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Coronary heart disease (CHD) is one of the severe health issues and is one of the most common types of heart diseases. It is the
most frequent cause of mortality across the globe due to the lack of a healthy lifestyle. Owing to the fact that a heart attack
occurs without any apparent symptoms, an intelligent detection method is inescapable. In this article, a new CHD detection
method based on a machine learning technique, e.g., classifier ensembles, is dealt with. A two-tier ensemble is built, where
some ensemble classifiers are exploited as base classifiers of another ensemble. A stacked architecture is designed to blend
the class label prediction of three ensemble learners, i.e., random forest, gradient boosting machine, and extreme gradient
boosting. The detection model is evaluated on multiple heart disease datasets, i.e., Z-Alizadeh Sani, Statlog, Cleveland, and
Hungarian, corroborating the generalisability of the proposed model. A particle swarm optimization-based feature selection is
carried out to choose the most significant feature set for each dataset. Finally, a two-fold statistical test is adopted to justify
the hypothesis, demonstrating that the performance differences of classifiers do not rely upon an assumption. Our proposed
method outperforms any base classifiers in the ensemble with respect to 10-fold cross validation. Our detection model has
performed better than current existing models based on traditional classifier ensembles and individual classifiers in terms of
accuracy, F;, and AUC. This study demonstrates that our proposed model adds a considerable contribution compared to the
prior published studies in the current literature.

diovascular diseases with a high mortality rate, making it
one of the complicated diseases to treat.
In order to examine the suspicious sign of CHD, particu-

Effective detection and diagnosis of coronary heart disease
(CHD) are compulsory to prevent human casualties. CHD
is the most common type of heart disease, and it accounts
for 37,000 deaths annually in the United States in 2015 [1].
The factors that increase a person’s risk can be prevalently
lifestyle-related elements, i.e., hypertension, cholesterol, obe-
sity, and smoking. However, some of the nonlifestyle risk fac-
tors, ie., family history, age, and having high levels of
fibrinogen must also be taken into consideration. Moreover,
it develops without any risk factors as mentioned above,
which may lead to a heart attack without causing any prior
apparent symptoms. Hence, CHD is one of the leading car-

lar tests might be required by a physician such as angiogram,
blood test, blood pressure monitoring, chest X-ray, electro-
cardiogram, echocardiogram (heart ultrasound), and stress
tests [2, 3]. The electrocardiogram, which represents the elec-
trical activity of the heart, is one of the standards and nonin-
vasive diagnostic tests in CHD. Though it can be performed
rapidly and is easy to perform, it may miss out the asymp-
tomatic patients and diagnose them with normal electrocar-
diogram rhythm. Also, the electrocardiogram has some
limitations as a prognostic tool to predict future CHD [4, 5].
This disadvantage gives rise to angiogram, which is a rule of
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thumb for disease detection and diagnosis. Nevertheless, it is
uneconomical and calls for specialized technical competence.
Asaresult, many practitioners/researchers nowadays are soli-
citing more economical and efficient approaches using
machine learning for diagnosing CHD.

Intelligent systems have been deployed in clinical-based
decision support systems, assisting physicians in providing
a second opinion about the detection and diagnosis of partic-
ular diseases [6]. Due to the fact that CHD might be challeng-
ing to address, inaccurate detection or delays in clinical
treatment might lead to a poor outcome or increased mortal-
ity. CHD detection is dependent on lots of variables such as
family history, age, and gender, to name a few [7]. Further-
more, it varies on the detection methods used and the
variables chosen. Artificial intelligence (AI) and machine
learning techniques have brought a new magnitude to CHD
detection and diagnosis. They have been employed for discov-
ering and uncovering valuable pattern/information from the
clinical datasets with a few user inputs and attempts [8, 9].

By its nature, clinical datasets are uncertain and irregular;
thus, it is not straightforward to apply machine learning tech-
niques without an adequate preprocessing task, e.g., feature
selection. Moreover, data irregularities in a medical dataset
are deemed to have an effect on the final performance of
the classification model [10]. Therefore, in order to achieve
the maximum capability of machine learning algorithms, it
is essential to take into consideration a proper data prep-
aration technique. Moreover, some unnecessary features
might degrade the performance of algorithms; thus, having
a data preparation and feature selection are compulsory to
gain the best possible accuracy in predicting CHD. Not-
withstanding the fact that a feature selection technique is
equally crucial with the choice of a proper technique, it
is still not apparent on how to combine machine learning
techniques with a suitable feature set. The issue depicts us
that there exists an open research problem in identifying
the merit of the feature set and in picking an appropriate
classification algorithm.

Many researchers have considered different kinds of clas-
sifiers for predicting CHD, either as individual classifiers or
meta classifiers. In the case of an individual classifier that
cannot give a desirable performance, a meta (e.g., ensemble)
classifier should be accommodated to provide a significant
improvement over individual classifiers. Unlike single classi-
fiers, meta classifiers train multiple classifiers to predict the
final prediction outcome, making them robust and sufficient
for disease prediction. The choice of combining multiple
classifiers can be either homogeneous (e.g., using the same
type of classifiers) or heterogeneous (e.g., using different
types of classifiers). Although in many other application
domains, meta classifiers have shown remarkable performance
over individual classifiers; choosing a variety of combination
techniques and base classifiers remains unexplored [11].

