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1. Introduction

The capacity of immune checkpoint 
blockade (ICB) to augment tumor-specific 
T-cell cytotoxicity has resulted in impres-
sive improvements in clinical outcomes 
for patients with late-stage solid tumors.[1] 
Despite this key advance, a considerable 
portion of patients do not exhibit mean-
ingful responses to ICB owing to drug 
resistance,[2] immune-related adverse 
events,[3] or disease hyper-progression.[4] 
Effective and accurate monitoring of 
changes in tumor burden is vital for pre-
dicting responsiveness, making treatment 
decisions and understanding the dynamic 
evolution of tumor neoantigen profiles 
that occur during therapy.

The level of circulating tumor DNA 
(ctDNA), a surrogate of tumor burden, 
can be used to estimate clinical responses 
in patients receiving anti-tumor 
treatment.[5–8] In a longitudinal assess-
ment, the baseline concentration and 
early mutational dynamics of ctDNA were 
correlated with radiological and survival 

The evolutionary dynamics of tumor-associated neoantigens carry 
information about drug sensitivity and resistance to the immune checkpoint 
blockade (ICB). However, the spectrum of somatic mutations is highly 
heterogeneous among patients, making it difficult to track neoantigens 
by circulating tumor DNA (ctDNA) sequencing using “one size fits all” 
commercial gene panels. Thus, individually customized panels (ICPs) are 
needed to track neoantigen evolution comprehensively during ICB treatment. 
Dominant neoantigens are predicted from whole exome sequencing data for 
treatment-naïve tumor tissues. Panels targeting predicted neoantigens are 
used for personalized ctDNA sequencing. Analyzing ten patients with non-
small cell lung cancer, ICPs are effective for tracking most predicted dominant 
neoantigens (80–100%) in serial peripheral blood samples, and to detect 
substantially more genes (18–30) than the capacity of current commercial 
gene panels. A more than 50% decrease in ctDNA concentration after 
eight weeks of ICB administration is associated with favorable progression-
free survival. Furthermore, at the individual level, the magnitude of the 
early ctDNA response is correlated with the subsequent change in tumor 
burden. The application of ICP-based ctDNA sequencing is expected to 
improve the understanding of ICB-driven tumor evolution and to provide 
personalized management strategies that optimize the clinical benefits of 
immunotherapies.
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outcomes in response to ICB treatment in multiple solid tumor 
types.[9–15] Typically, commercially available panels for ctDNA 
mutation profiling cover a limited set of genes, such as known 
oncogenes, tumor suppressor genes, immune-related genes, 
and other targets of actionability and/or research interest. How-
ever, there is mounting evidence that mutated neoantigens 
are the main targets of immune attack during ICB immuno-
therapy. Therefore, dynamic tracking of ctDNA mutations 
resulting in neoantigens would be of higher value than those 
of irrelevance. Given that T-cell-recognizable neoantigens are 
largely tumor-specific owing to the highly patient-dependent 
genetic background, personal HLA genotype,[16] history of 
environmental exposure,[17] and other factors, a predefined 
generic panel would face challenges in sufficiently cover these 
dynamics. While panel per se one might consider a “totality” 
approach such as whole exome sequencing (WES) or even 
whole genome sequencing (WGS), in reality, deep sequencing 
(which is required for effective mutation detection from ctDNA) 
of WES and WGS would become cost prohibitive. Additionally, 
requirement on input DNA quantity for WES or WGS makes 
their clinical application to ctDNA hardly practicable. Under-
standably, this challenge could be addressed by an individually 
customized panel (ICP) with a reasonable DNA input require-
ment and at a manageable cost, that at the same time ensures 
a tailored coverage of patient-specific dominant neoantigens, 
with the dominant neoantigens in silico-predicted from a one-
time sequencing of matched tumor tissue using WES.

With this understanding, in this study, we designed pri-
mary tumor-guided personalized neoantigen panels for ctDNA 
sequencing to monitor the clinical response to first-line ICB 
treatment for patients with advanced non-small cell lung cancer 
(NSCLC). We demonstrated that this strategy enables the 
monitoring of early response, prediction of the treatment effi-
cacy and disease relapse, and tracking of neoantigen evolution 
during the course of ICB treatment.

