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Abstract

Extracellular vesicles

Over the past few years, long non-coding RNAs (IncCRNAs) are recognized as key regulators of gene expression at
chromatin, transcriptional and posttranscriptional level with pivotal roles in various biological and pathological
processes, including cancer. Hypoxia, a common feature of the tumor microenvironment, profoundly affects gene
expression and is tightly associated with cancer progression. Upon tumor hypoxia, the central regulator HIF
(hypoxia-inducible factor) is upregulated and orchestrates transcription reprogramming, contributing to aggressive
phenotypes in numerous cancers. Not surprisingly, INCRNAs are also transcriptional targets of HIF and serve as
effectors of hypoxia response. Indeed, the number of hypoxia-associated INncRNAs (HALs) identified has risen sharply,
illustrating the expanding roles of INcRNAs in hypoxia signaling cascade and responses. Moreover, through extra-
cellular vesicles, INcRNAs could transmit hypoxia responses between cancer cells and the associated
microenvironment. Notably, the aberrantly expressed cellular or exosomal HALs can serve as potential prognostic
markers and therapeutic targets. In this review, we provide an update of the current knowledge about the
expression, involvement and potential clinical impact of INncRNAs in tumor hypoxia, with special focus on their
unique molecular regulation of HIF cascade and hypoxia-induced malignant progression.
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Background

Hypoxia-associated IncRNAs (HALs) emerging as newly
driving factors in tumorigenesis

In rapidly growing solid tumors, hypoxia is a common,
microenvironmental characteristics, caused by insufficient
vascularization, and the high tumor metabolic demands
[1]. Accumulating evidence has demonstrated that tumor
hypoxia is involved in the initial oncogenic transform-
ation, but is also tightly linked to aggressive cancer pheno-
types, such as metastases, recurrences and resistance to
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therapy [2—4]. Upon hypoxia, to survive, cancer cells co-
opt the fundamental adaptive responses to this stress
through modulating the central mediator of hypoxic re-
sponse, the hypoxia-inducible factor-1 (HIF-1) complex.
The HIF-1 complex is a heterodimeric assembly of
bHLH-PAS (basic helix-loop-helix DNA binding proteins
of the PER-ARNT-SIM family) transcriptional factors,
comprised of a constitutively expressed, stable HIF-1p
subunit and an oxygen-sensitive HIF-1a subunit that de-
termines HIF-1 activity [5, 6]. In mammals, two HIF-1a
homologs, HIF-2a and HIF-3a (also known as IPAS-1; in-
hibitory PAS (Per/Arnt/Sim) domain protein), have been
identified. Similar to HIF-1a, HIF-2a is also sensitive to
oxygen concentration and can interact with HIF-1p to
form the HIF-2 heterodimeric complex. Due to the struc-
tural similarity in DNA binding and dimerization domains
as well as the difference in their transactivation domains,
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HIF-1a and HIF-2a regulate both common as well as dis-
tinct sets of target genes. Meanwhile, HIF-3a, an isoform
lacking the transactivation domain, has a dominant nega-
tive effect on HIF-dependent gene transcription [7, 8].

In the presence of sufficient oxygen, HIF-1a subunits are
post-translationally modified by a family of dioxygenases
(prolyl hydroxylase domain-containing dioxygenases PHD1,
2 and 3, also known as EGLN1-3, Egl-9 family hypoxia in-
ducible factor 1-3,). Upon hydroxylation, HIF-1a subunits
are recognized by the E3 ubiquitin ligase, VHL (von
Hippel-Lindau tumor suppressor protein), leading to the
poly-ubiquitination and subsequent rapid degradation
through the ubiquitin-proteasome pathway (Fig. 1a). Under
hypoxic conditions, the PHD dioxygenase activity is inhib-
ited, and the accumulated HIF-1a subunit translocates into
the nucleus, dimerizing with HIF-1f and binding to the
HREs (hypoxia response elements; the consensus 5'-(A/
G)CGTG-3" nucleotide sequence) within the promoter
regions of HIF target genes to stimulate downstream tran-
scriptional activation of multiple hypoxia responsive genes
(Fig. 1a), eliciting a wide spectrum of cellular adaptations,
such as decreased apoptosis, enhanced angiogenesis, prolif-
eration, migration and invasion [1, 9-11]. In addition to
protein coding genes, it has been widely acknowledged that
the non-coding transcriptome is also responsive to hypoxia
and play critical roles in the hypoxic response and HIF-1
associated cancer progression [12-16].

With recent advances in high-throughput sequencing, it
is recognized that only a small fraction (<2%) of the tran-
scriptional output encodes proteins whereas the vast major-
ity encode a variety of non-coding RNAs. Among these
non-coding RNA species, long (>200bp) non-coding
RNAs (IncRNAs) are a large class of regulatory transcripts
[17], including lincRNAs (long intergenic RNAs), long in-
tronic ncRNAs, pseudogenes, TCRs (transcribed ultra-
conserved regions), asRNAs (antisense RNAs) and eRNAs
(enhancer RNAs) [18]. According to the latest human gen-
ome annotation (GRch38, GENCODE release 33, January
2020; www.gencodegenes.org), 48,438 transcripts originat-
ing from 17,952 loci were identified as IncRNAs. Although
less than 1% has been functionally annotated, growing
evidence suggested the vital roles of these IncRNAs in regu-
lation of gene expression at various stages, such as imprint-
ing, transcription, RNA interference, RNA splicing, and
translation control [19-23]. It is now believed that the dis-
tinctive RNA biochemical properties, such as base-pairing
ability, dynamic expression and flexible structure, endow
these IncRNAs with multi-functionality [24—28]. Collect-
ively, it is now well appreciated that, through acting as
signals, decoys, guides or scaffolds, IncRNA could act as a
crucial player of biological regulation [23-25, 27, 29-33].

