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SUMMARY

Genomic studies in African populations provide unique opportunities to understand disease 

etiology, human diversity, and population history. In the largest study of its kind, comprising 

genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals 

from rural Uganda, we find evidence of geographically correlated fine-scale population 

substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of 

ancient East African pastoralists. We demonstrate the value of the largest sequence panel from 

Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic 

differences in trait heritability between European and African populations, probably reflecting the 

differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 

individuals, we identify novel loci associated with anthropometric, hematological, lipid, and 

glycemic traits. We find that several functionally important signals are driven by Africa-specific 

variants, highlighting the value of studying diverse populations across the region.
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In Brief

Genome-wide data from Ugandans reveal insights into their ancestry, trait heritability, and loci 

associated with metabolic parameters, thereby providing a diverse resource for the study of 

African population genetics.

INTRODUCTION

Africa is central to our understanding of human origins, genetic diversity, and disease 

susceptibility (Tishkoff et al., 2009). The marked genomic diversity and allelic 

differentiation among populations in Africa, in combination with the substantially lower 

linkage disequilibrium (correlation) among genetic variants, has the potential to provide new 

opportunities to understand disease etiology relevant to African populations but also globally 

(Tishkoff et al., 2009; Gurdasani et al., 2015). Consequently, there is a clear scientific and 

public health need to develop large-scale efforts that examine disease susceptibility across 

diverse populations within the African continent. Such efforts will need to be fully integrated 

with research-capacity-building initiatives across the region (Rotimi et al., 2014).

Countries in Africa are undergoing epidemiological transitions—with a high burden of 

endemic infectious disease and growing prevalence of non-communicable diseases (Maher 

et al., 2010). Importantly, because of varying environments, population history, and adaptive 

evolution, the distribution of risk factors for a broad range of cardiometabolic and infectious 

diseases, and their individual contributions, may differ among populations globally 
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(Campbell and Tishkoff, 2010). Differences in allele frequencies among populations, due to 

either selection or genetic drift, provide unique opportunities to identify novel disease 

susceptibility loci highlighting the value of conducting such studies in African populations. 

However, while there has been a recent increase in genetic studies of cardiometabolic traits 

including African-Americans (Peprah et al., 2015; Lanktree et al., 2015), there have been 

relatively few investigations of population diversity or the genetic determinants of 

cardiometabolic or infectious traits and diseases across the continent.

To conduct genetic studies in diverse populations across Africa, appropriate study designs 

that account for population structure, admixture, and genetic relatedness (overt and cryptic), 

as well as the development of genetic tools to capture variation in African genomes, are 

needed (Gurdasani et al., 2015). To leverage the relative benefits of different strategies, we 

undertook a combined approach of genotyping and low coverage whole-genome sequencing 

(WGS) in a population-based study of 6,400 individuals from a geographically defined rural 

community in southwest Uganda (Figures 1 and S1; Table S1; STAR Methods). We present 

data from 4,778 individuals with genotypes for ~2.2 million SNPs from the Uganda 

Genome-wide Association Study (UGWAS) resource (STAR Methods), and sequence data 

(Table S1.1; STAR Methods) on up to 1,978 individuals including 41.5 M SNPs and 4.5 M 

indels (Uganda 2000 Genomes [UG2G]) (Figure S1; Table S1.1; STAR Methods). 

Collectively, these data represent the Uganda Genome Resource (UGR). To enhance trait-

associated locus discovery, we also include collective data on up to 14,126 individuals from 

across the African continent for genome-wide association analysis (STAR Methods).

Using these resources, we conducted a series of analyses to: (1) understand the population 

structure, admixture, and demographic history in a geographically defined population from 

Uganda (STAR Methods); (2) describe the spectrum of disease-causing mutations in the 

UG2G cohort (STAR Methods); (3) highlight the value of the UG2G sequence panel as an 

imputation resource (STAR Methods); (4) refine estimates of heritability of 34 complex 

traits, accounting for environmental correlation among individuals (STAR Methods); and (5) 

assess the spectrum of genetic variants associated with cardiometabolic and other complex 

traits in populations from sub-Saharan Africa (STAR Methods). Importantly, the UGR was 

designed to help develop local resources for public health and genomic research, including 

building research capacity, training, and collaboration across the region. We envisage that 

data from these studies will provide a global resource for researchers, as well as facilitate 

genetic studies in African populations.

RESULTS

A History of Ugandan Ethnic Diversity

Uganda has a diverse and complex history of extensive historical migration from 

surrounding regions over several hundred years. Migration has included economic migration 

for labor, as well as migration due to conflict in surrounding regions. Uganda is home to 

several diverse ethno-linguistic groups. The Ganda (“Baganda”) are most common ethno-

linguistic group in central Uganda (previously the Kingdom of Buganda). This central region 

has also seen extensive migration from the surrounding regions of Rwanda, Burundi 

(formerly Ruanda-Urundi), and Tanzania (formerly the district of Tanganyika) (Figures 1A–
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1C) identifying as the “Banyarwanda,” “Barundi,” and “Batanzania,” respectively (Richards, 

1954). More recent migration has occurred from Rwanda, due to displacement following 

conflict (identified as “Rwandese Ugandans,” distinct from the “Banyarwanda”). In addition 

to migration from surrounding regions, there have been large movements of people within 

Uganda relating to economic incentives during the colonial era. These include the Bakiga 

from Kigezi (Kiga), the Banyankole (Nkole), and Bafumbira from Kisoro from southwestern 

Uganda, and the Batooro (Toro), Basoga (Soga) from regions adjacent to central Uganda 

(Figure 1C; Richards, 1954). There are a number of other ethnic groups that have migrated 

to Buganda from adjoining areas of South Sudan (the Madi and Acholi), the Democratic 

Republic of Congo on the northwestern Ugandan border, as well as the from the West Nile 

region of Uganda (the Lugbara and Alur), and are referred to as “West Nile” migrants 

(Figure 1C; Richards, 1954). These groups often speak Nilotic languages. In our cohort, 

these ethno-linguistic groups are collectively classified as “Others,” because fine-scale 

ethno-linguistic group information was not available for these individuals. In this study, 

ethnolinguistic groups are based on self-identification and should be considered as 

representing a broad construct that encompasses shared cultural heritage, ancestry, history, 

homeland, language, or ideology.

Population Structure in a Rural Ugandan Community

We characterized genetic diversity and fine-scale structure among nine ethno-linguistic 

population groups from a geographically defined rural community from the Kalungu district 

in southwest Uganda (Figure 1A; STAR Methods). Principal components (PCs) 1 and 2 

explained 0.3% and 0.1% of the genetic variation observed, respectively, with the cline along 

PC1 (Figure S2A) being strongly correlated with Eurasian admixture (r = −0.98, p < 2 3 

10−16) as inferred from ADMIXTURE, K = 4 (Figure 2). This was corroborated in principal 

component analysis (PCA) of Ugandan ethno-linguistic groups in the context of global 

populations (Figures S2C and S2E) and our fineSTRUCTURE (Lawson et al., 2012) 

analysis (Figure 1B). FineSTRUCTURE analysis of the co-ancestry matrix inferred from 

linked genetic variants showed evidence suggestive of population substructure (Figures 1B; 

STAR Methods) with PCs 1 and 2 explaining 11.9% and 3.5% of observed variation, 

respectively. Clines along fineSTRUCTURE PC1 and PC2 were highly correlated with 

Eurasian (r = −0.90) and East African Nilo-Saharan ancestry (r = −0.98) as delineated by 

ADMIXTURE, K = 4, respectively (Figure 1B; STAR Methods). Here, Nilo-Saharan 

ancestry is defined as the ancestral component in ADMIXTURE analysis that was most 

prominent among the Dinka (Figure 2). The PC2 cline representing Nilo-Saharan ancestry 

was seen predominantly among the ethnolinguistic group classified as “Others” (Figure 1B), 

consistent with these representing ethno-linguistic groups that have migrated into Uganda 

from the northwestern region along the Nile. This suggests that the largest proportion of 

variation among the cohort was possibly driven by Eurasian and East African Nilo-Saharan 

gene flow.

Using Procrustes analyses, we find that substructure among ethno-linguistic groups in this 

rural Ugandan community is correlated with the historical geographical origins of these 

migrant populations (Figure 1; Tables S2.1–S2.3; STAR Methods). This suggests that in 

spite of extensive migration and mixture, substructure does exist among individuals in 
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regional Uganda, and this substructure shows statistically significant correlation with the 

historical distribution of population groups across the region. We find no clear association 

with current geographical coordinates, consistent with extensive movement and mixing 

following migration within this region (Table S2.4). These findings are corroborated by 

fineSTRUCTURE tree inference from the co-ancestry matrix that also shows clade structure 

reflecting historical geographical regions from which these populations have migrated 

(Figure 1D). Ethno-linguistic groups from the central region of Uganda (the Baganda, 

Basoga, and Batooro), migrant populations from Rwanda, Burundi, Tanzania (Banyarwanda, 

Rwandese Ugandans, Barundi, and Batanzania, respectively), and those from southwestern 

Uganda (Bakiga, Banyankole, and Bafumbira) form separate clades (Figures 1C and 1D; 

STAR Methods). This clade structure may potentially also reflect the different amounts of 

Eurasian admixture observed among these populations, as we discuss subsequently.

With unsupervised fineSTRUCTURE analysis, we identify 52 population clusters (Figure 

1E; STAR Methods). These clusters appear to represent a combination of factors, including 

ethno-linguistic group, historical geographical context (Figures 1D and 1E), as well as 

proportion of Eurasian and Nilo-Saharan ancestry, as estimated by ADMIXTURE, K = 4 

(Figure 2). No clear pattern was observed by current GPS coordinate (Figure 1E), consistent 

with Procrustes analysis (Table S2.4).

Using QpWave, we find evidence for at least three distinct streams of ancestry across the 

Ugandan populations relative to outgroups (rank 2, p = 0.02) (Table S3.1; STAR Methods). 

On examining change in rank on removing populations one at a time, we find that the 

distinct streams of ancestry correspond well with the clade structure inferred in 

fineSTRUCTURE and historical geographic origins of these groups (Figures 1C and 1D). 

Specifically, we find that the rank of the matrix drops by one on excluding 

Rwandese_Ugandan, Banyarwanda, Bakiga, Banyankole, suggesting that these include a 

distinct source of ancestry potentially not present in other populations (Table S3.1). Another 

stream of ancestry appears to be contributed by Barundi and Batanzania, consistent with the 

tree structure inferred by fineSTRUCTURE (Figure 1D). Baganda, Basoga, and Mutooro 

appear to be relatively homogeneous, with only a single source of ancestry inferred across 

these populations (Table S3.1).

Inference of Complex Admixture in Uganda

Consistent with the extensive history of migration into this region, unsupervised 

ADMIXTURE (Alexander et al., 2009) and GLOBETROTTER (Hellenthal et al., 2014) 

analyses suggest that Ugandans are best represented by a mosaic of East African (Bantu, 

Nilo-Saharan, Afro-Asiatic, and rf-HG) and Eurasian-like ancestral components among 

modern global human populations (Figures 1, 2, and S3; STAR Methods). These findings 

are in keeping with other recent studies among East African populations that have suggested 

modern East African populations have been subject to complex admixture events over the 

past 5,000 years (Scheinfeldt et al., 2019; Fan et al., 2019). The proportion of Eurasian 

admixture appears to be lower in Baganda, Basoga, and Batooro (Figure 1D), suggesting 

that waves of admixture may have occurred with regional specificity within Uganda.
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Delineation of Eurasian-like Ancestry within Uganda

Formal tests for admixture (f3 tests, MALDER, and GLOBETROTTER analyses) (Patterson 

et al., 2012; Hellenthal et al., 2014) consistently support evidence for Eurasian-like gene 

flow in Uganda (Figure S3; Tables S3.2 and S3.3; STAR Methods). Eurasian-like gene flow 

may be inferred by these tests if the source population has allele frequency spectra correlated 

with modern Eurasians. This does not in itself provide evidence for Eurasian back migration 

into East Africa. We evaluate the source of this ancestry further. The presence of Eurasian 

MT (K1a, R0a1a, N1a1a3, HV1b1a, I, J1d1a1, and W8) (Table S3.4) and Y chromosome 

(R1b and H) haplogroups within Uganda provide support for back-migration, as these 

haplotypes are thought to have arisen from out-of-Africa (Figure S4; Table S3.4; STAR 

Methods; Richards et al., 2000; Soares et al., 2010; Mishmar et al., 2003). In order to 

distinguish Eurasian gene flow from ancient structure within East Africa, we also assessed 

the double conditioned site-frequency spectrum (dcsfs) among Ugandans, with the sfs being 

conditioned on alleles being derived in a French sample, and ancestral in Yoruba (YRI) 

(Figure S5; Table S3.5; STAR Methods). A non-linear L-shaped sfs, enriched for rare 

derived alleles would be consistent with recent admixture, and not ancient substructure, as 

discussed previously (Yang et al., 2012). Our results confirm an observed dcsfs enriched for 

rare derived alleles and consistent with Eurasian gene flow (Figure S5). On assessing the fit 

of simulated data under different parameters with observed data, we find that gene flow from 

Eurasian populations into Ugandans is necessary to explain the observed frequency spectra 

(Figure S5; Table S3.6; STAR Methods). Overall, a dual model of admixture (~7% 

admixture) and ancient structure outperformed other models, including a model of ancient 

structure alone (p < 0.005) (Table S3.6). We note, however, that it is possible that fine-scale 

geographical spatial structure among populations could also explain these findings (Eriksson 

and Manica, 2014).

Using the conditional random field model (CRF), we assessed the presence of Neanderthal 

haplotypes among Ugandans (STAR Methods). Because Neanderthal ancestry is restricted to 

populations outside Africa, any evidence of Neanderthal ancestry among Africans is likely 

to be due to Eurasian back migration. We show evidence of detectable Neanderthal ancestry 

in Uganda, providing support for Eurasian admixture resulting from back-to-Africa 

migration (Table S3.7; STAR Methods). We first validate our approach by confirming 

enrichment of inferred Neanderthal sites within Eurasian segments, and with known maps of 

Neanderthal ancestry using simulated data (p < 0.001) (Table S3.7). We find that segments 

of inferred Neanderthal ancestry among Ugandans show high (95%) overlap with inferred 

Eurasian haplotype segments in the same individuals (as inferred by ChromoPainter) 

(Lawson et al., 2012). On assessing the overlap of segments of inferred Neanderthal ancestry 

among Ugandans with the inferred map of Neanderthal ancestry among Europeans and 

Asians in the 1000 Genomes project (Sankararaman et al., 2014), we find that 90% of 

segments identified as Neanderthal in origin (permutation p < 0.001), overlapped with 

known maps of Neanderthal introgression (STAR Methods; Sankararaman et al., 2014). 

Furthermore, in line with expectations, we also find evidence of significantly lower 

background selection in identified regions of Neanderthal ancestry relative to other regions 

(mean B scores 920 and 799, respectively, permutation p < 0.003) (STAR Methods). 

Collectively, our analyses support Eurasian back-migration into Uganda, consistent with 
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previous work (Gallego Llorente et al., 2015; Henn et al., 2012; Pickrell et al., 2014; Fan et 

al., 2019).

Gene Flow between Ugandans and Regions rf-HG Populations

Analysis with MALDER also detects multiple complex admixture events, with the older 

events inferred as best represented by modern rf-HG-like and Eurasian-like ancestral 

components having occurred 2,000–4,500 years ago, and more recent Eurasian-like 

admixture 7–11 generations ago, consistent with previous reports (Figure S3; Gurdasani et 

al., 2015; Patin et al., 2017). Given the relatively low proportion of rf-HG admixture inferred 

within Ugandans by ADMIXTURE, GLOBETROTTER, and fineSTRUCTURE analysis, 

we evaluated this further. ALDER suggests low levels of rf-like admixture in Baganda 

(lower bound 4.4%), consistent with previous reports (Patin et al., 2017) and our results 

from ADMIXTURE and GLOBETROTTER analysis (Figures 2 and S3). Inference of rf-

HG-like and Eurasian ancestry as primary sources of admixture by MALDER here is likely 

to reflect the known bias of the algorithm toward identifying source ancestral components 

that are more drifted, even if they contribute proportionately little to ancestry (Pickrell et al., 

2014).

Asymmetrical gene flow has previously been noted between rf-HGs and East Africans, with 

predominantly Bantu admixture inferred within regional rf-HGs. We recapitulate these 

findings (Patin et al., 2014, 2017) confirming substantial Bantu admixture in rf-HGs (Mbuti) 

dating to 760 years ago in ALDER analysis (lower bound admixture 18%). Collectively, our 

findings suggest that assimilation of eastern rf-HG like ancestry into East African Bantu 

populations may have occurred during early migrations as part of the Bantu expansion, as 

these populations expanded into this region (Gurdasani et al., 2015). The route through 

which this ancestry entered these populations is unclear and may have involved gene flow 

between Bantu and possibly other regional pastoralist or HG populations. We explore this 

further by examining ancient East African populations as possible representative sources of 

ancestry among modern Ugandans.

Ancient Populations Representative of Admixture in Modern Ugandans

QpAdm analysis examining possible sources of admixture in modern Ugandans (STAR 

Methods) suggests that among global modern and ancient populations, modern Ugandan 

populations are best represented by ancestral components relating to ancient East African 

pastoralist populations (Tanzania_Pemba_ 700BP and Tanzania_Luxmanda_3000BP) 

(Tables S3.8 and S3.9; STAR Methods). These ancient pastoralists have been shown to be 

represented by multiple ancestral components, including ancient hunter-gatherer (Mota) and 

Eurasian (Levant-like) ancestry (Skoglund et al., 2017), suggesting that these ancestral 

components may have entered modern Ugandans proximately through ancient East African 

pastoralists in the region. Our primary results identify a single source of ancestry represented 

by Tanzania_Pemba_700BP in Baganda and Basoga, consistent with previous qpWave 

analyses (Table S3.8). Other populations can be modeled either as a mixture of Tanzania_ 

Pemba_700BP and Tanzania_Luxmanda_3000BP, or as a mixture of 

Tanzania_Pemba_700BP and modern or ancient Eurasians. Eurasian admixture in Ugandans 

varies from 5.8%–10.9% (Table S3.12). Consistent with qpWave results suggesting multiple 
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streams of admixture within Uganda (Table S3.1), we find that Banyarwanda and Rwandese 

Ugandans cannot be modeled by any combination of two- or three-source populations, 

reflecting complex ancestry in these ethno-linguistic groups.