2. Result

2.1. Individually Customized Panels Enable Tailored Coverage  
of Target Genes in ctDNA Sequencing

It is a general perception that the spectrum of somatic muta-
tions in tumors might vary considerably among individuals. 
Part of our study aimed to gain a more quantified under-
standing of such variability. We first investigated how many 
mutated genes from two patients overlapped with each other. 
We measured the overlap as the ratio in percentage of the 
number of commonly mutated genes between two patients 
over the total number of mutated genes across both patients. 
Based on 1059 patients with NSCLC in The Cancer Genome 
Atlas (TCGA) dataset, Figure  1a depicts in detail the per-
centage of overlap between any patient pair out of a random 
cohort of 50 patients (Figure  1a, left panel) and summarizes 
the distribution of the overlap for all 1059 patients (Figure 1a, 
right panel). The median percentage of overlap between any 
two patients was as low as 1.21% (lower quantile, 0.61%; 
upper quantile, 1.88%), which has confirmed the substantial 
heterogeneity in the spectrum of non-synonymous somatic 

mutations in the TCGA NSCLC cohort. When focusing on 
different pathologic types, we also identified consistent highly 
inter-patients heterogeneity for both lung adenocarcinoma 
(LUAD) and lung squamous cell cancer (LUSC) (Figure S1, 
Supporting Information. 1.34% for LUAD and 2.11% for 
LUSC). For patients enrolled in our cohort (Summarized in 
Table S1, Supporting Information), genomic profiling based 
on WES revealed a total of 2119 mutated genes, ranging from 
38 to 496 per patient (Figure  1b and Table S2, Supporting 
Information). TTN, TP53, and MUC16 were found to be 
mutated in more than half of the cohort, which is consistent 
with the reported mutation prevalence of these genes in the 
population (Figure  1b). However, only 45 and 19 mutated 
genes were shared between two patients and more than three 
patients, accounting for 2.12% and 0.90% of all mutated 
genes, respectively, further confirming the same level of 
remarkable differences in the mutation spectra (Table S3, 
Supporting Information). Findings on these cohorts strongly 
suggest that a personalized detection strategy in form of an 
ICP is required to effectively cover the mutations of each indi-
vidual patient.

In order to construct an ICP in our study, putative neoan-
tigens were first predicted in silico based on WES data using 
previously established approaches.[18,19] A median of 28.5 
(ranging from 2 to 189) dominant neoantigens was identified 
per patient (Table S4, Supporting Information). The top 20–30 
neoantigen-coding genes with the highest affinity scores were 
included into the ICP panels following to the detailed proce-
dure in Figure S2, Supporting Information. This ICP strategy 
accounted for a median of 82.67% of all predicted neoanti-
gens (ranging from 15.87% to 100%) per patient. We then 
performed on-treatment monitoring of the individual based on 
ctDNA sequencing using their corresponding ICP. The con-
cordance between the ICP-detected neoantigens in ctDNA and 
the WES-detected ones in tumor tissue is summarized in grid 
heatmaps (Figure 1c). Overall, a median of 80% of mutations 
(ranging from 35% to 95%) originally incorporated into the 
ICPs was successfully detected in circulation at the baseline 
sampling point, whereas during the entire treatment period, 
a median of 90% of mutations incorporated into the ICP 
(ranging from 80% to 100%) was detected for at least once, 
demonstrating the reliability of ICP-based ctDNA sequencing 
for the tailored tracking of previously predicted neoantigens 
in patients with NSCLC (Figure 1c and Figure S3, Supporting 
Information).