Over the last few years, a large number of dysregulated
IncRNAs have been associated with numerous diseases,
including cancer [34—37]. While a few cancer-associated
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IncRNAs have been well characterized [27, 38], the func-
tions of most remain largely unknown. Dysregulation of
many cancer-associated IncRNAs is linked to both clini-
copathological features and survival outcomes of pa-
tients, suggesting that functional annotation of these
IncRNAs will eventually identify new venues for early
diagnosis and therapy of cancer [39]. Several studies
have shown that the modulation of IncRNAs in response
to hypoxia could play a regulatory role in HIF signaling
cascade [14-16, 40, 41]. Here, we refer to these unique
transcripts as “hypoxia-associated IncRNAs” (HALs).
These RNA molecules are involved in multiple hypoxia-
driven cancer progression pathways. In this review, we
provide an updated summary of the tumor HALSs, with a
specific emphasis on the crosstalk between these
IncRNA species and cellular hypoxia response (Table 1
and Additional file 1: Table S1). We address current
models describing the functional involvement of these
new players in cancer progression, highlighting their rele-
vant clinical potential as cancer biomarkers or therapeutic
targets. Our discussion is centered on tumor hypoxia. For
the functional roles of IncRNAs in hypoxia-induced kid-
ney/hepatic/myocardial injury and neuromuscular or
cardiovascular diseases, interested readers are referred to a
number of comprehensive reviews published in recent
years [127-132].

Review

LncRNAs as emerging driving forces in cancer
progression upon tumor hypoxia

Given the pivotal roles of IncRNA in hypoxia-associated
tumorigenesis pathways, multiple approaches have been
applied in the identification of hypoxia-regulated IncRNAs
[87, 90]. A comprehensive analysis coupling RNA-seq with
ChIP-seq [12] revealed the extensive involvement of HIF-1«
and HIF-2a in the transcriptional regulation of IncRNAs
upon hypoxia. In recent years, the rapid expansion of re-
search on IncRNAs has provided additional insights into
those associated with cellular hypoxia response. Table 1 pre-
sents an updated list of these hypoxia-associated IncRNAs
(HALSs). Upon hypoxia, most HALs are up-regulated. HIF
could directly promote the expression of these hypoxia-
inducible IncRNAs through binding to the HREs (hypoxia
response elements) located in their promoter (Table 1) [41].
IncRNA-LET [93], CF129 [54] and CRPAT4 [56] are among
the few which are down-regulated in hypoxic conditions.
Notably, [ncRNA-SARCC is able to respond to hypoxic
stress differentially in a VHL-dependent manner [94].

Most of the HALs identified have impacts on cancer
progression, although the mechanistic details are not all
clear. Table 1 shows an overview of the tumor HALs.
We summarize in the table, their potential molecular
target related to hypoxic responses as well as their re-
ported functions and signaling pathways. These HALSs
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Fig. 1 Regulations of HIF-1 activity by HALs. a Regulation of HIF-1. Under normoxia (green arrows), HIF-1a subunit is hydroxylated by PHDs (prolyl hydroxylase
domain proteins). Hydroxylation residues within HIF-1a facilitates interaction of HIF-1a with the E3 ubiquitin ligase VHL protein, targeting HIF-1a for
polyubiquitination and subsequent proteasome-dependent degradation. Upon hypoxia (red arrows), the PHDs and other prolyl hydroxylases are inhibited,
leading to HIF-1a stabilization and translocation into nucleus. After dimerization with its transcriptional partner HIF-1(3 and recruitment of co-activators (e.g. CBP/
p300), the HIF-1 heterodimer binds the HRE (hypoxia response element) of target genes to regulate transcription. b Transcriptional co-activator. Hypoxia-
induced LncHIFCAR could directly interact with HIF-1a and facilitate the recruitment of HIF-1a and p300 cofactor to the target lodi, thereby upregulating HIF-1
target genes. ¢ Recruitment of transcription factor. HIF-1a-induced LncRNA-MTA2TR could recruit ATF3 to the promoter area of MTA2, thereby transcriptionally
upregulating the expression of oncogenic MTA2. MTA2 can subsequently enhance HIF-1a protein accumulation via deacetylation, forming a feedback loop to
amplify HIF-1 signaling. d mRNA stability control. The expression of IncRNA-LET is repressed through hypoxia-induced HDAC3, which reduces the histone H3
and H4 acetylation at the LncRNA-LET promoter. Decreased IncRNA-LET expression reduces the IncRNA-LET-mediated degradation of HIF-1a negative regulator,
NF90, leading to HIF-1a accumulation. @ ceRNA/mIRNA sponge. Hypoxia-induced H19 could upregulate HIF-1a expression by absorbing miRNA let-7 and
nullifying let-7-mediated HIFTA mRNA suppression. f Molecular decoy. lincRNA-p21 is able to disrupt the interaction between HIF-1a and its negative regulator
VHL via separate binding to both HIF-1a and VHL, thereby blocking VHL-dependent HIF-1a degradation. g Complex scaffold. LINK-A-mediated recruitment and
enzymatic activation of BRK and LRRK2 kinases could facilitate phosphorylation of HIF-1a at specific residues. These phosphorylation modifications prevent
subsequent HIF-1a degradation and enhance the association between HIF-1a and cofactor p300, thereby upregulating HIF-1 target genes. See text for a more
detailed discussion
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may also have hypoxia-independent functions. For the
sake of conciseness, those targets are not included in the
table. In addition, some of these IncRNAs can be captured
by exosomes and transmitted to tumor microenvironment
to exert their functions and further propagate the hypoxic
responses (Table 2). Notably, several HALs, such as
UCAIL, PVTI, HI9 and MALATI, might adapt more than
one action mode in different cancer types. In the discus-
sion below, we highlight the selected few HALs to illus-
trate their mechanisms of actions.