We also note that although Tanzania_Pemba_700BP has been shown to be represented well 

by Mende previously (Skoglund et al., 2017) (a finding we were able to recapitulate in our 

analyses), replacing Tanzania_Pemba_700BP with Mende as a source population for 

admixture into Uganda in our models results in a poor model fit (p < 0.01 in all cases). Our 

findings suggest that West African populations may not reliably represent Bantu ancestry in 

East African Bantu populations. In order to assess this, we examine the f4 statistic f4(chimp, 

Ancient South African; YRI/Mende, Uganda) (Table S3.10); we find asymmetry of Ugandan 

and West African populations relative to ancient South African Khoe-San, inferred from 

statistically significantly positive f4 statistics. Recent evidence has suggested that West 

Africans may carry a differential contribution of ancestry from an ancient population basal 

to ancient South Africans, leading to different West African populations (e.g., YRI and 

Mende) being asymmetrically related to ancient South Africans (Skoglund et al., 2017). In 

this context, the asymmetry observed between West and East Africans relative to ancient 

Khoe-San may be due to lower or absent basal ancestry in East African Bantu populations 

relative to West Africans (Table S3.10; STAR Methods). Alternatively, this may also be 

explained by Hadza-like or Khoe-San-related ancestry in modern Ugandans. Further 

evaluation and interpretation of these findings will require a wider sampling of ancient DNA 

samples from across Africa.

Demographic History of East Africans

To investigate ancient population size changes and split events, we examined a Ugandan trio 

sequenced at high depth (303) using MSMC2 (Schiffels and Durbin, 2014; Figure S6; Tables 

S1.6 and S1.7; STAR Methods). We find that the demographic history of Ugandans is 

broadly comparable to other Africans such as Yoruba and Luhya (LWK), with an estimated 

effective population size of ~20,000 over the past 10,000 years (Figures S6A–S6C). 

However, recent changes in population size of Ugandans seem more similar to LWK, as 

compared with YRI, and are consistent with patterns described by Schiffels and Durbin 

(2014) for LWK in the recent past (<10,000 years). Schiffels and Durbin (2014) observed a 

long “hump” in ancestral population size extending back from 6,000 years ago to beyond 

50,000 years ago; we see a similar pattern in Uganda, likely reflecting complex admixture in 

Uganda, with modern Ugandans being a mosaic of multiple structured populations that were 

separated for several thousands of years, until recent admixture due to the extensive 

migration into this region.

On examining cross-coalescence between Uganda, YRI, and LWK, we find that Ugandan 

populations split from Yoruba, Nigeria (YRI) ~11,500 years ago (ya), with subsequent gene 

flow between Uganda and LWK in recent times (Figures S6D–S6F; STAR Methods). The 

Uganda-YRI divergence is older than the Bantu expansion (de Filippo et al., 2012) and may 

reflect varying patterns of Eurasian, basal, and regional admixture in East and West African 

populations. It also should be noted that these divergence times are lower bounds and are 

likely to be affected by gene flow between these populations following divergence, as 
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previously documented (Schiffels and Durbin, 2014). We note that while our cross-

coalescence rates (CCR) for Uganda-YRI when using 1000 Genomes Project YRI 

haplotypes are more in line with trio-based phasing, CCRs from Complete Genomics data 

are suggestive of more recent split times (Figure S6G). This suggests that statistical phasing 

of the 1000 Genomes Project high coverage samples may be more reliable than phasing of 

the same samples sequenced with Complete Genomics when phased using reference-based 

phasing with our merged reference panel. This is also in line with previous reports that 

inaccuracies in statistical phasing can impact inferences of split times (Song et al., 2017). 

Our results support the sequencing of trios in diverse population sets to maximize phasing 

accuracy, or alternatively using strategies that can greatly improve phasing accuracy, such as 

linked read sequencing (Zheng et al., 2016), optical nano-technology, or SMRT sequencing, 

as implemented with the PacBio platform.

Recent Haplotype Sharing between Ugandans and Other Global Populations

We explored more recent population history by examining rare variant sharing between the 

Baganda and other populations; we examined variants occurring only twice in the entire 

dataset (designated f2) (Figure S7; STAR Methods). On assessing average f2 sharing on 

repeatedly subsampled random haplotypes (n = 40) from each population, we see extensive 

sharing of f2 variants between Ugandan populations and other Niger-Congo language-

speaking populations in the 1000 Genomes Project from East and West Africa. We also see 

extensive sharing with European and Asian populations consistent with Eurasian gene flow 

into these populations (Figure S7A). Paradoxically, we see little sharing among Ugandan 

populations; however, it must be noted that this is likely to be a consequence of our 

ascertainment scheme, with f2 variants being rarer among the Ugandan populations, and 

therefore, less likely to be sampled in a random set of 40 haplotypes (Figure S7A; STAR 

Methods).

Dating haplotypes surrounding f2 variants can provide important information about the 

interrelation among populations, including ancient and recent population divergence 

(Mathieson and McVean, 2014). Using this approach, we observe a total of 12,477,686 f2 

variants in our dataset belonging to 9,875,361 f2 haplotypes. Given our ascertainment of f2 

variants in a sample size comprising largely Ugandans, we expect f2 variation within 

Ugandans to be more recent than within other populations; therefore, we decided only to 

focus on the relationship of f2 variation between Ugandan and other populations, because 

this is likely to be relatively unbiased. We find that f2 variants shared between European and 

Ugandan populations are more recent than those shared between European and West African 

populations (median f2 dates were ~19,500 ya for Baganda compared with ~51,000 ya for 

YRI) (Figure S7B). This finding is consistent with back migration (Henn et al., 2012) and 

Eurasian admixture in the Uganda populations (Gurdasani et al., 2015; Pickrell et al., 2014), 

however, this may also reflect bias due to ascertainment of f2 variants in a larger population 

of Ugandans, thereby resulting in f2 variation representing rarer, and therefore more recent 

variation. Examining Ugandan populations in the context of other African populations, we 

find that f2 sharing between Ugandan populations and Ethiopians tend to be older (median f2 

dating was ~23,000 ya) than Ugandan-West African splits (Figures S7B and S7C), probably 

reflecting a combination of deeper population splits between Bantu- and Afro-Asiatic-

Gurdasani et al. Page 9

Cell. Author manuscript; available in PMC 2020 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



speaking groups, and relatively high Eurasian admixture in the Ethiopian populations. We 

also find evidence of very ancient divergence (with a median f2 dating of ~29,000 ya) 

between Baganda and Zulu (Figures S7B and S7C); this could reflect old f2 sharing with 

highly divergent Khoe-San haplotypes present among Zulu and other Southern African 

populations (Gurdasani et al., 2015). Our large African sequence resource allows the first 

such examination of shared rare variation among populations and highlights the complex 

demographic histories of populations in this region.

A Whole Genome Sequence Resource for Population and Medical Genetics

With the largest whole genome sequence dataset from Africa to date (Figure 3; STAR 

Methods), we present a unique resource representing the spectrum of human genetic 

diversity in East Africa, as well as a resource to facilitate medical genetics studies in the 

region.

As expected, and consistent with the out-of-Africa model, Africans carry higher levels of 

variation relative to other continental populations, the overwhelming majority being rare 

(Figure 3; Table S4.1; STAR Methods). In line with these observations, African populations 

provide greater opportunities for variant discovery as a function of sample size (Figure S8A; 

STAR Methods). We find that despite higher sequencing coverage within UK10K, the rate of 

discovery of genetic variation with increases in sample sizes among the Ugandans is greater 

than with European individuals from UK10K, at least up to a sample size of 500, after which 

gains plateau (Figures S8A and S8B). Of 41.5 M SNPs called in UG2G, we identify 9.5 M 

novel variants that are not present in the 1000 Genomes Project phase 3, African Genome 

Variation Project (AGVP), and UK10K reference panels (Figure 3A). We find that 28.7% of 

SNPs discovered in UG2G are not found in the Genome Aggregation Database (gnomAD) 

(https://gnomad.broadinstitute.org/), highlighting the importance of assessing diverse 

populations on a larger scale. Multi-allelic variants represented 0.87% of called SNPs.

The average number of variants/individual in UG2G was greater than variation/individual 

observed in the UK10K cohorts dataset (4,298,968 and 3,412,214 in UG2G and UK10K 

cohorts, respectively), consistent with African populations having greater genetic diversity 

(Table S4.1). Heterozygosity rates among Ugandans were comparable to other African 

populations, except Ethiopian populations that had lower levels of heterozygosity, consistent 

with high levels of Eurasian admixture in Ethiopian populations (Figure 3B). We also note a 

much greater proportion of rare variants among Ugandans, when comparing with an equal 

number of European individuals from the 1000 Genomes Project phase 3 (Figure 3C), which 

has comparable depth of coverage. The differences in site frequency spectrum observed are 

consistent with a historical population bottleneck in Europeans and greater genetic diversity 

with enrichment of rare variation among African populations.

We also explored the predicted functional consequences of variation in the UG2G 

population (Figures 3 and S9; Tables S4.2–S4.3; STAR Methods). Consistent with overall 

diversity, UG2G participants carried more missense variants per individual compared with 

the UK10K population (12,198 and 10,153 variants/individual, respectively) (STAR 

Methods). As with previous studies, we find that in spite of the lower absolute number of 

missense mutations (149,251 in UG2G and 69,761 in UK10K Avon Longitudinal Study of 
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Children and Parent [ALSPAC]) in Europeans, these form a higher relative proportion of 

total variation (0.4% and 0.5% in UG2G and UK10K, respectively, p < 2×10−16) among 

Europeans (STAR Methods). For disease-causing mutations (DMs), as annotated by the 

Human Gene Mutation Database (HGMD) (Figure 3; STAR Methods), we identified a 

median of 29 DMs/individual in our cohort compared to 25 DMs/individual in UK10K, 

despite more extensive studies in European populations and potentially biased ascertainment 

(Figure 3F; Xue et al., 2012). By contrast, in UG2G, we observed a median of 3 

homozygous DMs/individual compared to 4 homozygous DMs/individual in UK10K (STAR 

Methods) (p < 2 × 10−16). In contrast to the Genome of the Netherlands (GoNL) study 

(Genome of the Netherlands, 2014), where more than half of the DM variants were common 

(>5% allele frequency [AF]), the Ugandan population shows the opposite pattern, with DM 

variants predominantly being rare (AF <0.5%) in our cohort (Figures 3D and 3E). A total of 

650 out of the 998 DM variants had a frequency lower than 0.5%, whereas only 47 were 

common (>5% AF) in the UG2G. These findings are consistent with previous reports that 

suggest a shift toward the higher frequency spectrum for deleterious variants in out-of-Africa 

populations. However, these differences to some extent may also represent ascertainment of 

DMs primarily in Europeans.

On examining the number of ClinVar mutations per individual (2015 Clinvar database) in 

UG2G compared with the UK10K ALSPAC, and 1000 Genomes Project phase 3 African 

and European populations, we observed greater number of median alleles/individual in the 

African individuals (UG2G and 1000 Genomes Project phase 3 African populations) 

compared to Europeans (UK10K ALSPAC and 1000 Genomes Project phase 3) in spite of 

the higher coverage of the ALSPAC dataset compared to UG2G (Table S4.2). Our results do 

not support substantial ascertainment bias in either the HGMD or ClinVar database, in 

contrast with previous reports of ascertainment (Xue et al., 2012; Auton et al., 2015). On 

comparing results using an older version of the ClinVar database (2014 version), we find 

clear evidence of ascertainment bias in the older database, with a greater number of 

clinically significant disease alleles/individual among Europeans compared with Africans, as 

have been reported before (Table S4.2; Auton et al., 2015). Our findings suggest that 

generation of larger scale sequence data in more diverse panels have contributed to reduction 

in ascertainment bias among mutation databases over time.

The distribution of the mutational spectrum in African and European populations is 

consistent with previous reports (Do et al., 2015; Lohmueller et al., 2008) and the impact of 

differences in demographic history among these populations. The higher burden of 

homozygous deleterious variation in Europeans is consistent with previous literature 

(Lohmueller, 2014; Henn et al., 2016), resulting from a loss of rare alleles following a 

population bottleneck thereby leading to greater co-occurrence of these mutations in 

recessive form (Do et al., 2015). The differences observed are unlikely to represent 

differences in efficiency of selection in European and African populations since the split, but 

rather non-selective demographic forces of drift and mutation in an expanding population 

after a bottleneck, as has been suggested previously (Do et al., 2015). The higher frequency 

of deleterious variation in European populations may also be related to ascertainment bias, 

with more common recessive variation in European populations more likely to be identified 

and cataloged (Amorim et al., 2017).
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Allele frequency differences between populations along with clinical phenotype data may 

provide insights into the functional relevance of putative DMs. On assessing 38 DMs that 

were common in our cohort (AF >5%), but rare or absent in the UK10K data (AF <1%) 

(Table S4.3) (Walter et al., 2015), we identify established causal loci associated with 

hematological traits, such as the G6PD and sickle cell (HBB) variants, which are common in 

UG2G, but absent from the UK10K data, consistent with these loci being under positive or 

balancing selection and protective against malaria (Table S4.3) (Karlsson et al., 2014). 

However, we also demonstrate that several putative DMs associated that are common in 

UG2G, but rare in UK10K, do not show strong evidence for association with relevant 

cardiometabolic or hematological traits (Figure S10). These variants common in UG2G 

include rs41264848 in the LPA region (p = 0.40 for association with total cholesterol), 

rs36220239 in the ADAMTS13 region (p = 0.90 for association with platelet count), and 

rs115080759 in the HNF1A gene associated with MODY3 showing no association with 

HbA1C (p = 0.20 in entire cohort and p = 0.29 when only including individuals >40 years 

age) (Figure S9). Our results for rs115080759 are consistent with reports that suggest this 

variant is benign (Kleinberger et al., 2018). This emphasizes the need to carefully and 

comprehensively evaluate the impact of putative functional or disease-causing mutations 

across global populations, because they may not have any clinical or biological relevance or 

be readily transferable across populations (Saraf et al., 2014; Xue et al., 2012). The lack of 

strong associations between these DMs and phenotypes in our cohort indicate that they are 

unlikely to be causal for the associated traits or may have different or lower penetrance 

within African populations due to complex factors, including epistasis or gene-environment 

interplay.

Finally, we assess the impact of the addition of the UG2G panel to existing reference panels 

on imputation accuracy among populations from sub-Saharan Africa (Figure 4). We show 

that addition of the UG2G panel to existing sequence panels with African haplotypes, such 

as the 1000 Genomes Project phase 3 and AGVP (combined n = 3,895), markedly improved 

imputation accuracy (r2 increase by 0.08 [MAF % ≤ 0.01] and 0.04 [all MAF]) for rare and 

common variants in Ugandan populations (Figure 4; STAR Methods). Additionally, we 

observe a substantial increase in imputation accuracy across the allele frequency spectrum 

generally in East African populations, including Nilo-Saharan linguistic groups such as the 

Kalenjin (Figure 4), probably reflecting haplotype sharing across the region. The number of 

variants “successfully” imputed (info ≥ 0.3) substantially increased using the UG2G panel in 

comparison with the 1000 Genomes Project phase 3 and AGVP panels combined, with an 

additional 8 M variants being successfully imputed in Baganda and 1.5 M additional variants 

successfully imputed among other East African populations (Figure 4). These analyses 

emphasize the importance of building regional sequence-based resources to facilitating 

genetic studies in Africa, including alongside current initiatives such as the Haplotype 

Consortium (McCarthy et al., 2016).

Heritability of Cardiometabolic Traits in a Rural Ugandan Community

Narrow-sense heritability represents the fraction of phenotypic variation in a population that 

is due to additive genetic variation. As such, it represents an important metric determining 

the genetic basis of complex traits and diseases. There have been no comprehensive 
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evaluations of heritability and the interrelation with environment among African 

populations. We, therefore, assessed heritability for 34 complex cardiometabolic traits using 

a mixed model approach that also models environmental correlation (Heckerman et al., 

2016; Figure 5; STAR Methods).

Estimates of heritability corrected for environmental correlation varied from relatively 

modest (e.g., 10% for GGT, a liver biomarker) to 55% for traits such as mean platelet 

volume (MPV) (Figure 5; Table S5.1; STAR Methods) We find clear statistical differences in 

heritability estimates for several traits, compared to European populations (Figure 5; Tables 

S5.2–5.4). For example, the narrow-sense heritability for height was 49% in Ugandans, 

compared with estimates of 70%–80% in European populations (p < 0.0001); by contrast, 

the heritability estimates for LDL were statistically significantly higher in the Ugandan 

population (54% versus 20%–43% in European studies, p < 0.002) (Figure 5; Tables S5.2–

S5.4; STAR Methods). We speculate that these differences may be due to varying patterns of 

genetic loci influencing these traits in European and African populations, or perhaps more 

plausibly due to a larger proportion of environmental variation explaining phenotypic 

variance. For example, malnutrition or nutritional deficits in rural African populations may 

attenuate the effects of genetic variance on height, whereas dietary consumption and 

obesogenic environments in European populations may reduce the impact of genetic factors 

on the variation in LDL levels (Nalwoga et al., 2010). We note, however, that lower 

estimates of heritability (e.g., for height) in the Ugandan cohort may also arise from 

differences in LD (lower LD with causal variants), lack of adjustment for shared 

environment in previous studies, or gene-environment interactions. While we do not find 

statistically significant gene-environment interactions for height, we find evidence for 

statistical gene-environment interaction for waist/hip ratio, red blood cell distribution width 

(RDW), and hematocrit (permutation p = <0.0001). These statistical interactions may 

represent interplay between genetic factors and dietary factors, iron stores, and nutritional 

status (Table S5.1). Reliable assessment of the interrelation between genetic and 

environmental variation, including specific environmental indices, will require application of 

these methods in much larger-scale studies with relevant phenotypic information. Examining 

locus-specific heritability would complement direct assessments of population differences in 

heritability of population traits.