Through in silico simulation, the effectiveness of ICP 
panels in covering patient-specific neoantigens was compared 
against those of five commercially available panels including 
Foundation Liquid, FoundationOne CDx, Guardant 360, MSK-
IMPACT, and PlasmaSELECT 64 (two genes in FoundationOne 
CDx were inapplicable and therefore excluded, see details in 
Table S5, Supporting Information). The numbers of overlap-
ping genes between each commercial panel and the WES-
derived mutation spectrum for patients in our cohort were 
calculated. The number of overlapping genes was significantly 
lower for all five commercially available panels than for the ICP 
(Figure 1d, upper panel). To further eliminate potential bias due 
to ethnic differences in the mutation spectrum (i.e., differences 
between Asian and Caucasian/Latino populations with NSCLC), 
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genomic profiling data for NSCLC cases from TCGA were used 
for validation using these commercially available panels. Still, 
a substantially smaller percentage of overlapping genes was 
covered by either panel (Figure 1d, lower panel). These compar-
isons proved the superiority of ICP for personalized neoantigen 
monitoring.

2.2. Association Between Clinical Parameters and Neoantigens 
in ctDNA

Numerous studies have demonstrated that baseline ctDNA 
can be used as an approximate indicator of tumor burden in 
patients with metastases for a wide range of tumor types.[20–22] 

Adv. Sci. 2020, 7, 1903410

Figure 1.  Somatic mutation profiles of pre-treatment tissues and matched blood samples for ten patients with non-small cell lung cancer (NSCLC). 
a) Left, heatmap showing inter-individual overlap in the mutation spectrum for cases in the NSCLC dataset of TCGA. The percentage of overlap was 
calculated as the ratio between the numbers of intersected and union genes. Color bar, percentage of overlap. For clear visualization, 50 patients ran-
domly selected from 1059 cases are shown. Right, histogram showing the distribution of percentages of overlap for all patients with NSCLC in TCGA. 
Blue line, fitting curve. b) Mutant genes detected in more than one patient in the cohort are illustrated. Total mutation burden (per MB) and clinical 
information are annotated in the upper two panels. Gene names are labeled on the right. The substitution spectrum and composition of clonal/sub-
clonal mutations for all detected mutations are shown in the lower two panels. c) The heatmap shows an overview of individually customized panels 
(ICPs) and follow-up ctDNA sequencing for each patient. The left column represents all genes in the ICP; the middle column summarizes ctDNA 
sequencing results for baseline samples; the right column indicates genes for which ctDNA could be detected in the following assays at least once. 
Blue square, genes detected over the duration of the treatment; red square, genes never detected in any following ctDNA sequencings; yellow square, 
ctDNA detected; grey square, ctDNA not detected; green square, sequencing not performed. d) Number of overlapping genes between the whole 
exome sequencing (WES)-based mutation spectrum and panel gene lists. Upper panel, mutation spectrum obtained from the 10 patients; lower panel, 
mutation spectrum obtained from the NSCLC dataset of TCGA. Red box, number of genes detected by ICP-based sequencing during the course of 
treatment; blue box, virtual validation of commercial panels, number of genes shared between the commercial panel gene list and patient mutation 
spectra. The boxplot shows the median value with ranges. p-values are based on Kruskal–Wallis tests; for comparisons between the red box and each 
labeled box: *p < 0.05, **p < 0.01, ***p < 0.001. The red vertical line and red shadow indicate the median and range for the red box.
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In our cohort, tumor burden also correlated with the ctDNA 
load measured based on either the variant allele frequencies 
of the individually detected mutations by ICP (Figure S4, Sup-
porting Information, left panel, R = 0.479, ***p = 1.39 × 10−14) 
or their mean values (Figure S4, Supporting Information, right 
panel, R  = 0.464, p  = 0.0993) for each patient. Furthermore, 
ctDNA levels showed a greater decline in patients who experi-
enced an objective response to ICB at eight weeks after the first 
infusion than in patients who showed no response (Figure S5,  
Supporting Information, *p  = 0.0238). We next investigated 
whether the early decrease in peripheral ctDNA could predict 
prolonged survival in response to immunotherapy, as reported 
in ICB-treated cohorts with relatively large cohort sizes.[12,14,23] 
Surprisingly, even with a small sample size of nine patients (P10 
was excluded) with baseline blood samples in our cohort, the 
substantial early decrease in ctDNA abundance (≥50% decrease 
at eight weeks) predicted prolonged progression-free survival 
after ICB administration (Figure S6, Supporting Information, 
**p  = 0.003 and HR = 6.005 [0.879–41.010]). These observa-
tions strongly support the use of ICP-based ctDNA sequencing 
to identify patients likely to have favorable outcomes following 
ICB treatment.