2. Related Work

Most existing CHD prediction techniques have been built
and validated on UCI Machine Learning Repository datasets,
which are composed of risk factors (e.g., variables) excluding
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angiography. These techniques are simpler, less expensive,
replicable, and unbiased diagnoses and can detect automati-
cally and can perform a preliminary examination of patients
based on clinical data in hospitals. In this section, we summa-
rize machine learning that uses risk factors for training and
testing the classification models, particularly on the datasets
available on the UCI website. The two-tier ensemble pre-
sented in this paper is also validated on those datasets. How-
ever, various types of methods, risk factors, and datasets have
been proposed for CHD diagnosis [12]. A well-known
ensemble learning, namely, rotation forest with different base
classifiers was assessed [13]. Based on the performance val-
idation on the Cleveland dataset, rotation forest with RBF
network as base classifier was the top-performing classifier.
The work of Muthukaruppan and Er [14] presented a PSO-
based fuzzy expert system for the diagnosis of CHD. Rules
were extracted from decision tree, and they were converted
into fuzzy rules. Having PSO to tune the fuzzy membership
function, the fuzzy expert system yielded 93.27% accuracy
on the Cleveland dataset. The potential of an expert
judgment-based feature selection was explored in [15].
Using 10-fold cross validation (10CV) for evaluation,
sequential minimal optimization (SMO) was the best per-
former on the Cleveland dataset.

A work of Alizadehsani et al. [16] took into account an
ensemble approach, namely, Bagging-C4.5, for CHD predic-
tion. The proposed classifier reached accuracy rates of
79.54%, 61.46%, and 68.96% for the diagnosis of the stenoses
of the left anterior descending (LAD), left circumflex (LCX),
and right coronary artery (RCA), respectively. A dataset col-
lected from Rajaie Cardiovascular Medical and Research
Center, having 54 input features and 303 instances, was used
in the experiment. Similar authors in [17] used several
machine learning algorithms such as Bagging, SMO, neural
network (NN), and naive Bayes. The best accuracy was
achieved by SMO at 94.08%. An information gain-based fea-
ture selection was also involved in choosing a suitable feature
set. Moreover, Alizadehsani et al. [18] aimed at improving
the accuracy in the diagnosis of the stenosis of each major
coronary artery. To achieve this, the authors proposed a fea-
ture selection to choose more discriminative feature subsets
for each artery. Based on their experiment, the proposed clas-
sifier, e.g., support vector machine (SVM) gained accuracy
rates at 86.14%, 83.17%, and 83.50% for LAD, LCX, and
RCA, respectively. A novel hybrid approach for CHD diag-
nosis based on the combination of CFS, PSO, and K-means
clustering was initiated in [19]. The proposed model is tested
on Cleveland and IGMC datasets, having 83.5% and 90.28%
accuracy, respectively. A study presented by Qin et al. [20]
incorporated multiple feature selection methods into the
ensemble algorithm to verify the importance of feature selec-
tion in the Z-Alizadeh Sani CHD dataset. Weight optimiza-
tion of NN via the genetic algorithm used for heart disease
detection was introduced in Arabasadi et al. [21]. The pro-
posed classifier was tested on the Z-Alizadeh Sani dataset,
obtaining 93.85%, 97%, and 92% in terms of accuracy, sensi-
tivity, and specificity, respectively. A research of Haq et al.
[22] proposed a hybrid feature selection and logistic regres-
sion to classify heart disease, while Dwivedi [23] evaluated
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TaBLE 1: Summarization of existing methods for CHD prediction in chronological order.

Study Technique Feature selection  Validation method Dataset

Ozcift and Gulten [13] Rotation forest No 10CV Cleveland
Muthukaruppan and Er [14]  Fuzzy expert system No Hold-out Cleveland

Nabhar et al. [15] SMO Yes 10CV Cleveland

Alizadehsani et al. [16] Bagging-C4.5 Yes 10CV Z-Alizadeh Sani
Alizadehsani et al. [17] SMO Yes 10CV Z-Alizadeh Sani
Alizadehsani et al. [18] SVM Yes 10CV Z-Alizadeh Sani

Verma et al. [19] MLP Yes 10CV Cleveland, IGMC

Qin et al. [20] EA-MFS Yes 10CV Z-Alizadeh Sani

Arabasadi et al. [21] Hybrid NN-GA Yes 10CV Z_Ailziz?ﬁeiiﬁl_’vgz\;leclia;iitiilr;iajlan)
Hagq et al. [22] SVM Yes 10CV Cleveland

Dwivedi [23] Logistic regression No 10CV Statlog

Ahmadi et al. [24] NN Yes Hold-out Cleveland

Abdar et al. [25] SVM Yes 10CV Z-Alizadeh Sani

Raza [26] Voting ensemble No 10CV Statlog

Amin et al. [9] Voting ensemble Yes 10CV Cleveland, Statlog

Mohan et al. [27] HRFLM No Notmentioned ~ Ci€Veland Hungarian, Long-beach-va,

and Switzerland

the performance of several machine learning algorithms for
heart disease prediction. Logistic regression was reported as
the best classifier, providing 85% accuracy on the Statlog
dataset. Furthermore, the performance of boosted C5.0
and NN were compared to predict CHD for the Cleveland
dataset [24]. Based on the experiment, the authors con-
cluded that there was no significant difference between
C5.0 and NN.