GWAS of Cardiometabolic Traits in African Populations

To assess the spectrum of genetic variants associated with cardiometabolic traits in African 

populations, we performed a GWAS of 34 cardiometabolic traits in up to 14,126 individuals 

from across the African continent, including populations from Ghana, Kenya, Nigeria, South 

Africa, and Uganda (Tables 1 and S6.1–S6.12; STAR Methods). To maximize opportunities 

for genomic discovery, we meta-analyzed GWAS data from all study populations imputed 

with our combined reference panel, using the Han-Eskin random-effect meta-analytic 

approach implemented in METASOFT (Han and Eskin, 2011) to allow for potential 

heterogeneity in allelic effects (STAR Methods). We first re-assessed thresholds for genome-

wide statistical significance in African populations using several approaches (Gao et al., 

2008; Chen and Liu, 2011; Moskvina and Schmidt, 2008; Nyholt, 2004) and found that a 
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statistical threshold of 5.0 × 10−9 is more relevant in populations with high genetic diversity 

and relatively lower levels of LD (Table S6.1; STAR Methods).

In our meta-analysis, we identified 43 distinct signals statistically significantly associated 

with at least one trait (Table S6.2). Following visual inspection of locusview plots, two 

association signals were excluded (Figure S10) as likely to be artifactual. More than half of 

all remaining signals (23/41) were attributable to genetic variants specific to African 

populations or extremely rare in other populations (Table S6.2; STAR Methods). Among 

these, we identified ten distinct or secondary signals at previously identified loci (Table 1), 

of which nine were driven by genetic variants that were specific to Africa or extremely rare 

in other populations (Tables 1 and S6.2). We also identified ten association signals within 

novel loci (Table 1). These novel signals included associations with anthropometric indices, 

lipid, hematological, and blood cell traits (Figures 6 and S10I; Tables 1 and S6.2). Among 

these novel signals, three were noted to have been previously identified as associated with 

biologically related traits (Table 1).

Our novel association signals included a functionally relevant association between a 3.8 Kb 

deletion (−α3.7), known to cause alpha thalassemia, and total bilirubin levels (p = 2 × 10−12) 

(Figure 6; Table 1; STAR Methods). The α3.7 variant is thought to have risen to high 

frequencies in African populations in regions endemic for malaria by virtue of providing 

resistance to severe malaria (Mockenhaupt et al., 2004).

We also identified a novel association with BMI on chromosome 1 (p = 2.8 × 10−10) in the 

intergenic region between PLD5 and SDCCAG8 (Tables 1 and S6.2). The SDCCAG8 locus 

has been previously associated with extreme childhood obesity in Europeans (Scherag et al., 

2010). Recent unpublished summary data from Genetic Investigation of Anthropometric 

Traits (GIANT) and UK Biobank suggests that this locus may be associated with BMI (peak 

SNP rs11807000, p = 5.7 × 10−11). Our peak SNP is not present in these data or in the 

GIANT summary data. However, the presence of a comparably statistically significant 

association at this locus in a relatively small study (with respect to the UK Biobank and 

GIANT meta-analysis that examined ~700 K individuals) is interesting and needs further 

exploration. We also identified a novel association signal for the SNP rs7798566 (RE2 p = 3 

× 10−15) with BMI on chromosome 7 in the intergenic region within the TAS2R gene family 

(Tables 1 and S6.2). The TAS2R family of genes expressed within the gastro-intestinal tract 

are involved in taste sensitivity to bitter-tasting compounds (Bachmanov and Beauchamp, 

2007) and regulation of thyroid activity. Both these loci showed significant statistical 

heterogeneity of effect among African cohorts (Tables 1 and 6.2), with the association being 

seen only within the AADM cohort. The heterogeneity of effect for the SDCCAG8 locus 

among African cohorts (Tables 1 and 6.2), and European cohorts may point to differential 

effects in different environments or genetic backgrounds (epistasis), or differences in 

demographic makeup of these studies. The significance of these novel discoveries will 

require further evaluation across diverse population groups.

Among hematological traits, we identified a novel association on chr11 between the PDHX 
and CD44 region with white blood cell (WBC) count (Figure 6; Table 1). CD44 encodes a 

cell-surface protein that regulates neutrophil adhesion, migration, and apoptosis (Wang et al., 
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2002; Khan et al., 2004) among other functions (Figure 6; Table S6.2). We also identified a 

novel association between rs1347767, an Africa-specific (MAF = 10%) variant, downstream 

to R3HDM1, associated with neutrophil count (Table S6.2). While this locus has not been 

previously associated with neutrophil count, this region lies near the LCT locus, known to be 

associated with WBC count in an exome association study of African-Americans (Auer et 

al., 2012). The association at this locus was noted to be dependent on ancestry at the LCT 
locus in this study, suggesting the association may be population-specific (Auer et al., 2012). 

We also observed an association of the SNP causing sickle cell anemia (rs334) with RDW 

within our analysis (Figure 6). Notably, this SNP has not been identified as associated with 

RDW in the UK Biobank analysis of ~171 K individuals (p = 0.006) highlighting the utility 

of examining diverse cohorts in identifying functionally important associations with disease.

Fine mapping with MANTRA resulted in narrow credible intervals for most traits with 16 of 

41 distinct loci being mapped to a single SNP in the credible interval (Table S6.3; Musunuru 

et al., 2010). We also resolved the previously identified association with HbA1c at the 

ITFG3 locus to the α−3.7 thalassemia deletion, which explained 3% of variation in HbA1c 

levels (Figure S10). We note that associations of the α−3.7 thalassemia with both HbA1c and 

total bilirubin were driven primarily by the Ugandan cohort, and not observed within other 

cohorts, consistent with the higher allele frequency of the deletion observed in Ugandans 

and the endemicity of malaria within this region. Our findings recapitulate the need to more 

fully understand functional variation, including for hemoglobinopathies, that may explain a 

substantial proportion of variation in HbA1c in African populations. These factors may have 

a direct impact on the utility of using HbA1c as a clinical tool for detection and diagnosis of 

diabetes in Africa (Herman and Cohen, 2012).

Given the complex and regionally specific genetic diversity within Africa, we assessed 

patterns of heterogeneity and transferability of association signals across the four cohorts to 

inform the design of medical genetics studies as well as understand the utility of European-

centric polygenic scores for risk prediction in African populations. While most known 

associations with data available in >1 cohort were transferable (had nominally statistically 

significant p values in two or more cohorts) (Table S6.4), we identified several known and 

functionally important loci—the LIPC locus associated with HDL, the DARC locus 

encoding the Duffy antigen associated with monocyte count, and the α−3.7 thalassemia 

variant at the HBA1/A2 locus associated with RBC count and HbA1c that only had 

statistical support from a single cohort. Limited transferability at some of these loci appears 

to reflect allele frequency differences among cohorts potentially related to positive selection 

relating to the endemicity of malaria in some geographical regions and not others (e.g., the 

DARC and HBA1/A2 loci) (Liu et al., 2013; Hedrick, 2012; Hamblin et al., 2002). However, 

lack of transferability for other loci (e.g., LIPC) where the candidate SNP is common across 

all cohorts, may reflect several factors, including allelic heterogeneity (multiple distinct 

variants at loci) or gene-environment interactions, and will need further investigation in 

large-scale studies of diverse African populations. Additionally, there were four associations 

at known loci where the association signal was driven by a single cohort due to population-

specificity of the variant examined or rarity of the variant in other cohorts (MAF <0.5%) 

(Table S6.4). These included the GPT locus associated with ALT, with variants driving the 
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association specific to Uganda (no association was observed at this locus in other cohorts), 

and TIMD4 locus associated with LDL and total cholesterol levels (Table S6.4).

Expectedly, transferability was observed to be lower among novel association signals. 

Among nine novel associations with data in >1 cohort identified, 5 were noted to have 

support only from a single cohort (Table S6.4); among these was the functionally relevant 

the sickle cell locus associated with RDW and the SDCCAG8 previously associated with 

childhood obesity (Scherag et al., 2010), associated with BMI in our data. While the reasons 

for specificity of some of the novel loci to a single cohort relate to allele frequency 

differences of variants among cohorts (e.g., for the sickle cell locus), reasons for specificity 

at other loci are less clear and require further exploration.

To systematically examine differences in effect sizes across cohorts, we examined statistical 

heterogeneity of effect at associated loci among studies (STAR Methods). While most peak-

associated SNPs did not show evidence of statistically significant heterogeneity, we found 

strong evidence of statistical heterogeneity (Cochran Q p < 5 × 10−9) in regions around 

several peak SNPs within known and biologically important regions associated with total 

cholesterol, LDL (e.g., the PCSK9 and the APOE regions), bilirubin (UGT1A3–9 genes), 

GGT (GGT1 locus), MCHC (HBA1/A2 locus), ALT levels (GPT), and neutrophil count 

(DARC locus). This heterogeneity was partly attributable to differences in LD structure 

around causal or peak variants across populations or the presence of multiple distinct 

variants at loci (allelic heterogeneity) (Figure S10; STAR Methods). For example, joint and 

conditional analysis at the UG1TA3-9 locus associated with bilirubin in UGR showed 

evidence for three distinct SNPs associated with total bilirubin in joint and conditional 

analysis in the UGR (Figure S10; Table S6.5), suggesting that statistical heterogeneity at a 

locus can provide important information about the genetic architecture of traits. Using the 

same approach, we also identified three distinct association signals at the GGT1 locus in 

UGR, (Figure S10; Table S6.6), with differences in LD around these distinct signals 

potentially explaining the statistical heterogeneity observed within this locus between 

cohorts.

In addition to allelic heterogeneity representing multiple distinct associations at a given 

locus, we also identified loci where distinct associations were identified as driving the 

association signal with a given trait among different populations. One example of this is the 

GPT locus associated with ALT levels (Table 1), where distinct population-specific variants 

drive the association in Africans and Europeans (Abul-Husn et al., 2018). We also identified 

a distinct association with ALP levels at the known ALPL locus. Peak-associated SNPs at 

this locus have been previously noted to be different across large studies of European 

(Chambers et al., 2011), Chinese (Yuan et al., 2008), and Japanese (Kamatani et al., 2010) 

cohorts (Table S6.7); these peak SNPs were not in LD with the peak SNP in Uganda, 

suggesting that multiple signals may be driving these associations at the locus in different 

populations (Table S6.8). An alternate explanation is that all these SNPs may be 

differentially tagging an as yet unidentified causal variant.

Collectively, our findings highlight the utility of genetic resources from diverse populations 

in novel discovery, especially for population-specific and low-frequency association signals. 
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In this context, differences in frequencies of functional alleles, allelic heterogeneity, and 

differences in LD structure provide unique opportunities for discovery and resolution of 

causal loci and a better understanding of the genetic architecture of disease.

DISCUSSION

Here, we present the largest whole-genome sequence dataset from an East African 

population to date, as well as a large genome-wide genotyped and phenotyped dataset from 

the same population. We provide rich genomic resources for studies of human population 

history and GWAS and a mechanism to evaluate the clinical relevance of genetic diversity 

both in African populations and globally.

We present evidence for fine-scale structure and admixture in this Ugandan population, 

reflecting complex ancient and recent population migrations and expansions in East Africa. 

Our findings highlight the need for larger-scale deep sequencing, including a systematic 

assessment of hunter-gatherer populations across Africa, to more fully understand the 

genetic history and diversity of Africa. Sequencing of DNA from ancient skeletal material 

across Africa will greatly facilitate such efforts (Pickrell and Reich, 2014)—allowing 

stronger inferences into the source of genetic diversity and population history in Africa and 

globally.

Accounting for environmental correlation, we describe statistical differences in heritability 

for traits between African and European populations; these differences may be suggestive of 

the interplay between genetic and environmental effects on heritable traits, as well as the 

impact of differences in genetic architecture as a result of selection, drift, and historical 

demographic events. Our findings reiterate the dynamic and context-specific nature of 

heritability, potentially varying among populations, demographic factors, and environmental 

exposures (Haworth and Davis, 2014).

In combined meta-analyses of pan-African cohorts from five different countries across 

Africa totaling 14,126 individuals, we present results from trait-association discovery 

efforts. Our identification of several novel susceptibility loci across a range of complex traits 

argues for scaling efforts in the region. The continental and population-specificity of a large 

proportion of these association signals suggests that inclusion of diverse populations across 

Africa in GWAS may have the greatest potential for discovery and refinement of novel loci. 

Collectively, these findings provide the first empirical evidence to support theoretical models 

that suggest that power for discovery increases in meta-analyses of ethnically diverse 

populations, specifically driven by increased detection of low-frequency and population-

specific novel associations (Pulit et al., 2010).

Given high genetic diversity, and regionally specific patterns of admixture, we highlight the 

need to design GWAS studies to leverage these differences in allele frequency spectrum and 

LD patterns across the African cohorts, including the creation of more diverse African whole 

genomic resources. The differences in LD structure observed around peak association 

signals across African populations will facilitate the refinement of association signals and 

help identify causal variants. With caveats for rare variant discovery in some scenarios, our 
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analyses emphasize the value of utilizing diverse populations across the region—to 

maximize opportunities for genomic discovery (Cook and Morris, 2016) and replication, 

particularly in the context of rare and population-specific associations. Furthermore, 

understanding differences in heritability, and identifying the full spectrum of genetic 

variation associated with complex traits and diseases across Africa, will require much larger-

scale prospective studies that should include rich genomic and phenotypic data for complex 

traits and diseases, as well as information on environmental factors. In these contexts, our 

results provide a framework for undertaking more extensive GWAS in populations from 

Africa. Our findings also emphasize the need to develop methods to understand and compare 

heritability acrosspopulations. Recently, methods have been developed to assess 

heritabilities from summary statistics from GWAS, accounting for LD structure (Finucane et 

al., 2015); however, these methods will need to be extended to studies of diverse admixed 

populations with significant tracts of admixture LD and within populations with high levels 

of relatedness.

Because genetic diversity is greatest in African populations, including a substantial 

proportion of genetic variation that is continentally and regionally distinct, it will be critical 

to understand the functional and biological relevance of this diversity. Understanding the 

biological basis for population-specific association signals, as well as the impact and 

transferability of putatively functional and disease-causing mutations at the individual and 

population level, will require representative genomic resources. We emphasize the need for 

the parallel development of transcriptomic and cellular biological resources at the population 

level to better reflect global human diversity (Chang et al., 2015).

STAR☆METHODS

Detailed methods are provided in the online version of this paper and include the following:

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and information should be directed to and 

will be fulfilled by the Lead Contact, Dr. Manjinder Sandhu (mss31@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Uganda Genome Resource (UGR)—We genotyped 5,000 and sequenced 2,000 

samples from 9 ethno-linguistic groups from the General Population Cohort (GPC), Uganda 

(Table S1.1) (Asiki et al., 2013); these constitute the Uganda Genome Resource (UGR). The 

GPC is a population-based open cohort study established in 1989 by the Medical Research 

Council (MRC), UK in collaboration with the Uganda Virus Research Institute (UVRI) to 

examine trends in prevalence and incidence of HIV infection and their determinants. 

Samples were collected from individuals during a survey from the study area located in 

south-western Uganda in the Kyamulibwa sub-county of the Kalungu district, approximately 

120 km from Entebbe town. The study area is divided into villages defined by administrative 

boundaries varying in size from 300 to 1,500 residents, and includes several families living 

within households. Data on health and lifestyle are collected using a standard individual 
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questionnaire, blood samples obtained and biophysical measurements taken, when 

necessary, as described previously (Asiki et al., 2013).

We chose exactly 5,000 individuals with relatively complete phenotypic data (described in 

Method Details) for genotyping (UGWAS) and 2,000 individuals who underwent low 

coverage whole-genome sequencing (UG2G). These included several pedigrees, and 

individuals with cryptic relatedness, as well as individuals clustered by household and 

village. Due to extensive migration into and around the region, several ethno-linguistic 

groups were sampled (Table S1.1). The final quality controlled Uganda Genome Resource 

included genotype data on 4,778 and sequence data on 1,978 individuals (Table S1.1). We 

note that there are 343 individuals who have been genotyped and sequenced; for these 

individuals, we only included the sequence data, and not the genotype data. We also 

excluded 6 genotyped samples that were found to be potentially contaminated on 

fineSTRUCTURE analysis. The final dataset, therefore, included 6,407 individuals (4,429 

with genotype, and 1,978 with sequence data).

For genome-wide association analyses, we meta-analyzed association statistics from the 

Uganda Genome Resource, with three additional cohorts: the Durban Diabetes Study (DDS) 

(n = 1,165), the Diabetes Case control study (n = 1,542), and the AADM study (n = 5,231). 

Details regarding studies are below.

The Durban Diabetes Study (DDS)—The Durban Diabetes Study (DDS) is a 

population-based cross-sectional study of individuals aged > 18 years, who were not 

pregnant, and residing in urban black African communities in Durban (eThekwini 

municipality) in KwaZulu-Natal (South Africa), conducted between November 2013 and 

December 2014 (n = 1,204) (Hird et al., 2016). The survey (n = 1,165) combines health, 

lifestyle and socioeconomic questionnaire data with standardized biophysical measurements, 

biomarkers for non-communicable and infectious diseases, and genetic data. A detailed 

description of the survey design and procedures has been previously published (Hird et al., 

2016). The DDS was approved by the Biomedical Research Ethics Committee at the 

University of KwaZulu-Natal (reference: BF030/12) and the UK National Research Ethics 

Service (reference: 14/WM/1061).