2.3. Concordance between Measurable Tumor Burden and Serial 
Neoantigens in ctDNA

In addition to its use as a predictive indicator at the popula-
tion level, we investigated whether the ICP-based assessment 
of neoantigen level changes could be indicative of quantita-
tive changes in tumor burden at the individual level. The 
radiological tumor burden response (determined by the sum 
of products of perpendicular diameters (SPDs)) and longitu-
dinal ctDNA kinetics was evaluated, with the results shown in 
Figure 2a (response evaluation criteria in solid tumor (RECIST)-
measured tumor burden showed a consistent association with 
ctDNA change in Figure S7, Supporting Information). Tumor 
burden was quantitatively compared to ctDNA levels at the 
time point nearest to that of the surveillance scans (Figure S8, 
Supporting Information). Based on the SPD-measured tumor 
burden, changes in ctDNA after ICB administration satisfacto-
rily reflected the degree of radiological tumor burden in eight 
of ten patients, with R = 0.509–0.999, strongly supporting the 
potential use of ICP to monitor the dynamics of tumor burden 
through ctDNA sequencing (Figure S8, Supporting Informa-
tion). Outliers including patient 02 and patient 10 are further 
discussed in the following section.

The magnitude of ctDNA decline varied substantially among 
individuals when measured by ICP (Figure  2b upper panel). 
When patients were ordered according to the magnitude of 
ctDNA decline, responders with a persistent clinical benefit 
were substantially over-represented among patients with greater 
declines at the ctDNA level during ICB therapies, yet were under-
represented among patients who showed relatively less changes 
(Figure  2b). Similarly, when ordered according to the magni-
tude of the change in tumor burden, responders were relatively 
over-represented among patients with greater reductions in 
ctDNA (Figure S9, Supporting Information). Furthermore, the 
average time to a 50% decline in tumor burden was 32.4 days if 

determined by the ICP-measured ctDNA level but was 78.4 days 
if determined by radiological evaluation (Figure 2c). These inter-
esting observations suggest that ICP-based ctDNA sequencing 
could become an effective clinical utility to identify responsive-
ness and to indicate the survival benefit of ICB, and further-
more, it might serve as a more sensitive surveillance platform 
when compared with radiological scanning, as it could predict 
prognosis at a significantly earlier timepoint.

2.4. Case Presentation for Outliers

Patient 02 was a 68-year-old female diagnosed with lung adeno-
carcinoma and T2N1M1c stage IV disease. She was enrolled in 
the NEPTUNE trial (NCT02542293) that tested the efficacy of 
tremelimumab/durvalumab combinational immunotherapy 
and achieved a partial response after four cycles of adminis-
tration. Baseline emission computed tomography revealed an 
unmeasurable metastatic lesion in the 12th thoracic vertebra 
(Figure  3, upper panel) according to the RECIST 1.1 criteria. 
Following marked tumor shrinkage in the mediastinal meta-
static lymph node, the ctDNA level gradually increased from 
239 days after the first infusion, reaching a 14-fold elevated level 
when compared with the baseline level at 351 days (Figure  3, 
lower panel). The re-elevation of cancer embryonic antigen 
(CEA) levels that was observed also strongly suggested dis-
ease progression during treatment (Figure S10, Supporting 
Information). To assess symptomatic vertebral metastases, 
magnetic resonance imaging with contrast was performed at 
nine months after the baseline evaluation and this revealed 
a newly unmeasurable lesion in the 5th lumber vertebra. 
Although the lesion could not be considered measurable and 
was not included in the SPD-assessed tumor burden, the 
increased ctDNA levels that were observed were accompanied 
by the gradual progression of bone metastases.