More recently, Abdar et al. [25] established a new optimi-
zation technique called N2Genetic optimizer. The nuSVM
was then used to classify the patients having CHD or not.
The proposed detection method was compared against exist-
ing works, yielding accuracy at 93.08% on the Z-Alizadeh
Sani dataset. An ensemble architecture using majority voting
was suggested by Raza [26]. It combined logistic regression,
multilayer perceptron, and naive Bayes to predict heart dis-
ease in a patient. Classification accuracy of 88.88% was
achieved, where it was better than any individual base classi-
fiers. Similarly, Amin et al. [9] attempted to seek the best
appropriate features for CHD diagnosis. A voting-based
ensemble of naive Bayes and logistic regression was utilized
for training the selected feature subset of 9 features of the
Cleveland dataset. The final predictive performance was
achieved by 87.41% with respect to 10CV approach. Most
recently, Mohan et al. [27] proposed a hybrid method for
heart disease prediction based on the combination of random
forest with a linear model (HRFLM). The proposed method
enhanced the performance level with an accuracy of 88.7%
on the Cleveland dataset. Based on our discussion as men-
tioned earlier, we chronologically summarize existing works,
as shown in Table 1. From the abovementioned evidences,
existing CHD detection methods suffer from some of the fol-
lowing shortcomings: firstly, most researchers have validated
their proposed method on a particular dataset and only a few
works have used at least two CHD datasets in their experi-

ments, i.e., [9, 19, 21, 27]. This makes the prediction results
not reliable enough. It is highly desirable to use multiple
CHD datasets in order to prove the generalizability of the
proposed method.

Secondly, the absence of a statistical significance test is
the key drawback of prior works. According to Dem sar
[28], a significance test is a plausible approach to compare
multiple classification algorithms and multiple datasets.
Since there exists no such test, any significant differences
among classification algorithms are still questionable and
inestimable. Lastly, some existing works have taken into
account classifier ensembles, i.e., [9, 26]; however, the classi-
fier ensembles are constructed based on several weak individ-
ual classifiers. i.e., decision tree, neural network, and logistic
regression, to name a few; thus, the final prediction outcome
could not be gained.

To cope with those limitations, the objective of this study
is to design a two-tier classifier ensemble to predict heart dis-
ease. The proposed ensemble learner is built based on a
stacked architecture, in which its base classifiers are taken
from other types of classifier ensembles, i.e., random forest
[29], gradient boosting machine [30], and extreme gradient
boosting (XGBoost) [31]. Also, an experiment is carried out
to identify the most significant features using a combination
of feature subset selection, e.g., correlation feature selection
(CES) [32] and optimization technique, e.g., particle swarm
optimization (PSO). Heart disease datasets are obtained from
a public resource, namely, the UCI Machine Learning Repos-
itory. These include Z-Alizadeh Sani [21], Statlog [33], Cleve-
land [34], and Hungarian dataset [34]. In addition, we
conduct a two-step statistical significance test in order to
assess how significant the performance differences among
classifiers are. Finally, this study benchmarks the perfor-
mance accuracy achieved by the proposed classifier against
the best accuracy obtained in the existing literature.



TABLE 2: Summarization of each dataset’s characteristics and
properties.

Ratio between

Dataset # features  # instances normal and CHD
Z-Alizadeh Sani 54 303 1:2.5
Statlog 13 261 1:0.78
Cleveland 13 303 1:0.85
Hungarian 13 294 1:0.56

3. Materials and Methods

This section provides the materials (e.g., datasets) and
methods used in our experiment. It consists of details about
datasets, a conceptual workflow of heart disease detection,
feature selection, and the classification techniques, i.e., ran-
dom forest, gradient boosting machine, extreme gradient
boosting machine, and the proposed two-tier ensemble.

3.1. Heart Disease Datasets. Datasets considered for heart
disease prediction are obtained from generally accessible
repository [35]. These datasets are chosen because other
researchers in this field frequently utilize them. The following
are the outline of the datasets used in the experiment, while
Table 2 summarizes each dataset’s characteristics and
properties.

3.1.1. Z-Alizadeh Sani. The dataset includes 303 patients,
where 216 of whom have CHD. Fifty-five input variables
and a class label variable are collected from each patient.
The variables incorporate some of the patient’s characteris-
tics, such as demographic, symptom and examination, elec-
trocardiography, and laboratory examinations [21]. In the
original dataset, the class label variable is comprised of four
categories, i.e., normal, LAD, LCX, and RCA. Since our aim
is to solve a binary classification problem, we group LAD,
LCX, RCA into CHD category, supposing that there are
two classes in the class label attribute.

3.1.2. Statlog. In its original version, the dataset is made up of
75 attributes. However, many researchers have used 13 attri-
butes for CHD detection. No missing values exist, and 261
instances were successfully collected, in which 114 patients
have suffered from CHD [36].

3.1.3. Cleveland. The dataset is collected by Detrano et al. [34]
from 303 samples of normal and CHD patients. The original
dataset consists of 76 variables; however, we consider 13 var-
iables as other prior works did. The class label attribute is
normalized into two distinct classes, i.e., yes (the presence
of CHD) and no (the absence of CHD) because in the origi-
nal dataset, five integer values ranging from 0 (no CHD) to 4
(severe CHD) exist.

3.1.4. Hungarian. We consider a processed dataset available
in the UCI repository. The 210 dataset includes 13 input fea-
tures and a total of 294 observations. Moreover, 106 patients
are identified as CHD sufferers, while the rest are in normal
condition (CHD is not found).
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3.2. Framework of Heart Disease Detection. A conceptual
framework of CHD detection is visualized in Figure 1. The
workflow is made up of three phases, i.e., feature selection,
classifier modeling, and validation analysis. The first phase
deals with the procedure of precisely determining a set of fea-
tures as the most relevant for CHD detection at hand. It is
carried out by employing a correlation-based feature selec-
tion (CFS), where its search method is optimized using parti-
cle swarm optimization (PSO). The procedure for feature
selection is further discussed in Section 3.3.