The Durban Case Control Study (DCC)—The Diabetes Case Control study is a study 

of individuals with diabetes recruited from a tertiary hospital in Durban (n = 1,542). The 

Diabetes Case Control (DCC) study was planned as a case control study of type 2 diabetes 

to examine the epidemiology and genomics of type 2 diabetes and related cardiometabolic 

traits in a South African population. Collection started in 2009 and finished in 2013, 

however at the end of the study only cases (n = 1,600) had been recruited. The study 

includes participants of Zulu descent, resident in KwaZulu-Natal, aged > 40 years and with a 

diagnosis of T2D (WHO criteria). The DCC was approved by the Biomedical Research 

Ethics Committee at the University of KwaZulu-Natal (reference: BF078/08) and the UK 

National Research Ethics Service (reference: 11/H0305/6).

The Africa America Diabetes Mellitus Study (AADM)—AADM is an ongoing 

genetic epidemiology study of type 2 diabetes and related traits in Africans which has been 
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described in detail elsewhere (Rotimi et al., 2001, 2004; Adeyemo et al., 2015) (3–5)(100–
102)(99–101)(91–93)(95–97)(94–96)(79–81)(80–82). A total number of 5,231 individuals 

from the Africa America Diabetes Mellitus (AADM) study were included. In brief, ethical 

approval was obtained from the Institutional Review Boards (IRB) of all participating 

institutions. Written informed consent was obtained from all participants. Demographic 

information was collected using standardized questionnaires across the AADM study centers 

in Nigeria (Ibadan, Lagos, and Enugu), Ghana (Accra and Kumasi), and Kenya (Eldoret). 

Anthropometric, medical history, and clinical examination parameters were obtained by 

trained study staff during a clinic visit.

METHOD DETAILS

Laboratory measurements and Phenotype Data—A summary of phenotypic trait 

information available for the Ugandan resource can be found in Table S1.2, and trait 

information across all studies can be found in Table S1.3.

Uganda Genome Resource: Detailed information on demographic characteristics, village, 

household clustering, GPS coordinates, anthropometry was collected. The study comprised 

three stages: collection of questionnaire data, biophysical measurements, and collection and 

analysis of venous blood samples.

Prior to data collection, staff were trained using standard operating procedure documents to 

standardize data collection. The survey questionnaire retained aspects of the previous GPC 

questionnaire on sexual behavior, marital status, pregnancy, childbirth, education, and 

occupation. In addition, a non-communicable disease component, based on the WHO STEPs 

questionnaire, was included (World Health Organization, 2010). The non-communicable 

disease component of the questionnaire included sections on tobacco use, alcohol 

consumption, diet, physical activity, and history of non-communicable disease.

The questionnaires were available to interviewers in English and the local language 

(Luganda). The Luganda versions of the questionnaires were back-translated by a team of 

bilingual staff and piloted to ensure that original meanings of questions and answers were 

maintained. The e-questionnaires were validated against paper versions of the questionnaires 

for 300 participants.

Biophysical measurements: Once the questionnaire was completed, height, weight, hip and 

waist circumferences, and blood pressure were measured. Pregnant women in their second 

or third trimester were excluded from anthropometric measurements.

Height: Height was measured, with the head placed in the Frankfort plane, to the nearest 0.1 

cm using the Leicester stadiometer. Head pieces and shoes were removed for height 

measurements. Calibration of the stadiometer was checked weekly.

Weight: Weight was measured to the nearest 1 kg using the Seca 761 class III mechanical 

flat scales. Shoes and excess clothing were removed before weight measurements. 

Calibration of the scales was checked weekly.
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Hip and waist circumferences: Waist and hip circumferences were measured to the nearest 

0.1 cm over one layer of loose clothing using the non-stretch Seca 201 Ergonomic 

Circumference Measuring Tape. Waist circumference was measured at the mid-point 

between the lower costal margin and the level of the anterior superior iliac crests. Hip 

circumference was measured at the greater trochanter of the femur. Waist and hip 

circumferences were measured twice. In the case where the first and second measurements 

disagreed by 3 cm or more, a third measurement was taken. A participant’s hip and waist 

circumference values were calculated as the mean values of measurements taken.

Blood pressure: Blood pressure was measured using the fully automated Omron M6-I. The 

Omron M6-I has been validated for medical use, including for those who are obese, 

children, or elderly (Topouchian et al., 2006; Altunkan et al., 2007, 2008). Participants had 

been resting for at least 15 minutes prior to the measurement and were asked to refrain from 

eating and drinking for 30 minutes prior to the measurement. Prior to the blood pressure 

measurements, the arm circumference was determined and the appropriate Omron cut-size 

used. Blood pressure was measured in the sitting position three times with resting intervals 

of 3–5 minutes. Blood pressure for a participant was calculated as the mean of the second 

and third reading.

Blood samples: Once biophysical measurements had been performed, venous blood samples 

were obtained. An 8.5 mL serum sample was collected in a vacutainer serum separation tube 

for serological and biochemical analysis. A 6 mL whole blood sample was collected in an 

EDTA tube for blood counts, HbA1c measurement and genetic analysis.

The 8.5 mL serum and 6 mL whole blood samples were kept at 4°C – 8°C, and protected 

from sunlight to prevent degradation of bilirubin. The 2 mL whole blood samples for full 

blood count were kept at ambient temperature. Vacutainer serum separation tubes were 

centrifuged for 10 minutes at 1,000–13,000 RCF (g) in a swing bucket centrifuge in the field 

station laboratory. Samples were centrifuged no earlier than 45 minutes and no later than 2 

hours after blood sample collection.

Haematological analysis of full blood count took place in the Kyamulibwa field station 

laboratories, and other samples were transported to MRC/UVRI Central Laboratories in 

Entebbe, Uganda, every day for immediate biochemical analysis.

Biochemistry: Biochemistry data on lipid levels and liver function were captured digitally 

using the Cobas Integra 400 Plus Chemistry analyzer (Roche Diagnostics), an advanced 

integrated system for research and diagnostic clinical chemistry testing. The instrument 

carries out all test orders automatically and employs four different technologies, namely, 

absorption photometry, fluorescence polarization immunoassay, immune-turbidimetry, and 

potentiometry.

Lipids were measured non-fasting. The lipids of interest were cholesterol, high-density 

lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. 

The liver function tests comprise of aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyltransferase (GGT), 

Gurdasani et al. Page 21

Cell. Author manuscript; available in PMC 2020 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



total bilirubin, and albumin. HDL-cholesterol and LDL-cholesterol were measured using the 

homogeneous enzymatic colorimetric assays, as described by Sugiuchi et al. (1995, 1998). 

ALT and AST were measured by kinetic assay with photometric detection method according 

to the International Federation of Clinical Chemistry (IFCC), but without pyridoxal-5′-
phosphate (Bergmeyer et al., 1986a, 1986b; ECCLS, 1989a, 1989b). Assays for bilirubin, 

albumin, and ALP were colorimetric assays with photometric detection. Assays for GGT, 

cholesterol, and triglycerides were enzymatic colorimetric assays with photometric 

detection.

The precision of assays was also tested by the manufacturer using both study samples and 

controls.

HbA1c: HbA1c data were captured digitally using the Roche Cobas Integra 400 Plus 

Chemistry analyzer (Roche Diagnostics). Total haemoglobin and HbA1c concentrations 

were determined after haemolysis of the anticoagulated whole blood specimen. Total 

haemoglobin was measured colorimetrically. HbA1c was determined by turbidimetric 

inhibition immunoassay-quant Haemoglobin Alc Gen2 for haemolysed whole blood. The 

Cobas result output was expressed as IFCC percent. HbA1c and was calculated from the 

IFCC protocol HbA1c/haemoglobin ratio as HbA1c (%) = (HbA1c/haemoglobin) × 100. 

These results were converted to the DCCT/NGSP percentage units using the following 

equation: HbA1c % DCCT/NGSP = 0.915 × (HbA1c % IFCC) + 2.15.

This Roche second generation HbA1c assay has been validated for accuracy in the presence 

of haemoglobinopathies HbS, HbC, and also HbE or HbD (Abadie and Koelsch, 2008; 

Fleming, 2007; Little et al., 2008). The Cobas Integra 400 Plus assay has also been validated 

against the high-performance liquid chromatography method (Barrot et al., 2012).

Full blood count: Full blood count and other hematological traits were measured using the 

Coulter ACT5 Diff CP hematology analyzer. The following information was output: white 

cell count, red cell count, haemoglobin (Hb), packed cell volume (PCV), mean corpuscular 

volume (MCV), mean cell haemoglobin (MCH), mean cell haemoglobin concentration 

(MCHC), mean platelet volume (MPV) and platelet count.

Durban Diabetes Study and Durban Case Control Study: Automated enzymatic assays 

were used on fasting serum to determine TC, high-density lipoprotein cholesterol (HDL), 

low-density lipoprotein cholesterol (LDL), triglyceride, aspartate, amino transferase, alanine 

amino transferase, alkaline phosphatase, gamma glutamyl-transferase, bilirubin and albumin 

levels (ABBOTT ARCHITECT 2: CI 8200, Abbott Laboratories, Chicago, IL, USA.).

HbA1c was measured using ion-exchange high-performance liquid chromatography (HPLC) 

(BIORAD VARIANT II TURBO 2.0, Bio-Rad Laboratories, Inc., Hercules, CA, USA), 

using an instrument certified by the National Glycohaemoglobin Standardization Program 

(NGSP) and International Federation of Clinical Chemistry and Laboratory Medicine 

(IFCC). The BIORAD VARIANT II TURBO 2.0 method is not significantly affected by 

HbS, HbC, HbE and HbD-trait haemoglobin variants.
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For DDS only, a full blood count was completed for all participants using a SYSMEX 

XT-2000i, including determination of haemoglobin level, mean corpuscular volume (MCV) 

and mean corpuscular haemoglobin (MCH).

Africa America Diabetes Mellitus Study: Weight was measured in light clothes on an 

electronic scale to the nearest 0.1 kg and height was measured with a stadiometer to the 

nearest 0.1 cm. Body mass index (BMI) was computed as weight (kg) divided by the square 

of height in meters (m2). Blood pressure was measured while seated using an oscillometric 

device (Omron Healthcare, Inc., Bannockburn, Illinois). Three readings were taken at 10-

minute intervals. Reported readings were the averages of the second and third readings. 

Blood samples were drawn after an overnight fast of at least 8 hours.

DNA Extraction, Genotyping and Sequencing: Whole blood for DNA extraction was 

collected in EDTA vacutainer tubes, transferred to cryogenic tubes and stored at 80°C for up 

to one year. To minimize human error, tubes were barcoded and most of the processing was 

done using automation. DNA was extracted from 5 to 6 mL of whole blood using 

NUCLEON® chemistry (Gen-Probe Life Sciences Ltd., now Hologic). A control blood 

sample was included per operator per day. DNA was resuspended in Standard TE Buffer 

(10mM EDTA, 1mM EDTA) in a volume of 200–1,000mL depending on the size of the 

DNA pellet. DNA samples underwent quality control checks including PicoGreen® 

quantitation (Life Technologies, Thermo Fisher Scientific Inc.), agarose gel electrophoresis 

and iPLEX genotyping (Sequenom Inc.) of a panel of 30 SNPs including 4 gender markers.

We genotyped 5,000 samples from the Ugandan Survey on the Illumina HumanOmni 2.5M 

BeadChip array at the Wellcome Trust Sanger Institute (WTSI). These were chosen as a 

subset of the survey population with the most complete phenotype data on the traits 

measured. Sequenom QC and gender checks were carried out prior to genotyping. A further 

2000 samples were sequenced on the Illumina HiSeq 2000 with 75bp paired end reads, at 

low coverage, with an average coverage of 4x for each sample.

The DDS (n = 1,165) and DCC (n = 1,542) DNA samples were genotyped on the 

consortium-driven Illumina HumanOmni Multi-Ethnic GWAS/Exome Array (MEGA pre-

commercial v1) using the Infinium Assay. The MEGA array (1.7M SNPs) leverages content 

discovered in Sequencing Consortia and databases such as the 1000 Genomes Project, the 

CAAPA Consortium, PAGE, OMIM/Clinvar and NEXTBio. Genotypes were called using 

the Illumina GenCall algorithm.

Samples from the AADM study were genotyped on high density GWAS arrays: 1,808 

samples were genotyped using the Affymetrix® Axiom® Genome-Wide PanAFR Array Set 

and 3,423 samples were genotyped using the Illumina MEGA array.

Quality Control of Genotype Data

Uganda Genome Resource: A total of 2,314,174 autosomal and 55,208 X chromosome 

markers were genotyped on the HumanOmni2.5–8 chip. Of these, 39,368 autosomal markers 

were excluded because they did not pass the quality thresholds for the SNP called proportion 

(< 97%, 25,037 SNPs) and Hardy Weinberg Equilibrium (HWE) (p < 10−8, 14,331 SNPs). 
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HWE testing was only carried out on the founders for autosomes (defined by an IBD 

threshold < 0.10 as estimated by PLINK), and female unrelated individuals for the X 

chromosome (Purcell et al., 2007). Owing to the sampling strategy, there were high levels of 

cryptic relatedness within the cohort, which have been described previously (Asiki et al., 

2013; O’Connell et al., 2014). The average IBD sharing between individuals was 0.0015 

with 0.07% of pairs and 5,307 individuals with an IBD > 0.125 with at least one other 

individual.

A total of 91 samples were dropped during sample QC as they did not pass the quality 

thresholds for proportion of samples called (> 97%) or heterozygosity (outliers: mean ± 

3SD), or the gender inferred from the X chromosome data did not match the supplied 

gender. Three additional samples were dropped because of high relatedness (i.e., IBD > 

0.90). Principal component analysis was carried out on unrelated individuals projecting onto 

related individuals, for SNPs LD pruned at an r2 threshold of 0.2, with a MAF threshold of > 

5%. No samples were identified as population/ancestry outliers based on this. Downstream 

analyses were carried out on the remaining 2,230,258 autosomal markers and 4,778 samples 

which passed quality checks. Phasing and imputation, and further filtering of these data for 

GWAS are described in the section ‘Quantification and Statistical Analysis’.

Durban Diabetes Study (DDS) and Diabetes Case-Control Study (DCC): Quality control 

for DDS and DCC genotype data was carried out collectively, with sample QC including 

filtering for called proportion (< 97%), heterozygosity (> 4SD from mean), sex check fails 

(F statistic < 0.8 for men, and > 0.2 for women). Sample QC was followed by SNP QC, 

including filtering for called proportion (< 97%), Hardy Weinberg disequilibrium (p < 

1e-06), relatedness (IBD > 0.90). SNPs with stasticially significant difference in missingness 

(p < 1e06), between the DCC and DDS datasets were also removed from analysis. In total, 

1478+1119 samples and 1,395,345 SNPs were retained in the two studies.

The Africa America Diabetes Study (AADM): For the AADM data, filtering for the 

Affymetrix and Illumina data were carried out separately. Quality control included 

appropriate sample- and SNP-level exclusion filtering (individual call rate ≤ 95%, SNP call 

rates ≤ 95%, Hardy – Weinberg < 10−6, and minor allele frequency (MAF) < 0.01).

Curation of Sequence Data—Following genotyping in 5,000 individuals, we carried out 

whole-genome sequencing in the General Population Cohort for 2,000 individuals with 

phenotype data available to provide a resource to better understand genetic diversity in the 

region, and for better imputation into the remaining individuals, to maximize power for 

discovery in GWAS. Of these, 343 were overlapping with individuals who had already been 

genotyped. These samples were sequenced and genotyped for comparison, and assessment 

of systematic differences between genotype and sequence data.

Read mapping and bam processing: Following generation of raw reads on the sequencing 

machine, the reads were converted to BAM format using Illumina2BAM. Illumina2BAM 

was again used to de-multiplex the lanes that had been sequenced so that the tags were 

isolated from the body of the read, decoded, and could be used to separate out each lane into 

lanelets containing individual samples from the multiplex library and the PhiX control. 
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Reads corresponding to the PhiX control were mapped and used with Sanger’s spatial filter 

program to identify reads from other lanelets that contained spatially oriented INDEL 

artifacts and mark them as QC fail. Mapping of the human samples was carried out using the 

BWA backtrack algorithm with the GRCh37 1000 Genomes phase II reference (also known 

as hs37d5). PCR and optically duplicated reads were marked using Picard MarkDuplicates 

and after manual QC passing data was deposited with the EGA and the Sanger Institute’s 

internal archive (study/dataset accession numbers EGAS00001001558/EGAD00010000965 

and EGAS00001000545/EGAD00001001639, respectively).

One sample from the Genome in a Bottle highly curated set was included for validation of 

the data processing pipeline (NA12878). PCR-free reads were used for these validation 

samples, to avoid PCR artifacts. This validation sample was downsampled to 4x coverage, 

and processed through the same pipeline (see Figure S1), to provide a comparator against 

high coverage 30x data. This was considered the gold standard for evaluation. The accuracy 

of called data from a 4x sample would provide a guide to the accuracy of the workflow 

applied.

Quality control of sequence data: In order to ensure the quality of the large quantity of 

BAMs produced for the project, an automatic quality control system was employed to 

reduce the number of data files that required manual intervention. This system was derived 

from the one originally designed for the UK10K project (Walter et al., 2015) (https://

www.uk10k.org) and used a series of empirically derived thresholds to assess summary 

metrics calculated from the input BAMs. These thresholds included: percentage of reads 

mapped; percentage of duplicate reads marked; various statistics measuring INDEL 

distribution against read cycle and an insert size overlap percentage. Any lane that fell below 

the “fail” threshold for any of the metrics were excluded; any lane that fell below the “warn” 

threshold on a metric would be manually examined; and any lane that did not fall below 

either of these thresholds for any of the metrics was given a status of “pass” and allowed to 

proceed into the later stages of the pipeline. Fourteen samples were excluded at the QC 

stage.

Re-alignment of reads and base quality score recalibration: Passed lanelets were then 

merged into BAMs corresponding to sample’s libraries and duplicates were marked again 

with Picard after which they were then merged into BAMs for each sample. We ran 

verifyBAMID to identify samples that did not match the frequency distributions of 

corresponding genotype data, and excluded eight samples as failures. Finally, sample level 

bam improvement was carried out using GATK and samtools. This consisted of re-alignment 

of reads around known and discovered INDELs followed by base quality score recalibration 

(BQSR) both using the GATK. Lastly samtools calmd was applied and indices were created. 