Patient 10 was a 65-year-old male without a history of 
smoking. He was diagnosed with adenocarcinoma and also 
enrolled in the NEPTUNE trial. Because the researchers judged 
that the subject would still benefit from the drugs, he con-
tinued to receive ICB-agents after the radiological progression 
of disease. Sequencing analysis showed that he experienced 
rapid progression of tumor burden and a paradoxical decline in 
ctDNA load (Figure 2a, panel for P10). We have not determined 
the exact reason for this decline, but the growth of treatment-
resistant clones is one potential explanation. Interestingly, the 
ctDNA of all ICP-covered neoantigens disappeared suggesting 
potential outgrowth of a different clone that did not bear these 
neoantigens, rather than a subclone, which was not sufficiently 
represented in the original biopsy.

3. Discussion

A number of sophisticated approaches have been developed 
with an optimized panel design, such as cancer personalized 
profiling by deep sequencing (CAPP-Seq)[24] and integrated dig-
ital error suppression[25] CAPP-Seq, to increase the sensitivity of 
mutation detection in circulating tumor DNA. However, such 
approaches were typically based on a fixed set, generic targeted 
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panel design, with relatively less attention paid to the flexibility 
of mutation coverage, risking the potential exclusion of clini-
cally meaningful mutations. Alternatively, personalized targeted 
sequencing, in which the sequencing amplicons are designated 
based on genomic alterations identified from diagnostic tumor 
tissues, is being studied as an avenue to improve the breadth of 
coverage in ctDNA monitoring.[26–28] In this study, we stream-
lined a modified protocol for ctDNA sequencing to cover domi-
nant in silico-predicted neoantigens and track the dynamic 
evolution of these neoantigen-coding mutations in response to 
ICB immunotherapies. ICP-based neoantigens were detected 
in all nine patients with available baseline blood samples. The 
average number of detected mutations of 22 per patient in our 
assay is an improvement over previous clinical approaches with 

commercially available panels (Figure  1c and Figure S3, Sup-
porting Information). In silico validation results have also con-
firmed the advantage of ICP-based sequencing with respect to 
the breadth of coverage in comparison with various commer-
cially available panels (Figure 1d).

We further applied the ICP-based ctDNA sequencing for 
real-time on-treatment biomarker monitoring and achieved 
improved tracking of neoantigen evolution with the fol-
lowing evidence: 1) Early changes in ctDNA predicted tumor 
load dynamics during treatment (Figure  2a). In particular, 
for patients who achieved a 50% decline in tumor burden, 
the ctDNA response was detected prior to radiologically con-
firmed disease control (Figure 2c). 2) The magnitude of ctDNA 
load decline was positively associated with tumor shrinkage 

Adv. Sci. 2020, 7, 1903410

Figure 2.  Tumor burden with respect to ctDNA changes during the course of follow-up. a) Sequential neoantigen ctDNA-assessment and tumor 
burden during treatment. The dynamic changes in the ctDNA allele frequencies are presented as lines of different colors. Tumor burden was quanti-
fied as the sum of products of perpendicular diameters (SPDs), and illustrated as black lines for each patient. SPDs were subjected to linear scaling. 
b) Correlation between the magnitude of the ctDNA decline and clinical outcomes after immune checkpoint blockade (ICB) administration. Grey bar 
plot in upper panel, fold-change in mean ctDNA minor allele frequency (MAF) from the baseline to 12 weeks after first cycle of administration. Lower 
panel, heatmap showing the trend in radiological imaging-based SPD-measured tumor burden from the baseline evaluation to the last radiological 
follow-up. Each lane represented the tumor burden for one patients serially. Each color square within the lane represented the tumor burden in each 
surveillance scan. The baseline tissue tumor mutational burden (TMB) and best of response (BOR) for each patient are annotated above the heatmap. 
The color gradient indicates the change in tumor burden. Patients are ordered according to the decline in ctDNA at 12 weeks. c) Time to tumor burden 
versus ctDNA decline among patients with radiological confirmation of >50% SPD decline. Statistics are based on two-tailed paired Student’s t-tests.
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measured by radiological scans (Figure  2b). Although at the 
cohort level, patients with substantial ctDNA responses (for 
which the definition varies in different publications) usually 
showed better tumor control with immunotherapy, our studies 
are among the first to witness this correlation more precisely 
to an individual level. 3) An unaccountable elevation in ctDNA 
load might suggest progressive disease, particularly caution the 
new lesion that is outside the field of routine surveillance scan 
(Patient 02). 4) ICP is potentially applicable for discriminating 
relapsed patients owning to neoantigen loss (Patient 10). Lastly, 
it is worthwhile to mention that despite lacking a representa-
tive case in our present cohort, theoretically, ICP-based detec-
tion would be capable of discriminating true progression from 
pseudo-progression for enlarged lesions with a stable ctDNA 
load. Although on a flip side, owing to the nature of ICP design 
and the heterogeneity of tumor environment, ICP would lack 
the predictive value in discriminating pseudo-progression from 
true progression.