HAL-mediated epigenetic and transcriptional regulation

A large number of IncRNAs are localized in the nucleus,
participating in various biological processes, including
chromatin organization, nuclear structure, transcrip-
tional and post-transcriptional regulation of gene expres-
sion. With regard to chromatin organization, the
pangenomic investigations of RNA—protein interactions
have shown that two hypoxia-inducible, oncogenic anti-
sense RNAs ANRIL (also known as CDKN2B antisense
RNA 1) and HOTAIR (HOX transcript antisense RNA)
[50, 80] could interact with different histone-modifying
complexes, and have thus been proposed to impact the
chromatin modification and transcriptional state [138].
However, whether these two antisense RNAs are in-
volved in modulating gene expression in response to
hypoxia via epigenetic modification or chromatin re-
organization remains to be characterized. In addition,
WTI1-AS could mediate hypoxia-induced upregulation of

Table 2 | HALs identified extracellularly
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oncogenic transcription factor WT-1 in cis through
modulating histone H3K4 and H3K9 methylation
around the transcription start site of W71 mRNA, con-
tributing to acute myeloid leukemia (AML) progression
[124]. Similarly, in gastric cancer, [ncRNA-AK058003,
which could be profoundly induced by hypoxia, resides
upstream of SNCG (synuclein gamma, a synuclein family
member, promotes migration, invasion and metastasis)
and enhances SNCG expression in cis through demethyl-
ation of SNCG promoter CpG islands, thereby driving
hypoxia-induced metastasis [90]. In the context of naso-
pharyngeal carcinoma (NPC), up-regulated PVT1 could
serve as a scaffold for a transcriptional activator, the his-
tone acetyltransferase KAT2A, to activate transcription
of NF90. NF90, a RNA-binding protein, has been re-
ported to stabilize many target mRNAs, including HIF1A
mRNA. Indeed, the upregulated NF90 increased HIFI1A
mRNA stability and promoted malignant transformation
of NPC cells [111]. In addition, in hypoxia-injured pheo-
chromocytoma cells, up-regulated MEG3 (maternally
expressed gene 3) could recruit methylation proteins
DNMT3a, DNMT3b and MBDL1 to facilitate TIMP2 pro-
moter methylation, which in turn inhibited the expres-
sion of this cell cycle arrest inducer TIMP2. Moreover, a
HIF-1a negative regulator, OS-9, is reported to facilitate
HIF-1a hydroxylation and subsequent proteasomal deg-
radation through tethering the interaction between HIF-
la and prolyl hydroxylases (PHDs) [139]. Interestingly,
in pancreatic ductal adenocarcinoma (PDAC), another

LncRNA Extracellular space identified Cell to Cell Transfer Functional Impact Mechanism Ref
aHlIF Serum Endometriotic cyst stromal cells Elicits proangiogenic Activates VEGF-A, VEGF-  [133]
(HIF1A-AS2)  (aHIF level in serum correlates with (ECSCs)-derived exosomes to behavior in HUVECs, thus D, and b-FGF in HUVECs
its expression in matched human umbilical vein endothelial  facilitating endometriosis
ectopic endometria) cells (HUVECs) angiogenesis.
CCAT2 Exosomes secreted from cultured U87-MG glioma cells to HUVECs Promotes HUVEC Promotes VEGF-A, TGF-3  [134]
glioma cells angiogenesis and inhibits and Bcl2 expression.
apoptosis induced by Inhibits BAX and caspase
hypoxia 3 expression
HISLA Extracellular vesicles secreted by TAMs to breast cancer cells Enhances aerobic Stabilizes HIF-1a [135]
(LINCO1146) tumor associated fibroblasts (TAMs) glycolysis and apoptotic
resistance of cancer cells
PVTI Exosomes secreted from cultured Not determined Promotes cell [136]
colon cancer cells. Cancer cells with proliferation and inhibits
more aggressive phenotypes have apoptosis.
more extracellular PVT1
linc-ROR Exosomes secreted from cultured HCC cancer cells to cancer cells Promotes cell survival of ~ Through a miR-145-HIF-  [87]
hepatocellular carcinoma cells recipient cells Ta signaling module to
increase HIF-1a
expression
UCAT Exosomes secreted from cultured Bladder cancer 5637 cells with Promotes cell Through regulating the  [137]

bladder cancer cells & serum

high expression of UCA1 to
bladder cancer UMUC2 cells with
low expression of UCAT

proliferation, migration
and invasion of recipient
cells

Promotes xenograft
growth

expression of genes
involved in EMT (E-cad,
MMP9, vimentin)
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IncRNA ENST00000480739 could inhibit HIF-1a by up-
regulating OS9 (osteosarcoma amplified-9) expression
through enhancing the acetylation of H3K27 within OS9
gene promoter [60]. Of note, in PDAC, the level of
ENST00000480739 is markedly downregulated, and
negatively correlated with lymph node metastasis, in
agreement with its negative regulatory role in HIF-1 sig-
naling [60]. As ENST00000480739 resides upstream of
the OS9 promoter region, this IncRNA also act in cis to
induce OS9 transcription.