Known INDELs for realignment were taken from Mills 1000 Genomes indels set and the 

1000G phase low coverage set both part of the Broad’s GATK resource bundle version 2.2. 

Known variants for BQSR were taken from dbSNP 137 also part of the Broad’s resource 

bundle.

Assessment of calling algorithms: We carried out careful assessment of several calling 

algorithms before calling our low coverage sequences. In order to explore the sensitivity and 
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specificity of variant callers when applied to low coverage datasets, we carried out an 

evaluation with 1,986 samples from Uganda sequenced at 4x average coverage with Illumina 

HiSeq 2000. The downsampled GIAB sample (Zook et al., 2014) (4x) was included in the 

called set for evaluation of calling accuracy. We calculated the sensitivity and specificity of 

calls relative to the highly curated variant sites for the NA12878 sample, to identify the 

caller with greatest area under ROC curve at different filtering thresholds (Figures S1B and 

S1C). We note that the accuracy of variant calling in this single European sample may not 

fully reflect the accuracy calls in the African samples; however, it is likely to give an 

indicator of the relative performance of calling algorithms. We used varied two different 

filters to generate ROC curves: the SNP quality metric (QUAL), and the VQSLOD score 

obtained using the VQSR model implemented by GATK for callers. We compared 

commonly used callers at the time of calling: Unified Genotyper v3.3, Haplotype caller v3.2, 

samtools v0.2.0-rc12+htslib-0.2.0-rc12 and FreeBayes v0.9.18–3. As the filtering algorithm 

recommended for data produced from Unified Genotyper and Haplotype caller is VQSR, we 

presented ROC curves using different VQSLOD thresholds. However, for comparability 

with other callers, we also present ROC curves using only QC thresholds. We also carried 

out additional evaluation, generating annotations on samtools based calls using GATK, 

followed by VQSR to assess using VQSLOD for filtering combined with samtools calling 

improved calls. With this evaluation, we show that UnifiedGenotyper3.3 produced the best 

area under ROC curve with the lowest FDR for a given sensitivity for SNPs and indels 

(Figures S1B and S1C); we therefore used this for variant calling for these data. All callers, 

however produce very low sensitivity and high FDRs for indel calls (Figure S1C), indicating 

the need for more stringent filtering downstream. It is likely that the sensitivity and 

specificity of calls will have improve with genotype refinement. We note that we only 

assessed these callers using filtering options available at the time, and use of different 

filtering approaches using these callers could potentially improve the sensitivity for a given 

FDR.

Data processing workflow: The workflow for data processing is represented in Figure S1A. 

Variant calling was carried out on the samples that passed QC in the UG2G data along with 

the sequence data from 320 individuals from the African Genome Variation Project (AGVP) 

(Gurdasani et al., 2015). Sequence data from the AGVP have been described in detail 

previously (Gurdasani et al., 2015). These combined data were called together with GATK 

Unified Genotyper 3.3. During variant calling each sample was by default downsampled to a 

maximum coverage of 250 (–downsampling_type BY_SAMPLE–downsample_to_coverage 

250). Reads with an inferior mapping quality were ignored (–min_mapping_quality_score 

20). Duplicate reads were filtered (-rf DuplicateReadFilter). Reads whose mate mapped to a 

different contig were filtered out (-rf BadMateFilter). Bases with an inferior quality were not 

considered for calling (–min_base_quality_score 10). No more than 6 alternate alleles were 

emitted at each site (–max_alternate_alleles 6). In an attempt to provide better input for the 

subsequent variant filtering step, variants of inferior quality were not called (–

stand_call_conf 10 and–stand_emit_conf 10). We carried out variant calling for the 

autosomes. The X chromosome was called as diploid within PAR1 and PAR2 and also 

outside the PARs.
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Filtering of variants was carried out with GATK VariantRecalibrator 3.2 using variant 

quality score recalibration (VQSR). To train the Gaussian mixture model and calculate a 

truth score (log odds ratio) for each variant we used HapMap III and 1000G phase 1 

Omni2.5 sites as truth and training sets (prior probabilities of 15 and 12) for SNPs. High 

confidence 1000G phase 1 SNPs were used as an additional training set (prior 10) for SNPs. 

For indels we used the Mills 1000 Genomes gold standard as a truth and training set (prior 

12). For both SNPs and indels dbSNP138 acted as a set of known sites.

To build our VQSR Gaussian mixture model we used annotations at each site related to 

coverage (QD = QualByDepth and DP), strand bias (FS = FisherStrand, SOR = 

StrandOddsRatio) and mapping quality (MQ, MQRankSum, ReadPosRankSum). For indels 

we use the same annotations, except for MQ being left out, as per GATK Best Practice 

recommendations at the time. DP is the approximate read depth after filtering reads with 

poor mapping quality and bad mates. QD is the variant confidence normalized by the 

unfiltered depth for the variant allele. FS is a Phred-scaled p value using Fisher’s exact test 

to detect strand bias. SOR is the odds ratio of a 2×2 contingency table (rows and columns 

are positive/negative strand and reference/alternate allele) to detect strand bias. MQ is the 

RMS of the mapping qualities, which serves an average across reads and samples. 

MQRankSum is the Z-score from a Wilcoxon rank sum test of alternate versus reference 

mapping qualities. ReadPosRankSum is the Z-score from a Wilcoxon rank sum test of 

alternate versus reference read position biases. We did not use the InbreedingCoeff 

annotation, which is a likelihood-based Hardy-Weinberg test for the inbreeding among 

samples, because of the possible deviation from Hardy-Weinberg equilibrium among the 

cohort due to substructure between ethno-linguistic groups and cryptic relatedness among 

individuals.

We chose a truth sensitivity threshold based on the ROC curve (Figure S1D). We applied 

truth sensitivity thresholds of 99.5% and 99.0% to SNPs and indels, respectively. After 

variant filtering we called 45,309,067 SNPs and 5,483,098 indels, respectively, across the 

UG2G and AGVP combined datasets. The Ti/Tv ratio was noted to be 2.2 and 1.9 for known 

and novel SNP variants with respect to dbSNP138, suggesting a high quality of calls.

Following variant filtering, genotype refinement was carried out with Beagle v4.r1274 

across all individuals. To evaluate the accuracy of variant calling we calculated the non-

reference concordance for chromosome 20. Concordance was calculated by comparison to 

the GIAB/NIST reference/baseline calls for sample NA12878 (PMID 27578503). Prior to 

calculating the concordance the indels were left aligned and trimmed with bcftools norm. 

(http://samtools.github.io/bcftools/). Concordance for SNPs and indels was noted to be 92% 

and 82%, respectively for SNPs, and indels for the GIAB sample. The script used to 

calculate the concordance is available from https://github.com/teamSandhu/tc9/blob/master/

projects/uganda_gwas/concordance.sh.

We carried out further quality control for analysis, for which additional samples were 

excluded as heterozygosity outliers (heterozygosity > = 3 SD from mean). Following quality 

control, 1,978 samples with WGS were included for analysis of sequence data.
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Generation of Merged Reference Panel—To generate the reference panel for 

imputation, we phased combined data from the Uganda Genome Resource and 320 

sequences from the African Genome Variation Project (Gurdasani et al., 2015). The merged 

reference panel was refined with Beagle4 and then phased with SHAPEIT2 release 790 

using used an–effective-size of 17,469 as per the recommendations. These haplotypes were 

then merged with the 1000G phase III database using the -merge_ref_panels_output_ref 

option with IMPUTE2. The final reference panel included 4,802 individuals and 98,608,172 

variants. Following this, we extracted unrelated individuals from the reference panel. For 

this, we generated an IBD matrix from merged data using an intersection of sites for 

sequence and genotyped data, and iteratively removed individuals, so that all individuals in 

the reference panel were related with an IBD < 0.10.

We used a subset of this reference panel for imputation into Ugandan and AGVP genotype 

sets to compare the accuracy of imputation using different panels. For this, we further 

extracted 3,895 individuals unrelated to individuals in UGWAS and to other individuals in 

UG2G, to avoid bias in imputation accuracy due to inclusion of related individuals, and used 

this panel for imputation.

Phasing, Imputation and filtering

Phasing and Imputation: Phasing and imputation into each study was carried out 

separately, except for DDS and DCC, which were combined for phasing and imputation, 

given the homogeneity of ancestry among these two studies. Following imputation, these 

studies were separated out for meta-analysis, as one group consisted primarily of a diabetic 

population, whereas DDS was a general population study.

Imputation into the genotype data in UGR, DDS, DCC and AADM was carried out using the 

merged reference generated by merging whole genome sequence data from the African 

Genome Variation Project (n = 320), the UG2G sequence resource (n = 2,000), and the 1000 

Genomes phase 3 project (n = 2504), as outlined previously.

Imputation for AADM was performed using the African Genome Resources Haplotype 

Reference Panel (Loh et al., 2016) available from the Sanger Imputation Service (https://

imputation.sanger.ac.uk/); this is a more recent version of the panel described above, with 

the panel being curated by recalling genotype likelihoods across all samples, including from 

the 1000 Genomes Project Phase 3. The imputation reference panel comprised 4,956 

individuals, including all 2,504 from the 1000 Genomes Project Phase 3, ~2,000 individuals 

from Uganda (Baganda, Banyarwanda, Barundi, and others), and 100 individuals from each 

of a set of populations from Ethiopia (Gumuz, Wolayta, Amhara, Oromo, and Somali), 

Egypt, Namibia (Nama/Khoe-San) and South Africa (Zulu), yielding 9,912 haplotypes for 

93,421,145 SNPs.

For DDS, DCC and Uganda, phasing was carried out with SHAPEIT2 (O’Connell et al., 

2014) using default parameters, followed by imputation with IMPUTE2 (Howie et al., 

2012). Pre-phasing for AADM was performed with EAGLE version 2.0.5 (Loh et al., 2016) 

and imputation was performed using PBWT (Durbin, 2014).
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Filtering of Imputed data

Uganda Genome Resource.: We used the info threshold output by IMPUTE2 to identify 

high quality variants. The info metric produced by IMPUTE2 is a measure of certainty of 

imputation. This typically takes values between 0 and 1. A value of 1 indicates that there is 

no uncertainty in the imputed genotypes whereas a value of 0 means that there is complete 

uncertainty about the genotypes. All of these measures can be interpreted in the context of 

effective sample size: an information measure of a on a sample of N individuals indicates 

that the amount of data at the imputed SNP is approximately equivalent to a set of perfectly 

observed genotype data in a sample size of axN. For SNPs overlapping between imputed and 

directly genotyped data (type 2 SNPs), we also used an r2 threshold for quality control. 

Here, r2 represents the squared correlation between the input genotypes and the best-guess 

imputed genotypes calculated, where the input genotypes at that SNP have been masked 

internally and then imputed as if the SNP were present in the reference set but not in the 

directly genotyped target sample (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html).

Following imputation, into the genotype data, we carried out sensitivity analyses using 

different filtering thresholds for the imputed data to ascertain whether different info 

thresholds were associated with varying degrees of inflation in quantile-quantile (QQ) plots. 

QQ plots were generated from GEMMA mixed model analysis and compared to see if 

inflation was related to the threshold. applied However, no relationship was seen between 

inflation factors and stringency for thresholds used in filtering of imputed data (data not 

shown), suggesting that the vast majority of data were high quality and a threshold of 0.3 

was therefore considered adequate, and consistent with previous GWAS.

We therefore opted to use an info score threshold of 0.3 for quality control. Furthermore, we 

also applied a threshold for type 2 SNPs (genotyped SNPs that are also in the imputation 

panel, and are also imputed, allowing an examination of correlation between genotyped and 

imputed data), requiring a minimum r2 of 0.60.

DDS and DCC: Consistent with filtering of the UGR dataset, we used an imputation info 

threshold of 0.3 for filtering (this was used across both cohorts, as imputation had been 

carried out across these cohorts) and a type 2 SNP correlation threshold of 0.6. GWAS 

analysis was carried out for each cohort separately, and a minimum MAF threshold of 0.5% 

was applied to each cohort for analysis. A total of 24,419,014 and 24,423,923 variants were 

analyzed for DCC, and DDS respectively.

AADM: The AADM dataset is a combination of multiple ethno-linguistic groups, where 

imputation has been carried out separately. We did not have access to individual genotype 

data, or cohorts for analysis, but had results for summary statistics for analysis across all 

cohorts. We therefore applied an info threshold filter of 0.3 consistent with the other 

datasets. As these data include multiple cohorts that have been imputed separately, a 

minimum threshold of 0.3 across all cohorts was applied for each variant. Data regarding 

correlation for type 2 SNPs were not available for this cohort; therefore, this filter could not 

be applied. GWAS analysis was carried out only for SNPs with a MAF threshold above 
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0.5%, consistent with other cohorts. A total of 19,580,546 variants were included in final 

analysis.

Merging UGR Sequence and Genotyping Data: As the Uganda Genome Resource 

included genotyped and sequenced indviduals, we merged imputed genotype and sequence 

data to create a single pooled dataset for analysis. We created a pooled dataset for analysis, 

rather than meta-analyzing separately, as cryptic relatedness and family structure existed 

across the genotyped and sequence data, which would make data correlated, and not 

independent. As such, mixed model analysis, explicitly modeling this relatedness would be 

likely to provide more accurate results.

Following a merger of imputed genotype and sequence data, we assessed and removed any 

systematic differences between imputed genotype data and sequence data. We did this by 

carrying out principal component analysis on these data to examine whether there was 

separation by data mode (imputed genotype data and sequenced data) among 343 individuals 

who had been genotyped and sequenced in duplicate. We noted clear separation of data 

points of genotype imputed and sequence data on PCA. We evaluated different thresholds of 

concordance between sequence and imputed genotype data for these 343 samples, filtering 

out SNPs that showed a concordance < 0.80 and < 0.90. We found that a minimum 

concordance threshold of 0.90 was required to abolish systematic effects observed between 

genotype array and sequence data on PCA. Following exclusion of 904,283 variants (2.3% 

of all variants) that showed < 90% concordance in genotypes between the sequence and 

imputed genotype data (for 343 samples that had been genotyped and sequence), PCAs did 

not show any systematic differences between imputed genotype and sequence data. We 

inspected the first ten PCs to ensure that systematic differences did not represent an 

important axis of variation in the genetic data. Following filtering, a total of 39,312,112 

autosomal markers in the joint set of 6,407 samples were taken forward for analyses. For 

GWAS association analyses, we only included a subset of variants (n = 20,594,556) that met 

an MAF threshold of at least 0.5%.

Curation and Transformation of Phenotype data: Transformation of traits was carried out 

uniformly for each cohort to make effect sizes comparable across cohorts, allowing meta-

analyses of summary results. A list of phenotypes used for analysis can be found in Tables 

S1.2 and S1.3. For association analysis, inverse normal transformation was carried out on 

residuals after regressing on age, age2 and sex. For HbA1c alone, regression was carried out 

on age, age2, sex & month of sample collection as an indicator variable, to allow for 

seasonal trends in HbA1C that have been described previously (Tseng et al., 2005).

Phenotypic trait information available across cohorts were variable, as shown in Table S1.3. 

For each trait, all cohorts with relevant data on phenotype were included in the meta-

analysis.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of population structure and admixture

Principal Component Analysis: To examine population structure in the Ugandan ethno-

linguistic groups, we carried out principal component analyses (PCA) among 4,778 

genotyped individuals (UGWAS). PCA was carried out in the Ugandan dataset among 

unrelated individuals, projecting onto others, as well as for unrelated individuals in a global 

context, including individuals from the 1000 Genomes Project,(Abecasis et al., 2012) the 

African Genome Variation Project (Gurdasani et al., 2015) and the Human Origins dataset 

(Table S1.4) (Patterson et al., 2012). For these analyses, only markers with a minor allele 

frequency (MAF) of above 1% were included, and LD pruning was carried out to an r2 

threshold of 0.2 using PLINK (Purcell et al., 2007). A summary of these datasets is provided 

in Table S1.4.

FineSTUCTURE Analysis: In order to take advantage of the linkage disequilibrium 

structure in the cohort, and the dense genotyping on the Illumina Omni 2.5M array, we 

carried out fineSTRUCTURE analysis (Lawson et al., 2012), which provides detailed 

information about structure among populations without loss of information due to LD 

pruning by identifying shared haplotypes among individual along the chromosome (with 

ChromoPainter), and estimating a co-ancestry matrix. This has previously been shown to 

produce more detailed information about population structure (Lawson et al., 2012). Only 

unrelated individuals were included in these analyses as relatedness itself can contribute to 

structure. A total of 1,899 unrelated individuals were identified by serially removing related 

individuals, until all individuals had a pairwise IBD of less than 0.10. Haplotype information 

was extracted for these individuals from phased data from the entire cohort, as phasing was 

likely to be more accurate due to relatedness within the cohort. Recombination files were 

generated from the Hapmap build 37 recombination map available for each chromosome.

To input parameters into fineSTRUCTURE, for the analysis of unrelated individuals from 

UGWAS, we first estimated the mutation rate and effective population size, with a subset of 

10 individuals (one in every 200 individuals sampled) across all chromosomes. These 

parameters were then input into ChromoPainter, and a co-ancestry matrix was calculated for 

all individuals, with haplotypes of each individual sequentially considered as recipients, and 

haplotypes of all other individuals in the cohort considered donors (using the -a option). 

Hence, we were able to estimate the average number of chromosome chunks and chunk 

lengths that could be considered as donated to each individual from every other individual. 

Apart from quality filtering, no other filtering (LD pruning/MAF thresholds) was carried 

out, with a view to maximizing information within the co-ancestry matrix. The co-ancestry 

matrix was used to generate trees of ethno-linguistic groups based on sharing of ancestry. 

Furthermore, we generated principal components from the co-ancestry matrix to study the 

relationships between these ethno-linguistic groups.