In addition to these prospects, this neoantigen-coding muta-
tion-based ICP also helps identify the underlying mechanism 
of immune editing during immunotherapy. We found that 
the general trend of ctDNA kinetics for each involved gene is 
almost parallel, strongly suggesting a broad spectrum of T-cell-
mediated attack associated with ICB immunotherapies, instead 
of targeting a few “key” epitopes in the anti-tumor response. 
However, selective clonal evolution and subsequent acquired 
resistance during treatment have long been a concern, 

especially in the era of targeted therapies.[29–31] Immunother-
apies can result in evolution of the neoantigenic landscape, 
consistent with the theory of immunoediting.[32] An analysis of 
matched pre- and post-treatment tumor samples by Valsamo 
and colleagues[33] found that 7–18 putative neoantigens are 
eliminated in immunotherapy-resistant cases, providing the 
first evidence that neoantigen evolution might be involved in 
acquired resistance to immunotherapy. Interestingly, in our 
cohort, except for that observed for one patient (Patient 10), ini-
tial neoantigen-coding mutations could still be detected at the 
stage of relapse in nine patients, suggesting that a sufficiently 
large-scale of neoantigen loss might be attributable to just a 
small portion of relapsed patients after ICB treatment. The dif-
ference in observations between Valsamo’s and our study could 
be due to the spatial heterogenous[34,35] mutation spectrum of 
tumors. In three of four patients in Valsamo’s cohort, muta-
tions were estimated based on matched tumor tissues sampled 
from proximate but different anatomical sites, and this discrep-
ancy could be overcome by circulating assays such as ctDNA 
sequencing. Therefore, for patients without neoantigen loss, 
we propose that strategies that support or re-provoke the acti-
vation and expansion of neoantigen-specific T-cells might help 
to overcome resistance after ICB treatment. Besides check-
point blockade immunotherapies, neoantigen-based personal 
vaccination has long been envisioned as an effective stim-
ulus to provoke tumor-specific T cell responses.[36] However, 
despite being facilitated by the progress of high-throughput 

Adv. Sci. 2020, 7, 1903410

Figure 3.  Radiological and serological follow-ups for P2 with unmeasurable lesions. Upper panels, surveillance CT, MRI scans (with contrast), or ECT 
showing the change in tumor burden over time in the mediastinal lymph node (LN), cranial bone, and lumbar vertebrae. Red arrowheads indicate the 
lesion site. Lower panel, clinical course. Red lines, SPD; green line with shadow, mean ctDNA MAF with the range for all detected mutations in ctDNA.
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sequencing and bioinformatic tools, the clinical effectiveness 
of extensively past work was far from ideal. We believe that 
personalized ctDNA sequencing is an excellent tool to monitor 
the clearance of neoantigen-expressing tumor cells and to gain 
mechanistic insight into resistance to neoantigen-based cancer 
vaccines.