In the second phase, a two-tier ensemble is formed. This
phase is in charge of constructing a classification model via
the mixture of three homogeneous ensembles, i.e., random
forest (RF), gradient boosting machine (GBM), and extreme
gradient boosting machine (XGBoost). These ensembles are
stacked to produce a final prediction. According to this struc-
ture, other individual classifiers can also be considered, such
as decision tree/J48 (DT) [37], random tree (RT) [38], and
classification and regression tree (CART) [39]. Our objective
is to benchmark our proposed classifier and the base classi-
fiers that build the model. Besides, other individual classifiers,
i.e, DT, RT, and CART, are included since RF is an improved
version of RT, while GBM is built by an ensemble of CART.
In addition, DT is a well-known algorithm that can be con-
sidered a representation of tree-based classifiers. The classifi-
cation analysis and performance comparisons presented in
Section 4 are based on the classification algorithms as men-
tioned above.

Finally, in the third phase, the proposed two-tier ensem-
ble is assessed. The evaluation procedure is built upon k-fold
cross validation, where k is set to 10. This procedure is also
known as 10-fold cross validation (10CV).

Furthermore, three performance measures are typically
employed in the imbalanced data problem. These are accu-
racy, F,, and area under ROC (AUC). Section 4 presents
the experimental results of the paper.

3.3. Feature Selection. As we have mentioned above, some
irrelevant input features might lower the classifier’s perfor-
mance. Hence, choosing an accurate and rigorous subset of
features from a particular set of features for the prediction
task is very challenging. In this paper, we exploit a
correlation-based feature selection (CFS) as it is a widely
known attribute evaluator for machine learning. Besides, in
many cases, CFS gave comparable performance to the wrap-
per method and, in general, outperformed the wrapper
method on small datasets [32]. It evaluates the relevance of
a feature subset using information gain and entropy [32].
More specifically, insignificant and unnecessary features are
omitted in this phase. Furthermore, we leverage an optimiza-
tion technique, namely, particle swarm optimization (PSO),
as a search technique. A number of experiments are carried
out by varying the number of particles. The best feature set
is then chosen by the maximum accuracy of the credal deci-
sion tree (CDT) classifier [40]. CDT uses imprecise probabil-
ities and uncertainty measures for the splitting criterion. The
performance of CDT is evaluated using subsampling, where
the training set D, is simply derived from a dataset D.

The remaining part (D,,) is used for testing. The procedure
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FiGUre 1: Theoretical framework of heart disease detection.

is then repeated k 260 times. In this work, we consider a sam-
pling ratio of 80/20 and k = 50.

3.4. Classification Techniques. The proposed two-tier ensem-
ble is built upon three different classifier ensembles, i.e., RF,
GBM, and XGBoost in a stacked (parallel) manner.

Compared to conventional classifier ensembles that
always exploit weak individual learners, in this work, we
take into account strong ensemble learners as the base
classifiers. The best learning hyperparameters of each base
classifier are obtained using grid search by trying out all
possible values. The area under ROC (AUC) [41] is
employed as a stopping metric of the search. We briefly
explain the three base classifiers used in this study as
follows.

3.4.1. Random Forest (RF). This classifier takes bagging of
decision tree procedure to evoke a large collection of trees
to improve performance. Compared to other similar
ensembles, RF requires less hyperparameter tuning. Origi-
nal bagging decision tree yields tree-mutuality, which suf-
fers from the effect of high variance. Hence, RF offers a
variance reduction by introducing more randomness into
the tree-generation procedure [29]. After performing grid
search, optimized learning parameters of RF are ntrees = 10,000,
max depth =9, min rows = 8, nbins = 256, nbins cats = 4096,
sample rate = 0.56, histogram type = “QuantilesGlobal , and
distribution = “multinomial .

3.4.2. Gradient Boosting Machine (GBM). This algorithm
builds an ensemble of trees in a serial approach, where a weak
model, e.g., a tree with only a few splits, is trained first and
consecutively improves its performance by maintaining to
generate new trees. Each new tree in the sequence is respon-
sible for repairing the previous prediction error [30]. Based

on the grid search, we set the learning parameters as follows:
ntrees = 10,000, max depth =14, min rows=1, nbins=
1024, nbins cats = 64, learnrate = 0.05, learn rate annealing
=0.99, distribution = “bernoulli, sample rate = 0.32, col
sample rate = 0.97, and histogram type = “QuantilesGlobal .

3.4.3. Extreme Gradient Boosting Machine (XGBoost).
Besides GBM, XGBoost [31] is another implementation of a
gradient boosting algorithm. A wide variety of problems
can be solved using gradient boosting. The rationale of the
algorithm is to seek the fine-tuned learning parameters
iteratively in order to reduce a cost function. Concerning
computational efficiency (e.g, memory utilization and
processor cache), XGBoost is better than GBM. Further-
more, it harnesses a more regularized model, thus mini-
mizing the model complexity and improving predictive
accuracy. We set the same hyperparameter settings as
GBM. This work takes into account a two-tier ensemble,
in which the abovementioned homogeneous ensembles
are blended in a stacked approach. In practice, there are
several combinations of base classifiers can be made.
However, since we aim to prove the effectiveness of such
architecture for CHD prediction, we consider those three
ensembles as base classifiers. First, base classifiers are
trained using the specified training set; then, a meta clas-
sifier, e.g., generalized linear model (GLM), is trained to
predict the outcome. A two-tier ensemble consists of the
following procedures:

(i) Train each of the C tier-1 ensembles (with the best
hyperparameter settings) on the training set

(ii) Perform 10CV on each ensemble and gather the pre-
diction outcomes, O, O,, ...,0¢



TaBLE 3: Parameter settings used in particle swarm optimization-
based feature selection.

Parameter Value
¢ 1.0
¢ 2.0
Maximum generations 30

5, 10, 20, 50, 100, 500, 1000,

Number of particles 2000, 5000, and 10000

Mutation type Bit-flip
Mutation probability 0.01
Prune False

(iii) The M prediction result values from each of the C
ensembles are fused in such a way that a matrix M
x C is formed. Together with original response vec-
tor y, train the meta classifier on the level-one data,

y=fMxC).