First pass analyses showed several outliers belonging to the Baganda and Barundi ethno-

linguistic groups on all principal components obtained (data not shown). On closer 

examination, these samples were noted to have much higher co-ancestry sharing with 

another sample in the cohort, and high heterozygosity, suggesting these were pairs of 
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samples, with one contaminating another. We excluded 6 samples, and reran 

fineSTRUCTURE analysis, as this element of contamination was predominating many 

principal components. FineSTRUCTURE inferred PCs in our second pass analysis did not 

show the clines observed due to the few contaminated samples, so this was considered as our 

primary analysis.

In addition to PCA analysis, we also inferred tree structure among the populations using the 

co-ancestry matrix generated by fineSTRUCTURE. We also ran unsupervised 

fineSTRUCTURE analysis without ethno-linguistic clusters, to infer population clusters 

from within the data, and assess the correlation of these inferred clusters with ethno-

linguistic group, historical geographical structure, admixture, and current geographical 

coordinates (using GPS coordinates).

Correlation of genetic structure with geographical structure: Next, we compared 

principal components to current GPS coordinates to identify if there was genetic correlation 

with current spatial structure in the cohort. We carried out Procrustes analysis on 

combinations of principal components and rotated this matrix and re-scaled to best fit with 

the transformed GPS coordinates for individuals.

In order to assess correlation between principal components and historical geographical 

structure prior to migration, we carried out Procrustes analysis using geographical 

coordinates based on the average coordinate of the center of the region individuals are likely 

to have migrated from, as identified by their ethno-linguistic group, based on the map in 

Figure 1C. We considered that the migrant populations Basoga, Bakiga, Banyarwanda, 

Baganda, Barundi, Banyankole, Bafumbira migrated from the historical Soga, Kiga, 

Rwanda, Buganda, Urundi, Nkole, and Kisoro districts, respectively (Figure 1C) (Richards, 

1954). The latitude and longitude for each ethno-linguistic groups was assigned as the center 

of each district as on the map (Figure 1C; Table S2.1). The same coordinate was used for all 

individuals belonging to a given ethno-linguistic group, as historical geographical origins of 

individuals were not available. Additionally, admixture was not considered in this 

assignment. We note that admixture and migration among co-located migrant populations 

are likely to distort and dilute the association between genetic structure and historical 

geographical origins, producing conservative results.

Analyses of population admixture: We used several approaches to examine admixture 

among Ugandan populations, including unstructured ADMIXTURE analysis, in the 

Ugandan and in a global context. Additionally, we also formally confirmed the presence of 

historical Eurasian and hunter-gatherer admixture among several populations using different 

approaches, including admixture linkage disequilibrium based approaches (MALDER) 

(Pickrell et al., 2014; Loh et al., 2013) f3, double conditioned site frequency spectrum 

analysis (Yang et al., 2012), analysis of Neanderthal ancestry (Sankararaman et al., 2014) 

and analysis of MT and Y chromosome haplotypes.

ADMIXTURE Analysis: Clustering of genetic data from the Ugandan discovery cohort 

(UGWAS) was carried out using ADMIXTURE in the context of the global dataset, 

including data from the Human Origins array (Table S1.4) (Patterson et al., 2012). Analysis 
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was carried out specifiying K = 2 to 20 clusters. ADMIXTURE analyses were repeated 20 

times using a seed derived from the time of analysis, and results were combined using the 

LargeKGreedy algorithm in CLUMPP with 1000 repeats (Jakobsson and Rosenberg, 2007). 

LD pruning to an r2 of 0.2 was carried out prior to analysis, and known regions of long range 

LD were removed, as previously described (Price et al., 2008).

F3 Tests: We formally assessed admixture in the Ugandan populations among unrelated 

individuals from the genotyped dataset (UGWAS) using the f3 test. In order to examine 

Eurasian ancestry in AGVP populations, we tested a model with admixture between 

populations related to European/Middle Eastern populations and YRI by using these as 

reference populations testing the tree (European/Middle eastern population, YRI; X), X 

being each of the Ugandan ethno-linguistic groups. Here, Eurasian ancestry/gene flow refers 

to ancient gene flow from an ancestral population that is closely related to populations 

currently living in Western Europe. However, as it is diffi-cult to identify the precise source 

of this ancestry, which may be the result of multiple population movements—including 

through Europe, the Middle-East, or from other parts of Africa, we shall henceforth broadly 

refer to this as ‘Eurasian gene flow/ancestry’. f3 tests are robust to complex ancestry in the 

admixing populations, ascertainment bias and the choice of reference populations, as has 

been described previously (Patterson et al., 2012). The test statistic is negative if X has 

complex history and admixture from populations related to the reference populations, as this 

topology that would lead to a negative term in the f3 parameter. We note that results from 

these tests would be subject to the outgroup case, where the reference population is an 

outgroup to the true mixing population.

Linkage disequilibrium based tests for admixture: In order to confirm the presence of 

admixture, and date this, we used admixture-LD based approaches (Pickrell et al., 2014). 

This approach is based on the relationship between admixture-LD, time since admixture and 

the difference in allelic frequency between SNPs in mixing populations. It leverages the fact 

that admixture LD between 2 SNPs weighted by difference in allelic frequency between two 

mixing populations decays exponentially as a function of time since admixture. The 

amplitude of the curve allows estimation of admixture proportions. We applied two methods 

that use similar principles of admixture LD decay for inferring admixture: MALDER 

(Pickrell et al., 2014; Loh et al., 2013) and GLOBETROTTER (Hellenthal et al., 2014).

Admixture inference with MALDER: We assessed multiple admixture events and 

identified populations most similar to ancestral mixing populations for Ugandan 

populations, using methods described previously (Pickrell et al., 2014). For these analyses, 

we estimated curves from a minimum distance of 0.5cM. We estimated the lower bound and 

upper bounds of the number of generations since admixture for each event, by assessing the 

rate of decay of each exponential curve.

In addition to identifying multiple admixture events and most likely source populations 

using MALDER (Pickrell et al., 2014; Loh et al., 2013), we assessed the probability of each 

Eurasian and HG-like admixture event by using a process similar to that described by 

Pickrell et al. (2014) as described previously (Gurdasani et al., 2015). We recapitulate these 

methods here.
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We identified combination of source populations that were associated with the highest 

amplitude as the most likely representatives of ancestry within the target population (if Z > 

3). Where the highest amplitude of admixture LD in a target population was produced by the 

combination of Eurasian and African reference populations, we compared the highest 

amplitude with the highest amplitude produced when both reference populations had < 1% 

Eurasian admixture, as reported previously (Gurdasani et al., 2015). We calculated this as 

follows:

ZEUR =
Ampmax − AmpmaxEUR < 1%

SEmax2 + SEmaxEUR < 1%
2

ZEUR represents the statistical difference between the highest amplitude and the highest 

amplitude when both populations have < 1% Eurasian ancestry. Similarly, we estimated the 

probability of HG admixture when the highest amplitude included either a Khoe-San, Hadza 

or rf-HG (Pygmy) population, as follows:

ZHG =
Ampmax − AmpmaxHG < 1%

SEmax2 + SEmaxHG < 1%
2

where the proportion of HG admixture was estimated from ADMIXTURE analysis as the 

sum of Khoe-San and Pygmy like ancestry.

For some populations, admixture events with the highest amplitude included both a hunter-

gatherer (Khoe-San, Mbuti Pygmy or Hadza) and Eurasian population. For these we 

calculated the separate probability of HG and Eurasian admixture using the Z scores 

described above. The source of admixture was considered to be the population with a Z 

score of above 2. If both ZHG and ZEUR were >2, this was considered a dual admixture event 

where a HG-like population had admixed with a Eurasian-like population. When only one of 

these events were high probability, and the other one was low probability, this was 

considered an admixture event with a single source. We also note that MALDER can only 

indicate the source population most similar to the ancestral mixing population among a set 

of modern populations provided. However, gene flow may arise from an ancestral population 

with allele frequencies correlated to the source population inferred by MALDER.

We note that, as described by Pickrell et al. (2014) – Supplementary Material 1.2.3 (https://

www.pnas.org/content/pnas/suppl/2014/01/29/1313787111.DCSupplemental/sapp.pdf), 

MALDER is biased toward identifying source populations that are more drifted, even if they 

contribute little proportionally to ancestry. This is because the drift parameter predominates 

over the proportion weight in this instance, favoring the most drifted population as the 

source population (this will have greatest amplitude in these scenarios).

Admixture inference with GLOBETROTTER: We also carried out GLOBETROTTER 

(Hellenthal et al., 2014) analysis to assess potential sources and dating of admixture among 

Ugandan populations. We included all individuals for all nine ethno-linguistic groups, except 

Baganda, where 200 individuals were randomly subsampled to make this analysis 
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computationally tractable. We also examined admixture within Jola and LWK to assess 

specificity of events to Ugandan populations, and within East Africa. Consistent with 

previous applications of GLOBETROTTER (Tambets et al., 2018; Hudjashov et al., 2017), 

we conducted our analyses in two ways: 1) including all possible source populations within 

the Human-origins and 1000 Genomes combined dataset, including regional east African 

populations (‘all population’ analysis; and 2) including only a subset of donor populations 

representative of certain types of ancestry: YRI representing Bantu ancestry, TSI and CHB 

representing Eurasian ancestry; Dinka representing east African Nilo-Saharan ancestry, 

Hadza, and rfHG (Mbuti Pygmy) representing east-African hunter-gatherer ancestry; and 

Juhoan_North representing Khoe-San ancestry. We refer to this analysis as ‘limited 

population’ analysis. The purpose of the limited population analysis was to help identify 

ancestral sources representative of certain types of ancestry, where the least admixed 

representative populations of these groups were used. While the ‘all population’ analysis is 

the most informative with regards to admixture events, inferences drawn regarding ancestral 

components that mixed may be limited due to the admixed nature of donor populations. 

Hence, we analyzed the data using these two approaches to better understand the ancestral 

populations representing source populations inferred as contributing to modern Ugandans.

For each of the analyses described above (‘all population’ and ‘limited population’), a first 

run of fineSTRUCTURE was used to estimate a global mutation rate and effective 

population size. This was carried out on a subset of the dataset by randomly subsampling 1 

in 10 individuals, for efficiency. The global mutation rate and effective population size 

estimated through ten iterations then input into a second run, to estimate the length of 

chunks copied from each donor population haplotype. The merged Ugandan, AGVP 

genotype African data, 1000 Genomes Project and Human origins dataset was used for these 

analysis (Table S1.4).

For the ‘all population analysis’, a total of 87 populations were considered donors and 12 

Ugandan ethno-linguistic groups, LWK and Jola were considered recipients. As mentioned, 

LWK was included to assess ancestral components and admixture specific to Uganda, and 

Jola, a West African population was included to assess events specific to East Africa. For 

computational tractability, we randomly subsampled 25 individuals from all populations 

(and included all individuals when < 25 individuals were in a population group. All donor 

populations were also allowed to be recipients in the algorithm, in line with the suggested 

mode of analysis for GLOBETROTTER. However, Ugandan populations, LWK and Jola 

were only considered recipients to avoid loss of power, in line with guidance for running 

GLOBETROTTER to identify admixture.

For the ‘limited population’ analysis, only 7 donor populations were considered, as 

described above. The output across all chromosomes was combined with ChromoCombine, 

following which GLOBETROTTER was run to assess admixture among recipient 

populations, allowing for > 2 donor populations, multiple events and dates of admixture. We 

identified the source population and admixture events based on the ‘best guess’ event 

inferred by GLOBETROTTER: these included three types of events – 1) oneway admixture 

involving a single event with two source populations; 2) multi-way admixture involving a 

single time point of admixture but with multiple source populations; and 3) multiple-dates 
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events which involved admixture at different time points with two source populations at each 

point. In order to better understand the ancestral components represented by source 

populations, we also extracted these source components from GLOBETROTTER output 

based on principal component analyses. For multiple events, bootstrapping could not be 

carried out to resolve confidence intervals (as this capability is not currently present in 

GLOBETROTTER); hence we have presented CIs only for MALDER analysis.

Delineation of Eurasian ancestry in Ugandans using the double conditioned site 
frequency spectrum: The results from f3, fineSTRUCTURE and MALDER may suggest 

gene flow, or shared ancestry with a population with Eurasian affinity. However, this does 

not confirm that this ancestry originated out of Africa, as an alternate hypothesis of gene 

flow from a population in East Africa with ancient substructure with Eurasians would also 

lead to similar results in these tests. In other words, statistically significant results in f3, and 

MALDER may result from allele sharing or gene flow from an ancestral population within 

Africa with allele frequencies correlated with modern European populations.

Two possible models: Ancient structure and recent admixture: In order to differentiate 

deep ancient structure in Ugandans with shared history with European populations from 

more recent shared ancestry due to gene flow, we used a method that has been previously 

used to examine affinity observed between European and Neanderthal genomes, and study 

the interrelationship between modern humans within Africa, out of Africa and Neanderthals 

(Yang et al., 2012). This method utilizes a double conditioned site frequency spectrum 

(dcsfs), where the site frequency spectrum (sfs) in the population being examined is 

conditioned on alleles being derived in a random haplotype in one population, and ancestral 

in a random haplotype in another population (Yang et al., 2012).

We now apply this method to consider two models (see Figures S5A and S5B): the ancient 

structure model within Africa, and the recent gene-flow model. The ancient structure model 

postulates that there were two or more deeply structured populations of hominins within 

Africa, with limited gene flow among them. The ancestors of modern day Eurasians 

originated from the same structured subpopulation from which modern day East Africans (in 

this case, Ugandans) arose. As a result of this, modern day Ugandans share a more recent 

common ancestor with modern day Eurasians, as compared with other modern day 

populations within Africa (e.g., West Africans) (Figure S5B). This would explain the 

correlation of allele frequencies observed between Ugandans and modern day Europeans on 

D statistics. We further hypothesize that following the out-of-Africa migration that gave rise 

to modern Europeans and Asians, the gene flow between ancestors of modern Africans that 

share a more recent common ancestor with Europeans, and ancestors of other modern 

Africans would have made these modern African populations more similar to each other, 

than either is to Europeans.

We also consider a second model: the recent gene flow model, which postulates that 

Ugandans arose from an African population that did not have more recent common ancestry 

with Eurasians compared with other African populations, and shared alleles observed with 

Europeans in D stastistics are a direct consequence of recent gene flow from Eurasian 

populations due to back migration into Africa (Figure S5A).
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The double conditioned site frequency spectrum (dcsfs): To examine these hypotheses, 

we calculate a site frequency spectrum (sfs) among Ugandans conditioned on alleles being 

derived in a random European haplotype, and ancestral in a random West African haplotype. 

Such a double-conditioned sfs is expected to be approximately uniform in the scenario of 

ancient structure, as has been shown previously (Yang et al., 2012). In the event of recent 

gene flow, we would expect to see an excess of derived allele sharing with modern day 

Europeans due to the more recent shared common ancestry, producing an L shaped rather 

than flat curve. The exact shape of the curve is likely to be determined by the amount of 

admixture. We also carried out simulations to confirm this, and assess goodness of fit to 

observed data. It must be noted, however, that our observed derived sfs is based on low 

coverage data. Although we use methods to minimize bias associated with lower coverage, it 

is likely that the derived sfs may be biased toward less enrichment of rarer alleles. This 

would be likely to bias our inferences against the hypothesis of recent gene flow, as the sfs 

would appear more uniform.

Assessment of the observed sfs among Ugandans: In order to assess the two hypotheses, 

we first examined the shape of the observed dcsfs among Ugandans. We calculated a double 

conditioned site frequency spectrum (dcsfs) among 100 randomly sampled Ugandans. In 

order to condition the sfs, we first sampled one YRI and one French sample from the Simons 

Genome Diversity Project (SGDP) (https://www.simonsfoundation.org/simons-genome-

diversity-project/). As these data were unphased, we randomly sampled, one allele at each 

site for the YRI and French sample each. We used the human ancestral reference (ftp://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

human_ancestor_GRCh37_e59.tar.bz2) provided by the 1000 Genomes Project to assign 

alleles as ancestral or derived. We only used sites with high confidence (at least two 

alignments supporting the ancestral allele). We identified sites where the allele was derived 

in the French sample, and ancestral in the YRI sample. We note that although YRI has been 

shown to have small amounts of Eurasian ancestry, this would be unlikely to bias results, as 

this would only reduce the number of sites contributing to the dcsfs (ancestral in YRI and 

derived in the French sample), potentially reducing power slightly (Prüfer et al., 2014).

We then calculated the sfs for these sites in the Uganda sample. In order to minimize bias in 

calculation of sfs in our low coverage data, we used ANGSD (Korneliussen et al., 2014), 

which uses a probabilistic estimation of sfs, using genotype likelihoods (GLs) at sites. This 

method directly estimates the sfs from sequencing data by first computing site allele 

frequency (SAF) likelihood for each site. In order to assess bias due to low coverage, we 

also re-calculated sfs in the sample of 100 Ugandans, including only sites with a minimum 

depth of 8 by specifying the -setMinDepthInd 8 filter in ANGSD. This removes sites with a 

read depth < 8 for each individual sample, so that sfs is only analyzed among samples with 

adequate coverage at each site. We used the GATK model to estimate genotype likelihoods 

within ANGSD. We did not find any differences n the sfs between low coverage sequence, 

and sequence data limited to high coverage regions, suggesting that the sfs estimated by 

ANGSD from low coverage data was unbiased. In both analyses, dcsfs appeared non-linear, 

with enrichment of derived alleles consistent with a recent admixture model, as we show 

subsequently. We present all results based on analysis of low coverage data in subsequent 
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analyses. In order to assess whether the observed dcsfs was a better fit with the recent 

admixture model in comparison with the ancient structure model, we carried out simulations 

of different models, as we describe below.

Simulation of dcsfs for ancient structure and recent admixture models: Following 

estimation of sfs using ANGSD, we carried out several simulations to identify which 

population genetics model was the best fit to the observed data. We used the coalescent 

simulator ms(Hudson, 2002) for simulation. The two models used in simulation are shown 

in Figures S5A and S5B. The various parameters used in simulation are shown in Table 

S3.3.