One limitation of ICP-based neoantigen tracking during 
immunotherapy probably lies in the pipeline for the in silico 
prediction of neoantigens. Current algorithms predict the pep-
tide-MHC binding affinity but cannot accurately predict pro-
teasomal processing, post-proteasomal trimming, and whether 
sufficient peptide-MHC complexes reach the cell surface. 
Therefore, all neoantigen prediction strategies only provide 
a putative list with the greatest possibility to cover most bona 
fide tumor-expressing neoantigens. Furthermore, the lead time 
for the clinical application of ICP, including WES, neoantigen 
prediction, and the synthesis of patient-specific sequencing 
probes, constrains our ability to make real-time neoantigen 
tracking observations in the first two cycles of ICB administra-
tion. Presently, this study was limited in its cohort size and was 
performed for feasibility assessment purposes, partly due to the 
technical demands of the approach. The clinical significance 
of ICP-based ctDNA sequencing needs to be validated with 
a larger cohort, with a prospective trial design and long-term 
surveillance scans, after which, ICP-based ctDNA sequencing 
could potentially improve our understanding of neoantigenic 
evolution and minimize unnecessary ICB-mediated immuno-
logical toxicity, ultimately maximizing the clinical benefits of 
checkpoint blockade immunotherapies.

4. Conclusion

ICP-based ctDNA sequencing provides a superior coverage 
to longitudinally track predicted dominant neoantigens. The 
clinical application of such an approach will warrant per-
sonalized management strategies that in turn improve the 
clinical benefits of immunotherapies and enhance our under-
standing of ICB-driven tumor editing and neoantigenic profile 
evolution.

5. Experimental Section
Patients and Sampling: Ten patients diagnosed with stage IIIB/

IV non-small cell lung cancer (NSCLC) were treated with durvalumab 
monotherapy or combination therapy with tremelimumab/durvalumab 
(clinical information summarized in Table S1, Supporting Information). 
All patients were confirmed to lack an EGFR mutation or ALK-EML4 
fusion at Chongqing Xinqiao Hospital. Ten formalin-fixed, paraffin-
embedded (FFPE) tumor tissues and matched peripheral blood samples 
were obtained prior to the first infusion of ICB. During the course of 
treatment, 97 time-course blood samples (including baseline samples) 
were collected for ctDNA sequencing. Clinical responses were evaluated 
by a senior physician based on RECIST 1.1 criteria every six weeks (two 
cycles of ICB administration). Tumor burden was measured by the 
sum of the longest diameter of evaluable lesions according to RECIST 
1.1 criteria (designated as RECIST-measured tumor burden), or by the 
sum of the product of perpendicular diameter of evaluable lesions 
(designated as SPD-measured tumor burden). The study protocol was 
approved by the institution review board of Xinqiao Hospital, Army 

Medical University. Written informed consent for sample acquisition was 
obtained from all patients. All data were deidentified.

Tissue and Plasma DNA Isolation and Purification: Genomic DNA 
(gDNA) was extracted from the FFPE samples using the GeneRead 
DNA FFPE Kit (Qiagen, Germantown, MD, USA) and from peripheral 
blood mononuclear cells using the DNA Blood Midi/Mini kit (Qiagen) 
according to the manufacturer’s instructions. Plasma cell-free DNA 
(cfDNA) was isolated using the MagMAX Cell-Free DNA Isolation Kit 
(Thermo, Waltham, MA, USA) according to the manufacturer’s protocol. 
The quality of purified DNA was assayed by gel electrophoresis and 
quantified with a Qubit 4.0 Fluorometer (Life Technologies, Carlsbad, 
CA, USA).

Library Construction and ctDNA and Whole Exome Sequencing: Purified 
gDNA was first fragmented into DNA pieces of approximately 300  bp 
using an enzymatic method (5 × WGS Fragmentation Mix; Qiagen). 
After end-repairing and A tailing, T-adaptors were ligated on both ends, 
followed by PCR amplification to obtain a pre-library. The final sequencing 
libraries were prepared using the 96 rxn xGen Exome Research Panel 
v1.0 (Integrated DNA Technology, Coralville, IA, USA) according to the 
manufacturer’s protocol. For the targeted sequencing of cfDNA, the pre-
libraries were prepared according to the method previously described.[37] 
In-house panels were designed to capture cfDNA fragments to generate 
sequencing libraries. The sequencing libraries were evaluated using the 
NovaSeq 6000 platform (Illumina, San Diego, CA, USA) in 150PE mode.