Apart from chromatin structure remodeling, a series
of HALs could modulate transcription and thereby
fine-tune the HIF network. For instance, IncRNA
HIF2PUT (HIF-2a promoter upstream transcript),
RERT-IncRNA and hypoxia-inducible BC005927 are all
found to act inm cis to up-regulate neighboring

protein-coding genes HIF2A (encodes HIF-2a),
EGLN2 (encodes prolyl hydroxylase PHD1) and
EPHB4 (encodes Ephrin type-B receptor 4, a

metastasis-related gene), at the transcriptional level,
respectively [51, 76, 116].

Moreover, HALs could directly act on specific tran-
scription factors through physical interactions to
modulate their transactivation activities. We recently
identified a hypoxia-inducible IncRNA LuncHIFCAR
(long noncoding HIF-la co-activating RNA, also
known as MIR31HG) acting as a HIF-la co-activator
via direct interaction with HIF-1a, thereby enhancing
the binding of HIF-1a and cofactor p300 to the target
loci (Fig. 1b). As the abundance of the HIF complex
increases, the hypoxia-induced HIF-1 signaling cas-
cade is augmented to further promote subsequent
cancer progression [89]. Meanwhile, in pancreatic
cancer, HIF-la-induced IncRNA-MTA2TR (MTA2
transcriptional regulator RNA) transcriptionally up-
regulates the expression of oncogenic MTA2 (metas-
tasis associated protein 2) by recruiting ATF3 (acti-
vating transcription factor 3) to the promoter area of
MTA2 [102]. Subsequently, MTA2 can enhance the
accumulation of HIF-la protein via MTA2-mediated
HIF-1a deacetylation and stabilization, which further
activates HIF-1a transcriptional activity, forming feed-
back loops to augment HIF-1 signaling [102] (Fig. 1c).
In addition, through binding to PSF (PTB-associated
splicing factor), hypoxia-induced IncRNA MALATI
released PSF from its downstream proto-oncogene
GAGE6 (proto-oncogene G antigen 6) and activated
its transcription, thereby promoting proliferation, mi-
gration and invasion of lung adenocarcinoma cells
[98, 99]. Given the extraordinary variety of transcrip-
tional regulatory machinery discovered in the cell, it
is anticipated that more IncRNAs-mediated regulation
on hypoxia-induced transcriptional program will be
unraveled in the imminent future.
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HAL-mediated post-transcriptional control

HALs also participate in post-transcriptional regulation
including mRNA stability and miRNA-mediated gene
silencing.

mRNA stability control Three HALs, [ncRNA-LET
(Long noncoding RNA Low Expression in Tumor),
DANCR (Differentiation Antagonizing Non-Protein
Coding RNA) and HIFIA-AS2 (HIF1A Antisense RNA
2; also known as aHIF), have all been reported to affect
HIFIA mRNA stability. [ncRNA-LET expression is gen-
erally suppressed in various types of tumors, whereas
hypoxia-induced HDAC3 (histone deacetylase 3) could
repress its expression by reducing the histone acetylation
of the [ncRNA-LET promoter region [93, 140]. Mechan-
istically, IncRNA-LET is bound to NF90 (nuclear factor
90), which increases NF90 degradation by the prote-
asome. As RNA binding protein NF90 could stabilize
HIFIA mRNA [93, 141], the downregulation of /ncRNA-
LET upon hypoxia plays a key role in the stabilization of
NF90 protein, thereby increasing HIF-1A mRNA stability
upon hypoxia and accordingly hypoxia-induced cancer
cell invasion [93] (Fig. 1d). Likewise, in nasopharyngeal
carcinoma, another oncogenic IncRNA DANCR was up-
regulated and associated with lymph lode metastasis and
poor survival [57]. Through interaction with the NF90/
NF45 complex, DANCR could increase HIFIA mRNA
stability, leading to metastasis and disease progression.

In addition, another hypoxia-inducible antisense
IncRNA HIFIA-AS2, was shown to be up-regulated in
various tumors [42, 43, 46, 142, 143] and could differen-
tially regulate HIF-la and HIF-2a expression during
long-term hypoxic conditions [43, 47]. Upon acute hyp-
oxia, HIF-1a and HIF-2a were similarly induced. Inter-
estingly, during prolonged hypoxia, these two proteins
were differentially regulated as HIF-la protein level
gradually decreased due to a reduction in its mRNA sta-
bility, whereas HIF-2a protein remained upregulated.
Meanwhile, long-term hypoxia also induced an increase
in HIFIA-AS2, whose gene promoter harbors functional
HREs. During prolonged hypoxia, HIFIA-AS2 could
bind to its sense counterpart, the HIF-IA mRNA 3'-
UTR, and possibly expose the AU-rich elements in this
region, thereby destabilizing HIF-1IA mRNA to convey
target gene specificity [43, 47]. Paradoxically, HIF1A-AS2
was also shown to sequester miR153-3p (see next sec-
tion) to enhance HIF-1A expression [44]. Thus, the
mode of action of HIFIA-AS2 is complex and likely
context-dependent.

miRNA sponges A wealth of IncRNAs adapt a well-
characterized, common mechanism, “ceRNA (competing
endogenous RNA)” or “RNA sponges”, to repress
miRNA-mediated gene silencing. The ceRNAs compete
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for shared miRNAs, sequester these miRNAs and dimin-
ish their silencing effect on target mRNAs.