(iv) Generate all label predictions from each tier-1
ensemble, feed into the meta classifier, and acquire
the final tier-2 ensemble label prediction

4. Results

In this section, the results of all experiments are discussed.
We firstly present the results of feature selection, followed
by a classification analysis of CHD detection. In the end, this
section benchmarks the proposed approach with existing
ones. All experiments were performed on a Linux machine,
32GB memory, and Intel Xeon processor. We used an
open-source data mining tool, Weka [42], for feature selec-
tion, while the classification process for the CHD detection
model was implemented in R with H,O package [43].

4.1. Results of Feature Selection. First of all, we discuss the
experiment of choosing the best feature set by running differ-
ent numbers of particles in PSO. Parameter settings for PSO
are depicted in Table 3. The results for the predictive accu-
racy of the CDT classifier are presented in Figure 2. It is clear
that PSO with 20 particles is the best prediction performance
on the Z-Alizadeh Sani dataset with an accuracy of 83.905
+1.036%. This trial produces a set of 27 features. The same
number of particles has brought the best classification accu-
racy on the Statlog dataset. A set of 8 features are generated
in this case with a predictive accuracy of 76.822 + 1.241%.
Furthermore, the best classification result of Cleveland data-
set can be achieved with several numbers of particles, e.g., ten
particles or 50-10,000 particles. In this case, seven significant
features have been obtained. Surprisingly, in the Hungarian
dataset, the different number of particles has not affected
the classification accuracy as well as the selected features.
Opverall, the implementation of PSO, in which the number
of particles is more than 50, does not bring a substantial
change in the performance of CDT as well as the number
of selected features (see Table 4). Table 5 summarizes a set
of input features obtained from the proposed approach for
each dataset.
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F1Gurek 2: Classification accuracy of CDT for each CHD dataset w.r.t
various number of particles.

TaBLE 4: Number of selected features for each CHD dataset w.r.t
different number of particles.

# selected features

# particles ~ Z-Alizadeh Cleveland  Statlog Hungarian
5 15 10 10 6
10 26 7 7 6
20 27 9 8 6
50 13 7 7 6
100 13 7 7 6
500 13 7 7 6
1000 13 7 7 6
2000 13 7 7 6
5000 13 7 7 6
10000 13 7 7 6

4.2. Coronary Heart Disease Classification Analysis. This sec-
tion benchmarks the performance of a two-tier ensemble
towards other classifiers, i.e., RF, GBM, XGBoost, DT, RT,
and CART. We employ the mean AUC metric from 10CV.
We also consider the results of the significance comparison
among classifiers using a two-step statistical test. Following
the recommendation of [28], an omnibus test using Fried-
man rank [44] and Iman-Davenport [45] are implemented.
If the performance differences of classifiers can be detected,
a Friedman post hoc test is undertaken. The Friedman test
evaluates the hierarchy of the benchmarked classifiers, while
Iman-Davenport figures out whether at least one classifier
possesses a significant difference against others. Once such
a difference is discovered; a pair-wise test using the Friedman
post hoc with the associated p value is performed for multiple
comparisons. Concerning the Friedman post hoc test, a com-
parison with a control is considered. To do so, the proposed
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TaBLE 5: The selected features obtained from PSO based feature selection for each dataset.

Dataset # selected features

Feature name

Age, hypertension, airway disease, thyroid disease, congestive heart failure,
dyslipidemia, blood pressure, systolic murmur, diastolic murmur, typical chest pain,

Z-Alizadeh Sani 27

dyspnea, atypical, nonanginal, low threshold angina, ST elevation, T inversion,
poor R progression, fasting blood sugar, LDL, HDL, blood urea nitrogen, erythrocyte

sedimentation rate, white blood cell, neutrophil, ejection fraction, region with regional

wall motion abnormality, and valvular heart disease.

Gender/sex, chest pain type, resting electrocardiographic results, maximum heart

Statlog 8

Cleveland 7

Hungarian 6

rate achieved, exercise induced angina, ST depression, number of major vessels, and

thallium stress test result.

Chest pain type, resting electrocardiographic results, maximum heart rate achieved,
exercise induced angina, oldpeak, number of major vessels, and thallium stress test result.

Gender/sex, chest pain type, heart rate, old peak, slope, and number of major vessels.

TaBLE 6: Results of mean value of AUC (%) and the Friedman rank and Iman-Davenport tests (the best value is indicated in bold).

Algorithm Z-Alizadeh Sani Statlog Cleveland Hungarian Friedman rank Iman-Davenport p value
DT 76.30 80.30 79.80 77.10 5.50

RT 69.90 78.90 75.20 73.60 7.00

CART 78.20 79.80 78.60 80.30 5.50

RF 92.47 89.49 90.94 91.54 1.75 3.69E-10

GBM 88.99 88.13 89.24 91.13 2.75

XGBoost 87.65 80.73 85.30 86.98 4.00

Proposed 99.70 93.42 85.86 92.98 1.50

algorithm is picked as a control classifier 360 for being
benchmarked against other classifiers, e.g., DT, RT, CART,
RF, GBM, and XGBoost. The indication of a significant dif-
ference is appraised by a p value that must be lower than
the threshold (0.05 in our case). Table 6 presents the mean
of the AUC value and Friedman average rank, as well as
the p result of the Iman-Davenport test. It should be
pointed out that the lower the rank of the classifier, the
better the classifier.