Bioinformatics Analysis of Whole Exome Sequencing Results: The raw 
sequencing reads were subjected to quality control by trimming adaptor 
sequences and removing poly-N sequences (>10%) and low-quality reads 
(<Q20) preprocessed using FASTP.[38] The FASTQ files were aligned to 
the human reference genome (hg19/GRCh37) using Burrows–Wheeler 
Aligner (BWA, v0.7.15).[18] Picard (2.12.1) (http://picard.sourceforge.net/) 
was used to process PCR duplicates for mapped BAM files. GATK (the 
Genome Analysis Toolkit 3.8)[39] was used for local realignment and base 
quality recalibration was employed to compute sequencing coverage 
and depth. Single nucleotide variants (SNVs) and small insertions 
and deletions were identified using GATK MuTect2. Mutations in the 
ENCODE Data Analysis Consortium blacklist were removed.[40]

Variants were annotated using ANNOVAR[41] based on multiple 
databases, including HGVS variant description and population 
frequency databases (1000G, ExAC, and dbSNP), disease or phenotype 
databases (OMIM, COSMIC, and ClinVar), and variant functional in 
silico prediction tools (PolyPhen-2 and SIFT). After annotation, SNVs 
annotated as genomicSuperDups with a variant allele frequency (VAF) 
<  0.2 or PopFreqMax >  0.05 were excluded and nonsynonymous SNVs 
with a VAF > 3% or with a VAF > 1% in cancer hotspots collected from 
patient databases were retained for further analyses.

For each mutation, the proportion of mutated reads (variant allele 
fraction, VAF), the proportion of tumor cells harboring the mutation 
(cancer cell fraction, CCF), and the clonality were calculated according 
to the methods described by Letouzé et al.[40] We applied a binomial test 
to compute the 95% confidence interval (CI) of VAF, which was used 
to calculate the 95% CI of CCF thereafter. A mutation was regarded as 
subclonal if the upper boundary of the 95% CI of CCF was <1, and clonal 
otherwise. Tumor mutation burden was defined as the total number of 
non-synonymous SNVs per megabase of coding sequence in a tumor 
genome based on WES.

Neoantigen Prediction and Individual Personal Mutation Probe Design: 
Dominant neoantigens were predicted using two computational tools, 
OptiType[42] to infer the individual HLA type and pVAC-Seq[19] to predict 
the binding affinity of non-silent mutant peptides. To reduce redundancy 
and select neoepitopes predicted to exhibit strong specific HLA-
peptide binding, 500 nm MHC binding affinity was applied as a filtering 
criterion. The predicted neoantigens were sorted by their binding score. 
For individual patients with more than 20 predicted neoantigens, the 
neoantigens with the top 30 binding scores were selected to design 
DNA probes to assay their presence and abundance in plasma during 
ICB treatment. For individual patients with fewer than 20 predicted 
neoantigens, all predicted neoantigens were selected, supplemented 
with mutations with the highest VAFs to obtain a total of 20 loci.
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Bioinformatics Analysis of cfDNA Mutations: FASTP[38] was used to 
trim adapters and to remove low-quality sequences to obtain clean 
reads. The clean reads were aligned against the Ensemble GRCh37/hg19 
reference genome using BWA.[18] PCR duplicates were processed using 
gencore, and consensus reads were generated. SAMtools[43] was applied 
for the detection of SNVs, insertions, and deletions. HGVS variants were 
annotated using ANNOVAR.[41]

Statistical Analysis: Statistical analyses and data visualization were 
conducted using R/Bioconductor packages. The Kaplan–Meier method 
was used for the survival analysis, median values were compared 
using log rank tests, and hazard ratios were obtained from the Cox 
proportional hazards model. Overlapping genes between ICP, WES, and 
commercially available panels were evaluated by Kruskal–Wallis tests. 
Dunn’s test was used for post-hoc analyses, and p-values were adjusted 
based on the Benjamini–Hochberg correction.
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