Functional manipulations have demonstrated that sev-
eral HALSs, such as lincRNA-ROR [87], PVTI [113, 114/,
HIFIA-AS2 [44], UCAI [118], HOTAIR [79], FEZFI-ASI
[63], ZEB2-ASI [126] and HI9 [66], could act as a
‘ceRNA’ to reduce individual specific miRNA-mediated
HIFI1A mRNA destabilization and thereby restoring HIF-
la levels and consequently promote cancer progression
(Table 1). Specifically, in breast cancer stem cells, by ab-
sorbing endogenous miRNA let-7 and aborting let-7-
mediated HIFIA mRNA suppression, hypoxia-induced
H19 could stimulate HIF-1a expression [66] (Fig. 1le). In
addition, in glioblastoma, hypoxia-induced H19 up-
regulation has been shown to confer an aggressive
behavior by sequestering miR-181d and nullifying its
suppression on an oncogenic EMT-associated factor, -
catenin [68].

In a similar way, certain HALs could act as a ceRNA
to modulate other hypoxia-responsive regulators than
HIF-1a. In gastric cancer, GAPLINC (Gastric Adeno-
carcinoma Associated, Positive CD44 Regulator, Long
Intergenic Non-Coding RNA) is a HIF-1a direct, tran-
scriptional downstream target, and could promote inva-
sive tumor progression [64]. Mechanistically, GAPLINC
could serve as a decoy for miR-211-3p to restore the
levels of cancer stem cell marker CD44, enhancing
tumor progression [65]. Aside from GAPLINC, NORAD
[108], UCAI [119, 120], HOTTIP [82], EIF3J-ASI [59],
MALATI [100], FAM20IA [62], AGAP2-ASI [49)],
LINCO01436 [84], NEATI [103], NUTF2P3 [109]
IncRNAs were shown to function in this way (Table 1).
Collectively, in response to hypoxia, the crosstalk
among the IncRNA and miRNA transcriptomes build a
reciprocal repression feedback network, eliciting con-
cordant shift to transcriptional reprogram. Further ex-
ploration of this pertinent co-working group of
IncRNAs and miRNAs under hypoxic conditions would
help appreciate this emerging additional layer of post-
transcriptional regulation governed by HALs.

HAL-mediated control of protein activity, stability and/or
higher-order complex formation

In addition to acting as ceRNAs to modulate gene ex-
pression through interaction with miRNAs, HALs have
multiple molecular modes to act at the protein level to
further modulate gene expression. One of the hypoxia-
induced IncRNAs, PVTI (plasmacytoma variant trans-
location 1), was implicated in cervical cancer progres-
sion, likely through its interaction with a multifunctional
shuttling protein, nucleolin [115]. In multiple cancer cell
lines, HIF-1-induced lincRNA-p21 provides another ex-
ample as to how HALs modulate hypoxia response by
protein sequestration. Through separate binding to HIF-
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la and VHL, lincRNA-p21 could increase HIF-1a accu-
mulation by disruption of the VHL/HIF-1a interaction
and subsequent attenuation of VHL-mediated HIF-la
ubiquitination and degradation [85] (Fig. 1f). Another
HIF-1a binding IncRNA CASC9 (cancer susceptibility
candidate 9) is highly expressed in nasopharyngeal car-
cinoma (NPC) tissues. CASC9 could interact with and
stabilize HIF-1la, promoting the glycolysis and tumori-
genesis of NPC cells [53].

Nevertheless, in addition to fine-tuning the activity of
one single protein, HALs can also dynamically modulate
higher-order protein organizations by serving as scaffolds
or molecular decoys. In mesenchymal glioblastoma stem-
like cells, through direct binding to two RNA binding pro-
teins, DHX9 (ATP-dependent RNA helicase A) and
IGF2BP2 (insulin-like growth factor 2 mRNA-binding
protein 2), IncRNA HIF1A-AS2 could facilitate the inter-
action between this protein complex and their mRNA tar-
get HMGAI (high mobility group AT-hook 1), thereby
enhancing HMGAI expression as well as the downstream
molecular response to hypoxic stress [46, 47].

In triple-negative breast cancer (TNBC), LINK-A (long
intergenic non-coding RNA for kinase activation) has a
critical role in the growth factor-induced HIF-1a signal-
ing under normoxic conditions [88]. LINK-A is required
for the recruitment of BRK (breast tumor kinase) and
subsequent enzymatic activation, which is stimulated by
HB-EGF (Heparin-binding EGF-like growth factor) sig-
nal. HB-EGF mediates the heterodimerization of EGFR
(epidermal growth factor receptor) and GPNMB (trans-
membrane glycoprotein NMB) to form ‘EGFR:GPNMB’
complex. Due to its direct interaction with BRK and
LRRK2 (leucine-rich repeat kinase 2), LINK-A could re-
cruit these two kinases to EGFR:GPNMB heterodimer,
thereby inducing their kinase activities, resulting in HIF-
la phosphorylation: BRK-mediated HIF-1a phosphoryl-
ation at Tyr®®®, a phosphorylation preventing the
adjacent Pro°®* hydroxylation of HIF-1a and subsequent
HIF-1la degradation under normoxic conditions; and
LRRK2-mediated HIF-la phosphorylation at Ser’*’,
which facilitates the interaction of HIF-1a with the tran-
scriptional cofactor p300 [88] (Fig. 1g). In TNBC sam-
ples, both LINK-A abundance and HIF-1 signaling
activation are correlated with cancer progression and
shorter survival, revealing potential therapeutic targets
for TNBC [88].