We used the coalescent simulator ms to simulate models of recent admixture and ancient 

structure. We assumed an effective population size of N = 10,000 for European populations, 

and N = 20,000 for African populations, and a generation time of 25 years per generation 

(Yang et al., 2012). We simulated 3 populations, using both these models. We refer to these 

as West Africans, East Africans and Europeans, given the current context. These represent 

two African populations, one of which may share a more recent common ancestor with 

Europeans (‘East Africans’) compared with another African population (‘West Africans’) in 

the ancient structure model. For the gene flow model, these represent African popualtions 

symmetrically related to Europeans, with a recent common ancestor ranging between 280–

800 generations ago (Schiffels and Durbin, 2014). We generated 10,000 replicates of each 

model. In each replicate of both models, the simulated sample consisted of one European 

chromosome, one West African chromosome, and 200 East African haplotypes.

In the recent admixture model, tN was set to 4,500 generations ago (112.5 kya) (Yang et al., 

2012). Several values were assigned to f(0.03, 0.05, 0.07, 0.10, 0.15). tGF was varied 

between 10–100 generations, consistent with results from MALDER. The parameter ranges 

for the simulations for both models are shown in Table S3.5. In the ancient structure model, 

T was varied between 4,600 generations and 5,000 ago, in steps of 200 generations. The 

intensity of ancient migration m was set to 4Nm = {0..20}. For both models, the population 

split time between YRI and the east-Africans (tH) was varied between 280 to 800 

generations ago, consistent with our MSMC analyses, and previous reports of divergence 

between YRI and LWK (Schiffels and Durbin, 2014).

For each model, a bottleneck reducing the effective size of the non-African populations by a 

factor of 100 (b) for 100 generations was set to (tb) 2000 generations (50 kya) (Yang et al., 

2012). We also considered ongoing symmetric gene flow between YRI and the East African 

population with rates 4Nmt = {1,5,10}. We simulated 100 fold population growth in 

Africans and non-Africans occurring 300–820 generations ago. (20 generations before tH in 

each case).

We also simulated a scenario of both ancient structure and admixture, and assessed 

differences in dcsfs with different proportions of gene flow.

Given that parameters for models were approximates, and the true demographic history of 

several events in these populations are unknown, we simulated a range of values for each 
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parameter, examining the impact on varying these parameters on the dcsfs. For the recent 

admixture model, we varied tH, tGF, f, mt and tG, varying each of these one at a time, 

keeping all other parameters constant. To assess variability in each parameter, we chose near 

mid-range values for the remaining parameters. The standard values chosen while assessing 

variability for each parameter were tH = 0.01, 4Nmt = 5, tGF = 0.001, f = 0.05, and tG = 

0.0105. We also visually assessed the fit of each model to our observed dcsfs among 100 

Ugandans. Curves were smoothed using the smooth.spline function in R, checking visually, 

that the fit to individual values was good in each case.

The following is the command line for implementing the recent admixture model using ms:

ms 202 10000 ‐t 400 ‐I 3 1 1 200 ‐n 1 200 ‐n 3 200 ‐n 2 100 ‐m 1 3 $mt ‐m 3 1 $mt ‐es $tgf 3 $p ‐ej $tgf 4 2 ‐ej $th 3 1 ‐en $tg 1 2 ‐en $tg 2 1 ‐en 0.05 2 0.01 ‐en 0.0525 2 1 ‐ej 0.112 1 2

Next, we simulated ancient structure, and examined the effects of varying various 

parameters, while keeping others fixed on the observed dcsfs in simulations. We varied th, 

mt, m, and T, one at a time, keeping all other parameters constant. The fixed parameters 

chosen were in the mid-range of all evaluated values. We used th = 0.02, 4Nmt = 5, 4Nm = 4 

and T = 0.12 as the fixed parameters. The command line implemented in ms was as follows:

ms 202 10000 ‐t 400 ‐I 3 1 1 200 ‐n 1 200 ‐n 3 200 ‐n 2 100 ‐m 3 1 $mt ‐m 1 3 $mt ‐em $th 1 3 $m ‐em $th 3 1 $m ‐en $tg 1 2 ‐en $tg 3 2 ‐en $tg 2 1 ‐en 0.05 2 0.01 ‐en 0.0525 2 1 ‐ej 0.112 2 3 ‐ej $t 3 1

We also simulated a model of ancient structure with recent admixture. As we did not see any 

variation in simulation sfs by varying different parameters, except with variation of 

proportion of gene flow in the recent admixture model, we fixed the remaining parameters 

(th = 0.01, 4Nmt = 5, 4Nm = 5, t = 0.12, tGF = 0.001 and tG = 0.0105). We varied the 

proportion of gene flow per generation (f) from 5%–15%.

The command line used to generate these simulations was as follows:

ms 202 10000 ‐t 400 ‐I 3 1 1 200 ‐n 1 200 ‐n 3 200 ‐n 2 100 ‐m 3 1 $mt ‐m 1 3 $mt ‐es $tgf 3 $p ‐ej $tgf 4 2 ‐em $th 1 3 $m ‐em $th 3 1 $m ‐en $tg 1 2 ‐en $tg 3 2 ‐en $tg 2 1 ‐en 0.05 2 0.01 ‐en 0.0525 2 1 ‐ej 0.112 2 3 ‐ej $t 3 1

Assessment of fit of simulated models to observed data: In addition to visual assessment 

of fit of simulated data to the observed dcsfs among Ugandans, we assessed the relative 

statistical fit of various models by examining differences in squared errors between each 

model and observed data. For this, we calculated error terms for each model (models 1 and 

2) in relation to the observed data for each point (smoothed). We then calculated the sum of 

differences in squared errors across all points as follows:

Di = e2i
2 − e1i

2

, where i2 is the squared error term for model m at point i. We then calculated a Z score for S 

being different from 0 as follows:

Z = mean(D)
SE(D)
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, where

SE(D) = σ
n

Here, σ is the standard deviation of differences in squared error terms between models. The 

Z score here is indicative of whether one model shows a better fit to observed data compared 

to another. A positive Z score would indicate that model 1 is better than model 2 as the mean 

difference in squared error terms is positive. We calculated 2 sided p values for the Z score. 

We used a p value threshold of < 0.005 to define statistical significance (corrected for 10 

tests).

Neanderthal Ancestry among Ugandans: To better understand the source of Eurasian-like 

ancestry in modern Ugandans, we examined whether Neanderthal ancestry could be detected 

in these populations. The presence of Neanderthal ancestry in Uganda would suggest that at 

least some of the Eurasian-like ancestry entered Uganda though back-to-Africa migrations, 

as one would not expect to otherwise observe Neanderthal ancestry within Africans. Given 

the likely small proportion of Neanderthal ancestry among Ugandans, in the event of ancient 

Eurasian admixture, we used a Conditional Random Field (CRF) to identify potential sites 

of admixture among 100 randomly selected Ugandans. The CRF model developed by 

Sankararaman et al. (2014) identifies Neanderthal ancestry among samples using the 

following three features of variation at a given site: the model prioritises 1) sites at which a 

panel of sub-Saharan-African individuals (YRI, in this case) carry the ancestral allele and in 

which the sequenced Neanderthal and the test haplotype carry the derived allele, 2) genomic 

segments in which the divergence of the test haplotype to the sequenced Neanderthal is low, 

whereas the divergence to a panel of sub-Saharan-African individuals (YRI, in this case) is 

high; and 3) segments that have a length consistent with what is expected from Neanderthal-

to-modern-human gene flow approximately 2,000 generations ago, corresponding to a size 

of about 0.05 cM = (100 cM per Morgan)/(2,000 generations). Although the CRF model was 

originally trained for detecting Neanderthal ancestry among non-Africans, it is possible that 

the model may function reasonably well in inferring high confidence Neanderthal ancestral 

regions in the genome, if stringent probability thresholds are used, as opposed to marginal 

probabilities which may not be as accurate (in correspondence with Sankararaman S). We 

therefore evaluated the model in simulated data prior to running this on Ugandan sequence 

data.

Simulation analysis: We simulated European ancestry in an African population among 50 

haplotypes for chromosome 10, at different proportions and different time points. We used 

the method used previously by Price et al. (2009) In brief, we simulated 50 admixed 

haplotypes (chromosome 10 only) from the 198 Esan (ESN) and 198 CEU haplotypes. To 

construct each admixed genome, we randomly sampled an ESN and CEU haplotype to 

simulate admixture. Sampling was carried out without replacement, so each admixed 

genome had unique ESN and CEU ancestral haplotypes. To construct an admixed genome, 

we began at the first marker on chromosome 10 and sampled CEU ancestry with probability 

p and ESN ancestry with probability 1-p. We simulated recombination with a probability of 
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1-e−λg, where λ is the number of generations in the past when admixture occurred, and g is 

the genetic distance in Morgans between sites. At each recombination event, we resampled 

CEU probability p and ESN ancestry with probability 1-p. For each individual, we chose a 

value of p by sampling from a beta distribution with mean p and standard deviation σ. We 

simulated admixture 10 and 100 generations ago (in keeping with results from MALDER 

which inferred two events of gene flow into Ugandans, at approximately these time points), 

with p = 0.10, and σ = 0.02. Pairs of haploid admixed individuals were merged to form 25 

diploid admixed individuals. We then ran CRF to identify segments of Neanderthal ancestry 

among these individuals on chromosome 10. As we simulated European ancestry among 

Africans, true segments of Neanderthal ancestry were not known in the simulated data. 

However, as Neanderthal segments of ancestry were likely to lie within European ancestral 

segments, we examined overlap of inferred Neanderthal segments with European simulated 

segments (see Table S3.7). Additionally, a map of Neanderthal ancestry among Europeans 

and Asians in the 1000 Genomes project has been published (Sankararaman et al., 2014). 

We compared the regions of inferred Neanderthal ancestry to this map, as most regions 

would be expected to lie within these segments (see Table S3.7). We also carried out 

permutation analysis (1000 permutations), permuting random segments of the genome of the 

same length as inferred segments to calculate the statistical significance of overlap with 

European segments in our simulated data, and overlap with current maps of Neanderthal 

ancestry among Eurasians (see Table S3.7). CRF inference of Neanderthal ancestry was 

carried out using default parameters, and 100 YRI individuals, and 1 Altai Neanderthal as 

reference populations. Sites with > 0.90 probability of Neanderthal ancestry were inferred as 

Neanderthal.

Direct assessment of Neanderthal ancestry among Ugandans: Following validation of 

this approach in simulated data, we used CRF to identify segments of Neanderthal ancestry 

in real sequence data in a random sample of 100 Ugandans on chromosome 10. We 

identified regions of Eurasian ancestry in the same samples using fineSTRUCTURE 

(Lawson et al., 2012) on low coverage sequence data for the same samples. We first 

estimated parameters for fineSTRUCTURE on this sample set using the -i 20 -in -im -ip 

flags in ChromoPainter. This was carried across 425 chunks of the genome, and parameters 

were calculated using ChromoCombine. We next ran ChromoPainter with parameters 

estimated, using 216 YRI, 198 CEU and 206 CHB donor haplotypes. The Ugandan 

haplotypes were recipient haplotypes and were painted based on these donor haplotypes. 

The Hapmap recombination map was used to provide information regarding recombination 

rates/bp. Ancestry was inferred on haplotypes, and then combined across two haplotypes for 

each individual to make this comparable with CRF output, which provides diploid ancestral 

inference.

Distribution of introgressed Neanderthal segments: We assessed the distribution of 

inferred Neandethal ancestry among Ugandans with respect to Eurasian ancestral segements 

in these genomes, as well as known maps of Neanderthal ancestry among Eurasians. 

Eurasian ancestry was inferred as the sum of CEU and CHB ancestry > 0.90 within a 

haplotype.
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Background selection in inferred tracts of Neanderthal ancestry: To help provide 

additional evidence for accurate inference of Neanderthal ancestry among Ugandans, we 

assessed background selection in regions of inferred Neanderthal ancestry. Previous work 

has suggested that tracts of Neanderthal ancestry are depleted in functionally important 

regions in the genome, and have suggested that collectively, regions which carry 

Neanderthal ancestry in modern humans are less likely to be under purifying selection 

(Sankararaman et al., 2014). We examined this using the B statistic (McVicker et al., 2009), 

which is likely to be lower in regions of purifying selection. We hypothesized that true 

regions of Neanderthal ancestry would have significantly higher B statistics, as compared to 

random regions of the genome, as has been shown before (Sankararaman et al., 2014). We 

compared the B score distribution across inferred regions of Neanderthal ancestry with an 

empirical distribution of B statistics generated by 1000 permutations where we sampled an 

equivalent number of sites, with the same segment length per site across the genome.

Examination of admixture using uniparental marker: To further examine admixture in 

the Ugandan population, we examined possible signatures of Eurasian admixture among 

uniparental markers. Since uniparental markers (mitochondrial DNA and the Y chromosome 

in males) do not undergo recombination from generation to generation, examining these 

provides an alternative strategy to identify Eurasian admixture. It must be noted that absence 

of haplotypes from ancestral admixing populations do not necessarily suggest the absence of 

admixture, as drift or purifying selection can eliminate such haplotypes, given enough time 

(Serre et al., 2004).

Mitochondrial DNA analysis: We reconstructed the mitochondrial genomes of 1,978 

UG2G and 2,535 1000 Genomes phase III samples using a majority/consensus rule caller, 

i.e., calling the most frequent base at each site. We did not consider insertions or deletions 

and required a minimum depth of coverage (DP) of 5 and a minimum base quality of 30. We 

generated a gVCF file for each of the genomes and predicted their mitochondrial 

haplogroups using Haplogrep (Kloss-Brandstätter et al., 2011) which relies on PhyloTree 

build 17 (van Oven and Kayser, 2009).

To reconstruct the evolutionary history of UG2G and 1000 Genomes mitochondrial 

genomes, we aligned the UG2G and 1000 Genomes mitochondrial genomes (n = 4,513) 

using Mafft (v7.222) and reconstructed the phylogenetic tree using the BioNJ method 

(Gascuel, 1997) implemented in Seaview v4.5.4 (Gouy et al., 2010); distances were 

calculated with the Jukes-Cantor model. Similar results were obtained with a maximum 

likelihood tree reconstruction approach (results not shown)

Y-haplogroups in the Uganda genome resource: We examined Y chromosomal 

haplogroups to assess possible admixture within the Ugandan cohort. The prediction of Y 

haplogroups is harder than the prediction of mitochondrial haplogroups because the 

sequencing coverage for the mitochondrial genome is much higher than for the nuclear 

genome. With low coverage sequencing data, probabilistic methods like YFitter (https://

arxiv.org/abs/1407.7988) are particularly appropriate. Instead of calling variants, YFitter 

analyses genotype likelihoods, and it does so for a set of 439 marker sites that discriminate 
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the known Y haplogroups (Karafet et al., 2008). YFitter selects the haplogroup that best fits 

the data and also provides estimates of uncertainty.

We obtained YFitter predictions for 829 UG2G and 1,244 1000 Genomes Project males. To 

assess the reliability of the haplogroup assignments we built a phylogenetic tree using the 

439 sites used by YFitter. To call these sites we required a minimum depth of 1 and a 

minimum base quality of 30. We reconstructed the phylogenetic tree with different methods 

(neighbor joining and maximum likelihood) consistently obtaining topologies consistent 

with YFitter haplogroup predictions, suggesting these topologies are robust.

Deconvolution of admixture in Uganda using ancient populations: In order to understand 

complex admixture within Ugandan populations and identify source populations most 

closely representing ancestry in Uganda, we examined a combination of modern and ancient 

African and non-African data.

Curation of ancient and modern genomic data: We merged data including several ancient 

East African and South African genomes (Skoglund et al., 2017) with Eurasian ancient 

genomes (Lazaridis et al., 2016) and the Human origins array (Lazaridis et al., 2016). In 

order to maximize power, we included sequence data from 1,978 Ugandans, and sequence 

data for Dinka (Mallick et al., 2016) extracted across the sites enriched for in the 1240K 

capture (Skoglund et al., 2017). In order to minimize ascertainment bias, we used Ugandan 

sequence data on 2,100 individuals called and refined across the Ugandan and 1000 

Genomes Project phase 3 (Auton et al., 2015) and AGVP panel (Gurdasani et al., 2015). We 

subsequently removed all related individuals (IBD > 0.10), and included a final set of 1,154 

Ugandans (893 Baganda, 130 Banyarwanda, 27 Banyankole, 26 Barundi, 42 Rwandese 

Ugandans, 19 Bakiga, 7 Batanzania, 7 Basoga, and 3 Batooro). We only included 

transversions (n = 228,656) in our analyses to minimize bias due to ancient DNA damage.

Three distinct streams of ancestry in Ugandan populations: We first used qpwave 

(ADMIXTOOLS) (Patterson et al., 2012) to estimate the number of distinct streams of 

ancestry in modern Ugandans. For these analyses, we used 19 populations as global 

outgroups, as previously outlined (Skoglund et al., 2017), including Mbuti, Dinka, Mende, 

South_Africa_2000BP, Tanzania_Luxmanda_3100BP, Ethiopia_4500BP (Mota), 

Levant_Neolithic, Anatolia_Neolithic, Iran_Neolithic, Denisova, WHG, Ust_Ishim, 

Georgian, Iranian, Greek, Punjabi, Orcadian, Ami, and Mixe. In this context, 

Ethiopia_4500BP/Mota represents East African hunter-gatherer ancestry (Gallego Llorente 

et al., 2015), the Mbuti represent central African rainforest hunter-gatherer ancestry, and 

Tanzania_ Luxmanda_3100BP represents an early pastoralist lineage from eastern Africa 

(Skoglund et al., 2017). Dinka represents modern Nilotic speakers in East Africa. Consistent 

with previous approaches, we rejected a model if p < 0.01 for the rank of a given matrix 

(Skoglund et al., 2017). If the rank of a matrix was not rejected (p > 0.01), we considered the 

number of streams of ancestry as rank+1.

