Skip to main content
. 2020 Apr 26;2020:6539398. doi: 10.1155/2020/6539398

Table 3.

The predictive performance of TRGP, LDA, SVM, and random forest classifier.

Classifier Data sets Number of gene pairs Accuracy Sensitivity Specificity Precision Balanced accuracy AUROC
LDA Discovery set 60 0.978 0.993 0.949 0.973 0.971 0.980
Validation set-1 0.898 0.882 0.904 0.763 0.893 0.860
Validation set-2 0.589 0.543 0.695 0.802 0.619 0.601

SVM Discovery set 12 0.955 0.979 0.910 0.953 0.945 0.956
Validation set-1 0.817 0.980 0.760 0.588 0.870 0.790
Validation set-2 0.698 0.699 0.695 0.839 0.697 0.671

Random forest Discovery set 56 1.000 1.000 1.000 1.000 1.000 1.000
Validation set-1 0.868 0.961 0.836 0.671 0.898 0.828
Validation set-2 0.788 0.866 0.610 0.835 0.738 0.751

TRGP Discovery set 7 0.830 0.936 0.774 0.689 0.855 0.947
Validation set-1 0.934 0.959 0.863 0.952 0.911 0.955
Validation set-2 0.703 0.797 0.662 0.508 0.729 0.796