An additional novel function of IncRNAs is their
structural role in the assembly of nuclear domains. For
instance, MALAT1 (metastasis-associated lung adenocar-
cinoma transcript 1, also known as NEAT2) and NEATI
(nuclear enriched abundant transcript 1) are located in
two well-characterized nuclear bodies, nuclear speckles
and paraspeckles, respectively. Also known as SC35 spli-
cing domains, nuclear speckles are membrane-less
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compartments and their formation involves “phase-sep-
aration” mediated by aggregated IncRNAs and proteins.
Being an abundant component of the nuclear speckles,
MALATI associates with numerous splicing factors and
other SR (serine/arginine-rich) proteins, and is required
for their correct localization to the nuclear speckles, al-
though the overall nuclear speckle assembly is not
dependent on the abundance of MALATI [144, 145]. So
far, the functional involvement of MALATI in RNA
splicing in response to hypoxia remains to be deter-
mined. In contrast, IncRNA NEAT]I is shown to be an
essential architectural component of nuclear para-
speckles [144, 145]. The precise function of paraspeckles
remains largely elusive, but proposed to regulate gene
expression via the retention of hyper-edited RNA and
other multifunctional factors in the nucleus [104]. Given
the functional involvement of both MALATI and
NEATI in nuclear structure, further investigation of the
extent to which these nuclear structures and their asso-
ciated transcription reprogramming respond to hypoxia
will deepen our understanding of the cellular dynamic
response to hypoxia.

HAL-mediated control of hypoxia response via unclear
mechanism

As listed in Table 1, most of the HALs identified with
profound impact on tumorigenesis have not yet been ex-
amined in mechanistic detail. However, other reports re-
garding the same IncRNA  with functional
characterization might reveal clues about their biological
roles in response to hypoxia. For instance, IncRNA
PCGEM1 was found to be overexpressed in gastric can-
cer, and could be induced by hypoxia [110]. In gastric
cancer cells, PCGEM1I could promote the invasion and
metastasis through activating the expression of SNAII, a
key transcription factor of EMT, though the underlying
mechanism remains elusive [110]. Notably, in prostate
cancer, our group previously reported that the oncogenic
PCGEM1I could promote chromatin recruitment of c-
Myc and enhances its transactivation activity through
direct physical interaction [146]. As SNAII is a well-
characterized downstream gene of c-Myc, the possible
functional role of the PCGEMI1/c-Myc/SNAI1 signaling
axis in hypoxia-associated cancer progression warrants
further investigation.

In summary, as noted in the above sections, given
the relatively large size and the structural flexibility of
IncRNAs, it is to be expected that they interact with
multiple RNA or protein components and have multi-
functions, perhaps in a context-dependent manner. As
such, their roles in hypoxia responses and in tumor
progression may differ appreciably in different cancer

types.

Page 18 of 25

LncRNAs as predictive biomarkers and therapeutic targets
for hypoxic tumor

Extracellular vesicles-containing HALs and their biologic
effects on tumorigenesis

Extracellular vesicles are effective devices for transport-
ing biomolecules among various cells types [147, 148].
Based on the difference in size and biogenesis, cell-
derived extracellular vesicles can be broadly divided into
two main categories: exosomes (30—100 nm in diameter)
and microvesicles. Together with proteins and other
non-coding RNAs, emerging evidence has shown that
IncRNAs are packaged into exosomes [149, 150], and
the abundance of IncRNAs in exosomes correlates with
their expression level in the cell of origin [151]. Through
exosomal transfer, several IncRNAs are shown to po-
tentiate cell responses to hypoxia between cancer cells
[87], as well as between cancer cell and the associated
microenvironment [150]. Table 2 summarizes hypoxia-
associated IncRNAs identified extracellularly. For ex-
ample, linc-ROR was found abundant in tumor cells as
well as in exosomes derived from tumor cells [87]. It is
increased both in cells or exosomes during hypoxia, and
it up-regulates HIF-1a expression by absorbing miR-145.
By co-culture systems, [linc-ROR-containing exosomes
increase HIF-la transcription in recipient cells [87].
Hypoxia can shape and fine tune specific macrophage
phenotypes in the tumor milieu that are known to pro-
mote tumor progression [152]. Chen et al found IncRNA
HISLA (also known as LINC01146), secreted by tumor-
associated macrophages, stabilized HIF-1a and enhanced
aerobic glycolysis in cancer cells, leading to contagious
metabolic reprogramming within tumor regions [150].
PVTI1, a IncRNA that often co-amplifies with c-myc and
functions as miRNA sponge to upregulate HIF-1a ex-
pression [153, 154], is another example of exosomal
transfer between TAMs (tumor associated macrophages)
and cancer cells. PVTI is detected in exosomes derived
from colon cancer cells, particularly in more aggressive
cells [136]. In granulocytic myeloid-derived suppressor
cells (G-MDSCs), PVTI was up-regulated by HIF-la
under hypoxia and contributed to immunosuppression,
given its depletion reduced the suppression of these cells
on T-cells and delayed tumor progression [155]. Other
exosomal-transferred IncRNAs that are implicated in
cancer cells during hypoxia include UCAI in bladder
cancer for promoting tumor growth and EMT [137], and
CCAT?2 for glioma’s resistance to apoptosis and angio-
genesis [134].