5. Discussion

Table 6 provides us evidence that the proposed algorithm
arises as the best method, resulting from the fact that it is
involved with the lowest rank. The p value = 3.69E-10 which
denotes a significant difference (p <0.05) in at least two
benchmarked classifiers is found. This means the null
hypothesis that implies a commensurate performance among
all classifiers can be rejected. Furthermore, as the null
hypothesis is rejected, we estimate the performance differ-
ences of the pairs using the Friedman post hoc test. In this
case, the best performing classifier (proposed algorithm) is
chosen as a control classifier since it possesses the lowest
mean rank. Table 7 depicts the results of the statistical com-
parison among the pairs. It demonstrates how the proposed
algorithm surpasses other individual classifier’s families, i.e.,
DT, RT, and CART, and other classifier ensemble’s family,
i.e., RF, GBM, and XGBoost. It worth mentioning that the
performance differences between the proposed algorithm

TaBLE 7: Comparative results of all classifiers of the w.r.t Friedman
post hoc test.

Comparison Friedman post hoc p value
Proposed vs. DT 0.0088

Proposed vs. RT 0.00031
Proposed vs. CART 0.0088
Proposed vs. RF 0.86

Proposed vs. GBM 0.41

Proposed vs. XGBoost 0.10

and all other individual classifiers are highly significant
(p <0.05), yet the performance difference between the pro-
posed algorithm and all other classifier ensembles is not too
significant (p > 0.05).

For the sake of universality and comprehensiveness, we
contrast the proposed algorithm with current existing studies
that have utilized the four datasets, i.e., Z-Alizadeh Sani, Sta-
tlog, Cleveland, and Hungarian, in their experiment.
Tables 8-11 summarize the results for each dataset in terms
of three performance measures, i.e., accuracy, F,, and AUC.
Generally speaking, the proposed algorithm has outper-
formed the most recent approaches applied on Z-Alizadeh
Sani, Statlog, and Hungarian datasets such as support vector
machine (SVM) [25, 46], logistic regression [23], voting-
based ensemble [26], and neural network [21]. Our proposed
approach is still comparable against some approaches
applied to the Cleveland dataset. It performs better than
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TaBLE 8: Comparison of the proposed method with some prior studies using the Z-Alizadeh Sani dataset (the best value is indicated in bold).

#of  Validation

1 0, 0 V) 19t1
Study Technique features  method Accuracy (%) F, (%) AUC (%) Statistical test
. 79.54 (Lad), (LCX),

[16] Bagging-DT 20 10CV 61.46 and (RCA) 68.96 Not reported Not reported No

Information
[17] gain-SMO 34 10CV 94.08 Not reported Not reported No

Information 86.14 (Lad), (LCX),
[18] gain-SVM 24 10CV 83.17 and 83.5 (RCA) Not reported Not reported No
[21] Neul"al netvxfork 22 10CV 93.85 Not reported Not reported No

genetic algorithm
Ensemble algorithm
[20] multiple feature 34 10CV 93.70 95.53 Not reported No
selection
Support vector

[46] machine feature 32 10CV 96.40 Not reported Not reported No

engineering
[25] v-support vector machine 29 10CV 93.08 91.51 Not reported No

Two-tier ensemble Two-ste
This paper PSO-based feature 27 10CV 98.13 96.60 98.70 wo-step
. statistical test
selection

TaBLE 9: Comparison of the proposed method with some prior studies using the StatLog dataset (the best value is indicated in bold).

Study Technique # of features Validation method Accuracy (%) F, (%) AUC (%) Statistical test

[23] Logistic regression 13 10CV 85 87  Not reported No

Ensemble voting logistic regression
multilayer perceptron naive Bayes

[26] 13 10CV 89 87 88 No
Two-tier ensemble PSO-based Two-step

This paper feature selection 8 10CV 93.55 91.67 93.42 Statistical test

TaBLE 10: Comparison of the proposed method with some prior studies using the Cleveland dataset (the best value is indicated in bold).

Study Technique # of features Validation method Accuracy (%) F, (%) AUC (%)  Statistical test
[13] Rotation forest-J48-CFS 7 10CV 84.48 Not reported 89.5 No
[14] PSO fuzzy expert systems 76 Hold-out 93.27 Not reported Not reported No

SMO-expert-based

[15] feature selection 8 10CV 84.49 86.2 Not reported No
[19] CFS-PSO-clustering-MLP 5 10CV 90.28 Not reported Not reported No
[22] Logistic regression-LASSO 6 10CV 89 Not reported Not reported No
[24] Boosted-C5.0 and 12 10CV 77.8 & 81.9 Not reported Not reported Paired ¢ test
neural network
[9] VOtl.ng._nalve Bat.yes— 9 10CV 87.41 Not reported Not reported No
logistic regression
. Two-tier ensemble PSO- Two-step
This paper based feature selection 7 1ocv 8571 8649 85.86 statistical test

TaBLE 11: Comparison of the proposed method with some prior studies using the Hungarian dataset (the best value is indicated in bold).

Study Technique # of features  Validation method Accuracy (%) F, (%) AUC (%) Statistical test
[21] Neural netwprk genetic 14 10CV 87.1 Not reported Not reported No
algorithm
Two-tier ensemble PSO- Two-step

6 10CV 91.18 90.91 92.98

Thi . o
1S PAPEL ased feature selection statistical test
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SMO-based expert system [15] in terms of F, metric. The
best classification accuracy on the Cleveland dataset still goes
for [14]; however, it should be noted that [14] used one
round of hold-out without replication which is less reliable
than 10CV.

