study. (A) Slides were clustered based on the frequency of cell types present, yielding a 

total of 5 clusters. (B-F) Representative IF images from each of the clusters identified in (A) 

shown on the left side of each panel, and the log odds of cell-cell proximity are shown for 

each image on the right side of each panel. A higher log odds of proximity implies that the 

cells tend to be in close in 2 dimensions. (G-H) CellTalker was used to identify putative 

interactions between the 7 clusters of CD4+ Tconv (Figure 3; CD4-1 to CD4-7) and 11 

clusters of B cells (Figure 4; B-1 to B-11) identified by DRAGON. Ligand/receptor 

interactions between B cells and CD4+ Tconv were present in both HPV− and HPV+ TIL, 

but interactions between germinal center B cells (B-1 through B-4) and effector TFH cells 

(CD4-1) were exclusively present in HPV+ TIL. (I) Progression free survival analysis based 

on gene set enrichment for TFH signature (defined in Figure 3E) from HNSCC patients from 

the TCGA. Patients with higher TFH enrichment had significantly longer progression free 

survival.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Fixable viability dye eFluor450 eBioscience Catalog number: 65-0863-14

Fixable viability dye eFluor780 eBioscience Catalog number: 65-0865-14

Monoclonal mouse anti-human CD45, clone 2D1, 
PE conjugated

Biolegend Catalog number: 368510, RRID: AB_2566370

Monoclonal rat anti-human CD4, clone RPA-T4, 
BV785 conjugated

Biolegend Catalog number: 100552, RRID: AB_2563053

Monoclonal mouse anti-human CD8, clone RPA-
T8, BV650 conjugated

Biolegend Catalog number: 301042, RRID: AB_2563505

Monoclonal ratanti-human FOXP3, clonePCH101, 
eFluor450 conjugated

eBioscience Catalog number: 48-4776-42, RRID: AB_1834364

Monoclonal mouse anti-human CD25, clone BC96, 
BV711 conjugated

Biolegend Catalog number: 302636, RRID: AB_2562910

Monoclonal mouse anti-human CD56, clone 
HCD56, Alexa700 conjugated

Biolegend Catalog number: 318316, RRID: AB_604104

Monoclonal mouse anti-human CD19, clone 
HIB19, PE-Cy7 conjugated

Biolegend Catalog number: 302216, RRID: AB_314246

Monoclonal mouse anti-human CD20, clone 2H7, 
PerCP-Cy5.5 conjugated

eBioscience Catalog number: 45-0209-42, RRID: AB_10717086

Monoclonal mouse anti-human HLA-DR, clone 
L243, FITC conjugated

eBioscience Catalog number: 11-9952-41, RRID: AB_2572542

Monoclonal mouse anti-human CD123, clone 6H6, 
BV650 conjugated

Biolegend Catalog number: 306020, RRID: AB_2563827

Monoclonal mouse anti-human CD14, clone 63D3, 
Alexa700 conjugated

Biolegend Catalog number: 367114, RRID: AB_2566716

Monoclonal mouse anti-human CD11C, clone 3.9, 
PE-Dazzle conjugated

Biolegend Catalog number: 301642, RRID: AB_2564083

Monoclonal mouse anti-human CD15, clone 
W63D, BV711 conjugated

BD Bioscience Catalog number: 563142

Monoclonal mouse anti-human CD66b, clone 
G10F5, APC conjugated

Biolegend Catalog number: 305118, RRID: AB_2566607

Monoclonal mouse anti-human CD8, clone 
ACI3160A

Biocare Medical Catalog number: ACI3160A

Monoclonal mouse anti-human CD20, clone L26 Leica Biosystems Catalog number: CD20-L26-L-CE, RRID: 
AB_10983209

Monoclonal rabbit anti-human CD68, clone 
D4B9C

Cell Signaling Catalog number: 76437S

Monoclonal rabbit anti-human FOXP3, clone 
D608R

Cell Signaling Catalog number: 12653S

Monoclonal rabbit anti-human CD4, clone RM Biocare Medical Catalog number: API3209 AA

Monoclonal mouse anti-human Pan-Cytokeratin, 
clone AE1/AE3

Santa Cruz Catalog number: AE1/AE3

Biological Samples

See Table S1 for a list of study subjects.

Chemicals, Peptides, and Recombinant Proteins

Foxp3 / Transcription Factor Staining Buffer Set eBioscience Catalog number: 00-5523-00
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Chromium Single Cell 3' Library & Gel Bead Kit 
v2, 16 rxns

10X Genomics Catalog number: 120237

Perkin Elmer 7 color manual kit Perkin Elmer Catalog number: NEL811001KT

Illumina NextSeq 500/550 High Output Kit v2 
(150 cycles)

Illumina Catalog number: TG-160–2004

Deposited Data

Raw sequencing data are available through the NCBI Sequence Read Archive (BioProject ID 579178) and processed gene barcode matrices will 
be accessible via the Gene Expression Omnibus (GSE139324).

Software and Algorithms

CellRanger (version 2.1.0) 10X Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-
ranger

FlowJo version 10 TreeStar https://www.flowjo.com/

R version 3.5.1 (“Feather Spray”) The R Foundation for 
Statistical Computing

https://www.r-project.org/

Seurat Andrew Butler, Paul Hoffman, 
Peter Smibert, Efthymia 
Papalexi, Rahul Satija

Citation: Butler et al (Butler et al., 2018)
Hosted on: https://satijalab.org/seurat/

caret Kuhn, M.
Wing, J.
Weston, S.
Williams, A.
Keefer, C.
Engelhardt, A.
Cooper, T.
Mayer, Z.
Kenkel, B.
R Core Team.
Benesty, M.
Lescarbeau, R.
Ziem, A.
Scrucca, L.
Tang, Y.
Candan, C.
Hunt, T.

Citation: Kuhn et al (Kuhn et al, 2019)

Destiny Philipp Angerer, Laleh 
Haghverdi, Maren Büttner, 
Fabian Theis, Carsten Marr, 
Florian Büttner

Citation: Angerer et al (Angerer et al., 2016) and 
Haghverdi et al (Haghverdi et al., 2016)
Hosted on: https://bioconductor.org/

DeteRministic Annealing Gaussian mixture mOdel 
clusteriNg algorithm (DRAGON)

Anthony Cillo, Vignali Lab Hosted on: http://www.github.com/arc85/dragonsc

CellTalker Anthony Cillo, Vignali Lab Hosted on: http://www.github.com/arc85/celltalker

SingleSeqGset Anthony Cillo, Vignali Lab Hosted on: http://www.github.com/arc85/
singleseqgset

Phenochart version 1.0.9 Perkin Elmer www.perkinelmer.com

inForm version 2.3 Perkin Elmer www.perkinelmer.com

Fiji 64-bit ImageJ http://imagej.net/Fiji
Citation: Schindelin et al (Schindelin et al., 2012); 
RRID: SCR_003070
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