The functions of IncRNAs in exosomes for tumor pro-
gression await to be explored given a significant level of
non-coding RNAs are revealed in exosomes (and ele-
vated upon hypoxia) whereas only a small fraction has
been studied [149, 150, 156]. Accordingly, it is conceiv-
able that multiple tumor phenotypes and signaling
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pathways are affected upon exosomal loading. Indeed, by
microarray analyses, Mao et al showed hundreds of
IncRNAs, together with other transcripts, are changed in
endothelial cell recipients of exosomes derived from
squamous cancer cells [157]. Importantly, they found
exosomes obtained from hypoxic condition facilitate
angiogenesis and metastasis better than those obtained
from normoxic condition in a xenograft model. Similar
effects between normoxic exosomes and hypoxic exo-
somes on angiogenesis were found in a mouse xenograft
model of glioblastoma, with additional effect on acceler-
ating tumor expansion at later stage [158]. The elevation
in transcripts by exosomes could result from direct gene
transfer, or sequential effects mediated by the trans-
ferred genes. By which mechanism IncRNAs are selected
to be packaged in the exosomes upon stimuli is not
known; nevertheless, these studies revealed exosomes as
a means by which hypoxia in the tumor microenviron-
ment facilitates tumor cells to spread and progress.

Diagnostic potential of HALs

Several HALs with known oncogenic functions have
been detected in patient-derived exosomes, including
HI9 in serum from patients with bladder cancer [159],
HOTAIR in urinary exosomes from patients with urothe-
lial bladder cancer [156], UCAI in serum from bladder
cancer patients [137], and HIFIA-AS2 in patients with
endometriosis [133]. Future studies aimed at identifying
hypoxia-responsive transcripts in extracellular vesicles
would surely reveal more players in this aspect. Bearing
differential expression patterns between normal and ma-
lignant stages and/or tumor size, oncogenic IncRNAs
that can be detected extracellularly would potentially
serve as non-invasive biomarkers for early detection,
prognosis prediction, and disease surveillance. PCA3,
up-regulated in > 90% of men with prostate cancer, is an
example of this [160]. A urine-based assay has been ap-
proved by the United States Food and Drug Administra-
tion (FDA) since 2012 as an alternative diagnostic test
for patients undergoing repeat prostate biopsy or with
previous negative prostate biopsy.

As described above, there is considerable evidence in-
dicating hypoxia as a progression factor for tumor devel-
opment [161]. Hypoxia promotes angiogenesis, tumor
metastasis, immune evasion and therapy-resistance. The
oxygenation status of tumor was reported to influence
local tumor response to radiation treatment, as well as
overall survival in a variety of tumors [162-164]. Che-
motherapeutic drugs, such as Docetaxel and Sorafenib,
also tend to be more effective in normoxic conditions
[165, 166]. The hypoxic regions in tumors are infiltrated
with cells which promote tumor tolerance (regulatory T-
cells, myeloid-derived suppressor cells, and macrophages),
while antitumor T-cells are devoid and inhibited by HIF-
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la-mediated accumulation of extracellular adenosine
[167-169]. PD-L1 (Programmed death-ligand 1), a ligand
expressed by tumor cells or myeloid-derived suppressor
cells to suppress T-cell's anti-tumor immunity, is up-
regulated by and a direct target of HIF-1a during hypoxia
[170]. It has become increasingly apparent that hypoxia in
tumors fosters immune suppression and prevents effective
immunotherapy. Considering the ill-effects of hypoxia, it
is important to detect and to overcome tumor hypoxia
even before therapy starts, for the best of patient care.

By far, while there has been a great deal of interest in
methodologies to measure hypoxia in patients, an effi-
cient, non-invasive, while sensitive method to detect
small regions of hypoxia that frequently occur in the tu-
mors is still lacking [163]. A few metabolic markers
(HIF-1a, HIF-2, CA9 and GLUT1) have been used to as-
sess low oxygen tensions by immunohistochemistry
[171, 172]; however, the application of them in clinic is
limited given that their expressions can be triggered by
factors other than hypoxia and that biopsies only repre-
sent a small sampling of the tumor. As exosome com-
position mirrors the hypoxia status of tumors [158], a
hypoxia signature may be formulated based on the exo-
somal hypoxia-responsive transcripts including HALs to
evaluate oxygenation in the body for clinical exploit-
ation, once our knowledge is advanced.

Therapeutic potential of HALs (targeting hypoxia in cancer
therapy, a IncRNA perspective)

Several approaches have been proposed to target hypoxia
in tumor [161, 163]. These include drugs that induce cell
death selectively in hypoxic cells, e.g. hypoxia-activated
prodrugs, or drugs sensitizing hypoxic cells to radiation.
Since the adaptive response to hypoxia mainly orients
from the transactivation of HIF signaling, some ap-
proaches seek to block hypoxia-induced responses by tar-
geting HIFs and the related signaling, or to target
pathways that also play pivotal roles in hypoxia adaptation,
such as signaling involving mTOR, DNA damage re-
sponse, and the unfolded protein response. In that regard,
HALs that are elevated upon hypoxia and contribute to
tumor progression in pre-clinical studies could potentially
serve as molecular targets, e.g. PVT, LncHIFCAR, etc. (see
Table 1) [41]. By contrast, HALs that are repressed in
order to magnify hypoxia response, such as [ncRNA-LET,
could be induced for therapeutic intervention.