6. Conclusion

In this study, we proposed an improved detection model of
coronary heart disease (CHD) based on a two-tier ensemble.
The proposed method was built by the stacking of three dif-
ferent ensemble learners, such as the random forest, gradi-
ent boosting machine, and extreme gradient boosting
machine. The proposed detection model was tested on
four different publicly available datasets, i.e., Z-Alizadeh
Sani, Statlog, Cleveland, and Hungarian, in order to provide
a fair benchmark against existing studies. We also conducted
a two-step statistical significance test to evaluate the perfor-
mance significance among benchmarked classifiers, where it
currently lacks in the current literature. Based on the exper-
imental results, our proposed model was able to outperform
state-of-the-art CHD detection methods with respect to
accuracy, F;, and AUC value. The results reflected the
highest result obtained so far applied to those aforemen-
tioned datasets.

Data Availability

The link of datasets used to support the findings of this study
are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the Technology Innova-
tion Program of the Ministry of Trade, Industry and Energy
(MOTIE) under Grant 10080729, in part by the Korea Insti-
tute for Advancement of Technology (KIAT) grant funded
by the Korea Government (MOTIE) (N0008691, The Com-
petency Development Program for Industry Specialist) and
in part by the High-Potential Individuals Global Training
Program of Institute for Information and Communications
Technology Planning & Evaluation (IITP) under Grant
2019-0-01589, in part by the POSTECH-Catholic Biomedical
Engineering Institute (No. 5-2019-B0001-00119), in part by
the Korea Evaluation Institute of Industrial Technology
(KEIT) grant funded by of the Ministry of Trade, Industry
and Energy (MOTIE) under Grant 10067766.

References

[1] D.Mozaffarian, E. J. Benjamin, A. S. Go et al., “Executive sum-
mary: heart disease and stroke statistics—2015 Update,” Circu-
lation, vol. 131, no. 4, pp. 434-441, 2015.

[2] The Heart Foundation, “Heart foundation,” in Medical tests
for heart disease, Heart Foundation, 2019.

[3] J. Soni, U. Ansari, D. Sharma, and S. Soni, “Predictive data
mining for medical diagnosis: an overview of heart disease pre-
diction,” International Journal of Computer Applications,
vol. 17, no. 8, pp. 43-48, 2011.

[4] D. Giri, U. Rajendra Acharya, R. J. Martis et al., “Automated
diagnosis of coronary artery disease affected patients using
LDA, PCA, ICA and discrete wavelet transform,” Knowledge-
Based Systems, vol. 37, pp. 274-282, 2013.

[5] U.R. Acharya, O. Faust, V. Sree et al., “Linear and nonlinear
analysis of normal and CAD-affected heart rate signals,” Com-
puter Methods and Programs in Biomedicine, vol. 113, no. 1,
pp. 55-68, 2014.

[6] B. A. Tama and K.-H. Rhee, “Tree-based classifier ensembles
for early detection method of diabetes: an exploratory study,”
Artificial Intelligence Review, vol. 51, no. 3, article 9565,
pp. 355-370, 2019.

[7] M. A. Karaolis, J. A. Moutiris, D. Hadjipanayi, and C. S. Patti-
chis, “Assessment of the risk factors of coronary heart events
based on data mining with decision trees,” IEEE Transactions
on Information Technology in Biomedicine, vol. 14, no. 3,
pp. 559-566, 2010.

[8] M. A.Firdaus, R. Nadia, and B. A. Tama, “Detecting major dis-
ease in public hospital using ensemble techniques,” in 2014
International Symposium on Technology Management and
Emerging Technologies, pp. 149-152, Bandung, Indonesia,
May 2014.

[9] M. S. Amin, Y. K. Chiam, and K. D. Varathan, “Identification
of significant features and data mining techniques in predict-
ing heart disease,” Telematics and Informatics, vol. 36,
pp. 82-93, 2019.

[10] B. A. Tama and K.-H. Rhee, “In-depth analysis of neural net-
work ensembles for early detection method of diabetes dis-
ease,” International Journal of Medical Engineering and
Informatics, vol. 10, no. 4, pp. 327-341, 2018.

[11] M. Wozniak, M. Grana, and E. Corchado, “A survey of multi-
ple classifier systems as hybrid systems,” Information Fusion,
vol. 16, pp. 3-17, 2014.

[12] R. Alizadehsani, M. Abdar, M. Roshanzamir et al., “Machine
learning-based coronary artery disease diagnosis: a compre-
hensive review,” Computers in Biology and Medicine,
vol. 111, article 103346, 2019.

[13] A. Ozcift and A. Gulten, “Classifier ensemble construction
with rotation forest to improve medical diagnosis performance
of machine learning algorithms,” Computer Methods and Pro-
grams in Biomedicine, vol. 104, no. 3, pp. 443-451, 2011.

[14] S. Muthukaruppan and M. J. Er, “A hybrid particle swarm
optimization based fuzzy expert system for the diagnosis of
coronary artery disease,” Expert Systems with Applications,
vol. 39, no. 14, pp. 11657-11665, 2012.

[15] J. Nahar, T. Imam, K. S. Tickle, and Y.-P. P. Chen, “Computa-
tional intelligence for heart disease diagnosis: a medical knowl-
edge driven approach,” Expert Systems with Applications,
vol. 40, no. 1, pp. 96-104, 2013.

[16] R. Alizadehsani, J. Habibi, Z. A. Sani et al., “Diagnosing coro-
nary artery disease via data mining algorithms by considering
laboratory and echocardiography features,” Research in Car-
diovascular Medicine, vol. 2, no. 3, pp. 133-139, 2013.

[17] R. Alizadehsani, J. Habibi, M. J. Hosseini et al., “A data mining
approach for diagnosis of coronary artery disease,” Computer

Methods and Programs in Biomedicine, vol. 111, no. 1,
pp. 52-61, 2013.



10

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]

R. Alizadehsani, M. H. Zangooei, M. J. Hosseini et al., “Coro-
nary artery disease detection using computational intelligence
methods,” Knowledge-Based Systems, vol. 109, pp. 187-197,
2016.