Various strategies have been developed to modulate
RNAs. Silencing IncRNAs by small interfering RNAs, anti-
sense oligonucleotides (ASOs), or ribozymes and deoxy-
nucleotides are well demonstrated in pre-clinical studies.
Until now, three ASOs and one aptamer therapies have
been approved by the FDA for diseases and a handful of
others are in clinical trials. The development of short oli-
gonucleotides that fold into three-dimensional structures,
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aptamers, offers a greater specificity as they target specific
structure regions to either mediate RNA degradation or
disrupt functional interactions between binding partners
[173]. Small molecules that bind to IncRNA and hinder its
interaction surface have similar advantages. Additionally,
peptide nucleic acids (PNA)-based approach against
IncRNAs have been described. HOTAIR-targeting PNAs
conjugated with pH-low insertion peptide (pHLIP) suc-
cessfully delivered the anti-IncRNA to the acidic tumor. It
blocked the interaction between HOTAIR and EZH2, sub-
sequently inhibited HOTAIR-EZH2 activity and re-
sensitized resistant ovarian tumors to platinum [174].

In any case, an issue all hypoxia-based therapeutics
need to consider is the poorly perfused tissue in tumors.
In response to their rapid growth, tumor cells secret
pro-angiogenic factors such as VEGF to induce vascular
formation, yet the constant stimulation leaves tumor
vasculature ill-formed and leaky [175]. Simultaneous
blockade of HIFs and pro-angiogenic factors has been
proposed for targeting tumor hypoxia, in that targeting
the angiogenic factors may allow vasculature to mature,
resulting more effective blood supply and drug delivery.
Another strategy is to relieve oxygen demand by drugs
that alleviates oxygen tension in tumors. Papaverine, an
FDA-approved drug as a smooth muscle relaxant, was
found to inhibit mitochondria complex I and enhance
the response to radiotherapy, while well-oxygenated nor-
mal tissues were not sensitized [176]. Accordingly,
IncRNAs that regulate mitochondria respiration may be
considered for targeting tumor hypoxia as an adjuvant
treatment.

Conclusion and future perspectives

Decades of intensive scientific research on hypoxia and HIF
biology has greatly contributed to our understanding of
oxygen homeostasis. Over the past few years, a substantial
increase in our knowledge of the noncoding transcrip-
tomes, while putting on an additional layer of complexity in
hypoxia regulation and responses, has advanced our com-
prehension of hypoxic biology. This review has presented
an update of our current insights regarding IncRNAs in-
volved in hypoxia-associated processes, highlighting the di-
verse mechanisms and functions of hypoxia-associated
IncRNAs (HALSs). These novel action modes unveil the un-
anticipated predominance of HALs in the regulation of
gene expression under hypoxic conditions and outline the
elaborate network among the different types of RNA tran-
scripts, chromatin DNA and protein factors. However, ad-
vancement in analytical methodologies and in structural
and genomic technologies of RNA are required to open up
new important directions for in-depth investigation. For the
state-of-the-art methodologies to unveil the functions of
IncRNAs, readers are directed to two excellent recent re-
views [177, 178], as well as those in this special issue.
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The role of HIF in hypoxia responses has been the
central topic of most investigations. Indeed, HIF has
been shown to be a central regulator of the coding and
non-coding transcriptome and tightly associated with
cancer risk [12, 179-181]. Most HALs, in particular, are
highly responsive to hypoxia and HIF and, in turn, par-
ticipate in the regulation of the protein-coding genome
either in cis or in trans to offer multiple routes to HIF-
mediated gene regulation, implementing both positive
and negative feedback loops that either strengthen or re-
press the hypoxia response. Most notably, the extracellu-
lar vesicles-containing HALs could evoke peculiar
response to specific cell population, affecting nearby
cells and those at a great distance, diversifying the hyp-
oxia response far beyond the previously recognized. The
cellular adaptation to hypoxia requires the precisely co-
ordinated regulatory network to cope with the acute,
transient and dynamic oxygen deprivation stress in local
regions, whereas IncRNAs, with their flexible structure
for interaction and quick biogenesis nature, could be
uniquely suited to provide rapid, precise and reversible
responses to this insult. It is clear that HALs and their
downstream targets are shown to confer a series of bio-
logical effective responses to hypoxia. Feasibly, this
extensive molecular crosstalk between IncRNA and
hypoxic signaling cascades may undergo co-evolution
to maintain such an exquisite, orchestrated program.
Thus, for a comprehensive understanding of hypoxia-
associated tumor biology, it is of relevance to
characterize the long non-coding transcriptome in-
volved in hypoxia adaptation.

Given the prominent pathological roles of HALs in
hypoxia-associated cancer progression, these RNAs could
be exploited as useful indicators to define the cancer in-
trinsic subtypes to aid in precision medicine. Importantly,
HAL:s are often tissue specific and respond to hypoxia in a
cell context dependent manner. As such, they are excel-
lent markers for tissue and tumor hypoxia responses.
Compared with other bio-molecules, IncRNAs are ideal
biomarkers that provide specificity, stability, sensitivity
and easy accessibility [38]. Most notably, cell-free
IncRNAs or those packed in extracellular vesicles can be
detectable in various body fluids [182]. Hence, the
genome-wide annotation of tissue-specific HAL signatures
could guide development of promising, non-invasive bio-
markers for early diagnosis, prognosis and prediction. Al-
though most IncRNA-targeted treatments are still in their
infancy stages, the recent success in RNA-based therapeu-
tics holds promises for future technical innovations. With
in-depth characterization of the interplay among hypoxia
microenvironment and IncRNA function, more HALSs
could surely accelerate the design of therapeutics for
tumor patients, enabling the targeting of the previously
undruggable transcriptome in the near future.
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