L. Verma, S. Srivastava, and P. C. Negi, “A hybrid data mining
model to predict coronary artery disease cases using non-
invasive clinical data,” Journal of Medical Systems, vol. 40,
no. 7, p. 178, 2016.

C.-J. Qin, Q. Guan, and X.-P. Wang, “Application of ensemble
algorithm integrating multiple criteria feature selection in cor-
onary heart disease detection,” Biomedical Engineering: Appli-
cations, Basis and Communications, vol. 29, no. 6, article
1750043, 2017.

7. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaeli,
and A. A. Yarifard, “Computer aided decision making for
heart disease detection using hybrid neural network-genetic
algorithm,” Computer Methods and Programs in Biomedicine,
vol. 141, pp. 19-26, 2017.

A. U. Haq, J. P. Li, M. H. Memon, S. Nazir, and R. Sun, “A
hybrid intelligent system framework for the prediction of heart
disease using machine learning algorithms,” Mobile Informa-
tion Systems, vol. 2018, Article ID 3860146, 21 pages, 2018.

A. K. Dwivedi, “Performance evaluation of different machine
learning techniques for prediction of heart disease,” Neural
Computing and Applications, vol. 29, no. 10, pp. 685-693,
2018.

E. Ahmadi, G. R. Weckman, and D. T. Masel, “Decision mak-
ing model to predict presence of coronary artery disease using
neural network and C5.0 decision tree,” Journal of Ambient
Intelligence and Humanized Computing, vol. 9, no. 4,
pp. 999-1011, 2018.

M. Abdar, W. Ksigzek, U. R. Acharya, R. S. Tan,
V. Makarenkov, and P. Plawiak, “A new machine learning
technique for an accurate diagnosis of coronary artery dis-
ease,” Computer Methods and Programs in Biomedicine,
vol. 179, article 104992, 2019.

K. Raza, “Improving the prediction accuracy of heart disease
with ensemble learning and majority voting rule,” in U-
Healthcare Monitoring Systems, pp. 179-196, Elsevier, 2019.

S. Mohan, C. Thirumalai, and G. Srivastava, “Effective heart
disease prediction using hybrid machine learning techniques,”
IEEE Access, vol. 7, pp. 81542-81554, 2019.

J. Dem "sar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp. 1-
30, 2006.

L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5-32, 2001.

J. H. Friedman, “machine,” Annals of Statistics, vol. 29, no. 5,
pp. 1189-1232, 2001.

T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pp- 785-794, San Francisco, CA, USA, August 2016.

M. A. Hall, Correlation-based feature selection of discrete and
numeric class machine learning, PhD Dissertation, University
of Waikato, Department of Computer Science, 2000.

G. Brown, Diversity in neural network ensembles, [Ph.D. the-
sis], Citeseer, 2004.

R. Detrano, A. Janosi, W. Steinbrunn et al., “International
application of a new probability algorithm for the diagnosis

(35]

(36]

(37]
(38]
(39]

(40]

(41]

[42]

(43]

(44]

(45]

(46]

BioMed Research International

of coronary artery disease,” The American Journal of Cardiol-
ogy, vol. 64, no. 5, pp. 304-310, 1989.

A. Asuncion and D. Newman, UCI Machine Learning Reposi-
tory, University of California, Irvine, 2007.

R. D. King, Statlog databases, Department of Statistics and
Modelling Science, University of Strathclyde, Glasgow, UK,
1992.

J. R. Quinlan, C4.5: Programs for Machine Learning, Elsevier,
1993.

D. Aldous, “The continuum random tree. I,” The Annals of
Probability, vol. 19, no. 1, pp. 1-28, 1991.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classi-
fication and regression trees, CRC press, 1984.

C.J. Mantas and J. Abellan, “Credal-C4.5: decision tree based
on imprecise probabilities to classify noisy data,” Expert Sys-
tems with Applications, vol. 41, no. 10, pp. 4625-4637, 2014.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recog-
nition Letters, vol. 27, no. 8, pp. 861-874, 2006.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software,” ACM
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18,
2009.

S. Aiello, E. Eckstrand, A. Fu, M. Landry, and P. Aboyoun,
Machine learning with R and H20, H20 Booklet, H20.ai,
Ing, 2016.

M. Friedman, “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance,” Journal of the
American Statistical Association, vol. 32, no. 200, pp. 675-
701, 1937.

R. L. Iman and J. M. Davenport, “Approximations of the crit-
ical region of the fbietkan statistic,” Communications in
Statistics-Theory and Methods, vol. 9, no. 6, pp. 571-595, 1980.

R. Alizadehsani, M. J. Hosseini, A. Khosravi et al., “Non-inva-
sive detection of coronary artery disease in high-risk patients
based on the stenosis prediction of separate coronary arteries,”
Computer Methods and Programs in Biomedicine, vol. 162,
pp. 119-127, 2018.



	Improving an Intelligent Detection System for Coronary Heart Disease Using a Two-Tier Classifier Ensemble
	1. Introduction
	2. Related Work
	3. Materials and Methods
	3.1. Heart Disease Datasets
	3.1.1. Z-Alizadeh Sani
	3.1.2. Statlog
	3.1.3. Cleveland
	3.1.4. Hungarian

	3.2. Framework of Heart Disease Detection
	3.3. Feature Selection
	3.4. Classification Techniques
	3.4.1. Random Forest (RF)
	3.4.2. Gradient Boosting Machine (GBM)
	3.4.3. Extreme Gradient Boosting Machine (XGBoost)


	4. Results
	4.1. Results of Feature Selection
	4.2. Coronary Heart Disease Classification Analysis

	5. Discussion
	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