We then successively removed ethnolinguistic groups to identify whether distinct streams 

could be localized to specific ethno-linguistic groups. Given the identified clade structure in 

fineSTRUCTURE (Figure 1), we removed populations in the order of clades identified.
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Delineation of source populations of complex admixture in Uganda: In order to further 

understand the sources of ancestry among these populations, we used qpAdm (Patterson et 

al., 2012). QpAdm tests whether the ancestral components in a given target population can 

be explained by ancestral components contributed by pre-specified source populations, and 

then estimates the ancestral components contributed by source-like populations. QpAdm 

first tests whether inclusion of a target population to a set of source populations adds an 

additional stream of ancestry (increases rank of f4 statistics matrix by one). If the ancestry in 

the target population is fully represented among source populations, one would expect the 

number of streams inferred to remain constant, even with addition of the target population, 

as these streams are already represented in the source populations. Following this, it uses a 

matrix f4 statistics calculated of the form (target; sourcen; outgroup1, outgroupm) to infer 

admixture proportions, where n source populations are included along with the target 

population on the left, and m outgroup populations are included on the right. Negatively 

inferred proportions suggest that the model is incorrect.

In order to examine the sources of ancestry among Ugandan populations, we used the 

approach described previously by Skoglund et al. (2017) first examining single source 

admixture, dual source admixture, and three sources of admixture, when single and dual 

admixture models did not fit for a given target populations. We moved outgroup populations 

from the right to the left population set in turn to assess whether these fit as source 

populations.

We examined a subset of outgroup populations as source populations; these included Mende, 

Mbuti, Dinka, Ethiopia_4500BP (Mota), Tanzania_Luxmanda_3000BP, 

South_Africa_2000BP, Anatolia_N, Levant_N, Iran_N and Orcadian.

Sensitivity analyses to identify appropriate source and outgroup populations: Given the 

recent identification of basal admixture in West African Bantu populations (Skoglund et al., 

2017), we first evaluated whether these would provide appropriate source populations to 

represent bantu-like ancestry in East Africans. We first evaluated the presence of basal 

ancestry in Ugandans relative to Mende, and Yoruba.

Asymmetry of East and West African populations with ancient South Africans: In order 

to evaluate possible basal ancestry within Uganda, we carried out F4 tests of the form 

(chimp, South_Africa_2000BP; Mende/YRI, X), where X is a Ugandan population. We find 

asymmetry in test statistics f4(chimp, South_Africa_2000BP; Mende, X) and f4(chimp, 

South_Africa_2000BP; Yoruba, X) (Table S3.10), suggesting possibly higher levels of basal 

ancestry in Mende and Yoruba relative to Uganda. Another explanation for this asymmetry 

may be low levels of Hadza-like admixture in Uganda (Hadza is thought to be related to 

Khoe-San populations in South Africa). F4 statistics of the form (chimp, 

South_Africa_2000BP; Mota, X) did not show any asymmetry and were consistent with 

ancient South Africans being an outgroup to Mota and Ugandans, suggesting either no basal 

ancestry among these populations, or similar proportions of this ancestry.

Subsequent sensitivity analyses suggested that Mende provided poor representation of 

Bantu-like ancestry in Uganda. Given the possibly lower basal ancestry observed in West 
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African populations, we considered inclusion of an East African ancient Bantu-like source 

population to represent bantu-like ancestry in modern Ugandans. Tanzania_Pemba_700BP is 

an ancient East African sample represented most closely by Bantu ancestry in West 

Africans, as previously reported (Skoglund et al., 2017). However, our tests suggest that this 

sample is symmetrical to Ugandans with respect to ancient South Africans, potentially 

making this more appropriate as a source population for East African Bantu ancestry. We 

therefore included 11 source populations in our analyses of admixture in Ugandans. We 

therefore tested 11 single sources of admixture, (11, 2) = 55 dual admixture models, and 

(11,3) = 165 three-way models of admixture for each of the nine ethno-linguistic groups.

Rf-HGs may have admixture from a Uganda-like East African population: QpWave and 

qpAdm analyses assume there is no post-admixture gene flow between left and right 

populations. Although rf-HG (Mbuti) and Dinka have generally been considered unadmixed, 

and has been previously used as a right sided population to assess admixture in modern East 

African populations, we formally assessed admixture in Mbuti rf-HGs and Dinka. We 

therefore carried out ALDER analysis to assess whether Ugandan population related gene 

flow was observed in East African right sided populations (Mbuti and Dinka). We found 

evidence suggestive of Uganda-like ancestry in Mbuti rf-HGs (Baganda as reference, Z = 

18.4). We therefore carried out two sets of sensitivity analyses with qpAdm, including and 

excluding Mbuti as a right sided population (although this was assessed as a left sided 

source population for all target populations). Although results were broadly similar, 

populations most representative of ancestry in Ugandans were found to be different in some 

cases; we therefore present both sets of results, with Mbuti excluded from right sided 

populations as the primary set of results.

Inference of Demographic history from High Coverage Genome Sequences: We 

explored the demographic history of the Ugandan population in relation to other African and 

global populations. In order to study this, we used the multiple sequentially Markovian 

coalescent model (MSMC2) (Schiffels and Durbin, 2014) to estimate the population size 

history of the Ugandans using a high coverage (30x) trio sequenced from the Baganda 

population. The trio was sequenced with paired end sequencing on the Hiseq 2000 platform. 

Aligment was carried out to the 1000Genomes_hs37d5 reference with bwa aln. Duplicates 

were marked with Picard, following which re-aligment around indels was carried out with 

GATK. SNPs were called, and mask files were generated for each sample using samtools 

with the command:

samtools mpileup −q 20 −Q 20 −C 50 −u −r < chrx > −f < ref.fasta > < sample.bam > | 

bcftools call −c −V indels |./msmc-tools/bamCaller.py < mean_coverage > 

sample_mask_chrx.bed.gz j

Input files were generated using scripts provided in the MSMC2 tutorial, the mask files 

generated with the above command, and additional mappability mask files downloaded from 

https://oc.gnz.mpg.de/owncloud/index.php/s/RNQAkHcNiXZz2fd. These masks include all 

regions across the genome for each chromosome where reads from short read sequence data 

can be uniquely mapped.
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1000 Genomes high coverage sequence data available were also processed in the same way 

as described above for a CEU trio, one high coverage LWK sample, a YRI trio and samples 

from GWD, ESN and MSL populations (Table S1.6). We used PCR-free samples, where 

available. Mapped bams were downloaded from the 1000 Genomes home page, and 

processed in the same way as the Ugandan samples for consistency.

For samples that belonged to trios, trio based phasing was carried out, as implemented in 

msmc-tools. Reference based statistical phasing was carried out for unrelated samples that 

did not belong to trios. SHAPEIT2 r790 was used for phasing of these samples using a 

merged reference panel combining 1000 Genomes Project phase3, AGVP populations, and 

the Uganda GWAS dataset (see Method Details). For phasing, only sites within the reference 

panel were included. These phased sites were then merged back into the original calls using 

run_shapeit.sh from msmc-tools, leaving non-phased sites as ambigiously phased, as 

described in the MSMC2 tutorial (https://github.com/stschiff/msmc-tools).

As only two LWK haplotypes were available in the high coverage 1000 Genomes sequence 

data, we also examined high coverage whole-genome sequences generated by Complete 

Genomics (Drmanac et al., 2010) with a larger sample of LWK haplotypes (Table S1.7a). 

We also analyzed data from corresponding Europeans (CEU) and Africans (YRI) from these 

data for comparability with results from the 1000 Genomes sequence data (Table S1.7b). 

Complete Genomics data were called using msmc-tools ./ cgCaller.py, calling the consensus 

sequence from the masterVarBeta file. YRI and CEU samples were part of trios, and were 

phased as such, while LWK were phased using reference data, as described previously.

We estimated the effective population size over time of all popualtions using MSMC2, as 

well as split times between Uganda and other populations by estimation of the cross-

coalescence rate (CCR) with MSMC2. We implemented MSMC2 on 4 haplotypes from 

every population, except for LWK, ESN, MSL and GWD from the 1000 Genomes dataset, 

where only 2 haplotypes were available for analysis for each population. For all initial 

analyses, we specified 32 time segments -p 1*2+25*1+1*2+1*3. We excluded ambiguous 

sites from analyses for estimation of cross-coalescence rates. Inclusion or exclusion of 

ambiguously phased sites did not appear to impact estimation of effective population sizes. 

Here, we present all results estimated with exclusion of ambiguously phased sites, as 

recommended. We used a generation time of 30 years and a rate of 1.25 × 10−8 mutations 

per nucleotide per generation for estimation of coalescence rates. We also conducted 

sensitivity analyses to assess the impact of different modes of phasing on split times 

estimated by MSMC2, assessing more recent population growth my finer-scale 

parametrisation of segments, using the option -p 27*1+1*2+1*3 with MSMC2, allowing 

parameters to be different in the leftmost 27 time segments (of 32 time segments in total) 

(Table S1.7c) and (−p 30*1+1*20), examining population history and finer scale.

To examine split times between Ugandans and other populations we used MSMC2 

estimation of cross-coalesence rates and considered splits to have occurred when gene flow 

between the populations dropped to below 50%. We examined cross-coalescence between 

Uganda and other African populations in the 1000 Genomes high coverage data, and the 

Complete Genomics dataset (Tables S1.6 and S1.7).
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Previous studies have that suggested that phasing inaccuracies can lead to split times being 

biased and appearing more recent in comparison with experimentally phased data on 

samples (Song et al., 2017). We, therefore also examined the robustness of dating of cross-

coalescence to errors in statistical phasing. In order to examine the impact of reference based 

phasing on results, we reanalyzed the Uganda-YRI CCR, using reference panel guided 

phasing for Uganda, and YRI from both the 1000 Genomes Project data and Complete 

Genomics data. We used trio phasing as the gold standard in this context, and compared 

results to results obtained with trio phased data.

Sharing of f2 variants and estimation of dates of shared variants between Uganda and 
other populations: To better understand recent population history among Ugandan 

populations, and between Ugandan populations and others, we examined f2 variation in our 

sequence data combined with the AGVP and the 1000 Genomes Project phase 3 dataset. 

Curation of this merged dataset is detailed in Method Details. The number of individuals in 

each population group is provided in Table S1.5. F2 variants are variants that occur only two 

times in a dataset, in two different individuals. Examining such rare variants can provide 

important information about recent population history as well as population demography, 

recent bottlenecks, ancient splits, and relationships between populations. As dating of 

haplotypes shared within and between populations would provide important insights into 

split times among populations, we sought to date haplotypes around f2 variation as has been 

described previously (Mathieson and McVean, 2014).

To explore population relationships, we first examined sharing of f2 variants among 

populations. Our large sample of WGS allowed us to examine very rare variants, and hence 

more recent population history among these populations. Given the differences in numbers 

of samples from each population, inferences about f2 variant sharing are likely to be biased, 

with f2 variants from large populations likely to be rarer than f2 variants in a smaller number 

of individuals. We examined f2 variants in a set of combined sequences including UG2G, 

AGVP and 1000 Genomes Phase III sequence (N = 3,895) (Table S1.5). Although we 

ascertained f2 variants across the entire sample set of 3,895 individuals, we subsequently 

subsampled 40 haplotypes from each population 100 times and calculated the mean number 

of shared f2 variants. These were then normalized by the total number of f2 variants existing 

in each population (Figure S7).

We further explored these f2 variants by defining the extent (length) of haplotypes around 

these, and estimating most likely dates in generations of each haplotype using a maximum 

likelihood approach described by Mathieson and McVean (2014). We removed low 

complexity regions of sequence as defined by the 1000 Genomes Project, as described 

previously (Auton et al., 2015). We defined the extent of haplotypes by scanning along the 

genome on both sides until homozygote inconsistencies were observed between individuals. 

We used the HapMap recombination map to estimate haplotype length. We used an estimate 

of power of 0.60 for singleton discovery for these data, and a mutation rate of 1.2e-08 for 

our analyses.

We observed a total of 12,477,686 f2 variants in our dataset belonging to 9,875,361 f2 

haplotypes. Given our ascertainment of f2 variants in a sample size comprising largely 
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Ugandans, we expect f2 variation within Ugandans to be more recent than within other 

populations; therefore, we decided only to focus on the relationship of f2 variation between 

Ugandan and other populations, as this is likely to be relatively unbiased. We compared the 

relationship of Baganda to other Ugandan and 1000 Genomes Project and AGVP 

populations by examining the dating of shared f2 variants between Baganda and other 

population groups (Figures S7B and S7C).

We first examined sharing of f2 variation between European and African populations. We 

observe old sharing of f2 variation between African and European populations (median f2 

sharing between YRI and Europe ~51,000 ya), (Figure S7B) consistent with previous reports 

(Mathieson and McVean, 2014), and with known divergence times between these 

populations. Compared with other African populations, f2 sharing between Baganda and 

European populations was noted to be more recent (median f2 sharing = 19,500 ya). We 

hypothesized that this might be due to greater Eurasian admixture in Uganda, compared with 

YRI. However, this might also reflect ascertainment of f2 variants in a large sample of 

Ugandans, resulting in these being more recent. However, we found that median shared f2 

dating between LWK-Europe was more recent than between YRI-Europe, with sharing 

between Ethiopian populations and Europe being even more recent (in spite of the small 

sample size of these populations) (Figure S7B), strongly suggesting that recent dating was a 

consequence of Eurasian gene flow. This is consistent with possible gene flow from Europe 

into Uganda as a result of back migration.

Analysis of Mutational Spectrum in UGR

Comparison of diversity with other low coverage WGS resources: We compared the 

variants (SNPs and Indels) discovered with UG2G with discovery within global low 

coverage sequencing datasets, including the 1000 Genomes Project Phase 3, sequence data 

on 320 individuals from the African Genome Variation Project, and the UK10K cohorts. It 

must be noted that average coverage for the 1000 Genomes Project and the UK10K cohorts 

was higher than for UG2G (average coverage 7x, 6x and 4x, respectivelyu). We also 

compared the variants discovered in UG2G with those in the GnoMAD database. To better 

characterize individual level variation, we examined the number of variants per individual 

within each of these datasets to examine diversity at individual level. In order to examine the 

spectrum of variation, and compare this with other resources, we compared variation in a 

random sample of 379 unrelated Ugandans with an equal number of European individuals (n 

= 379) from the 1000 Genomes Project, which has more comparable depth of coverage. For 

this comparison, we excluded target exonic regions sequenced to higher depth in the 1000 

Genomes project, for consistency.

In order to compare diversity among African populations, we examined heterozygosity 

among different Ugandan populations in the context of AGVP.

To assess the influence of sample size of the resource on discovery of variants, we 

performed subsampling of individuals in incremental steps (see Figure S8). This provides a 

direct observation of the variant discovery in large sampling projects, and provides useful 

information for future large-scale sequencing endeavours in African populations. We also 

compared gains in discovery as a function of sample size between UG2G and the UK10K 
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ALSPAC data. For homogeneity in the analysis, for analysis within UG2G, we analyzed the 

Baganda population only, for which we sequenced 1,549 individuals. We picked randomly a 

combination of individuals for each sample size and calculated the number of variants in 

each combination. Then we averaged the number of variants in intervals of 10 additional 

samples to reduce the effect of chance on sampling. We carried out similar analyses with the 

same sample sizes in UK10K ALSPAC data.

Functional Variation in UG2G: In order to understand the relative distribution of 

functional variants in UG2G, we examined the spectrum of these variants in this cohort, and 

compared putatively functional variants in UG2G with other European cohorts.

In order to understand the burden of these mutations among individuals in our cohort, we 

assessed the spectrum of the annotations given in the Human Gene Mutation Database 

(HGMD) (Stenson et al., 2003) in relation to our sequence data (Figure 3). We specifically 

studied the burden of the most deleterious variants according to the HGMD annotations, 

namely the DM (disease-causing mutations), counting the number of DM alleles per 

individual. We also examined the frequency of ClinVar mutations of clinical significance 

(clinical significance = 5). As DMs are likely to be rare, they may be underestimated in the 

Ugandan cohort due to low-coverage sequencing leading to under-calling of rare variation. 

We assessed this by comparing estimated DMs in three high coverage sequence (30x) 

samples belonging to a Ugandan trio, with the DM calls for the same samples from the low 

coverage sequence data. The sensitivity of detection of DMs in these samples was 94% and 

the specificity is 91%. Additionally, the mean number of DMs detected by high and low 

coverage data in these three samples were very similar (33 and 34, respectively), thus 

validating our DM discovery.

We also validated our DM discovery by using ANGSD, a method that accounts As an 

account for genotype calling biases in low coverage (Korneliussen et al., 2014). The 

approach implemented in ANGSD has been shown to produce accurate site frequency 

spectra even in low coverage data (Han et al., 2014). Our results comparing ANGSD calls 

from low coverage data to our standard calls with Unified Genotyper (UG) produced highly 

comparable results (median of 28.4 and 29DMs/individual in ANGSD and UG called data 

respectively), providing further validation, and suggesting that results from comparisons are 

likely to be accurate and closely approximate the true distribution of DMs among individuals 

in the UG2G cohort.

We sought to evaluate the clinical relevance of the DM annotations in the context of the 

UG2G resource. We closely examined these DMs that were common in our data, to assess 

the effect of these on relevant hematological and cardiometabolic traits. DMs are considered 

to be primarily mutations that cause severe disease phenotypes or monogenic disorders; 

therefore, one would expect them to be very rare in a given population as a result of 

purifying selection. There are several reasons we might find DMs to be common in a given 

population cohort; 1. The mutations truly cause monogenic disease, but confer protection 

against a competing disease, and are therefore under positive or balancing selection; 2. The 

mutations are not functionally relevant, and are incidental findings that have been 

erroneously associated with a given phenotype; 3. The mutations are in LD with the true 
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causal mutation in European populations and a proxy for this, but not in our East African 

cohort; 4. The true penetrance of these mutations is much lower than previously thought; or 

5. The mutations have different phenotypic effects among different populations due to 

differences in epigenetic or epistatic factors. Interrogation of these mutations in an 

independent cohort of different ancestry allows us to identify DMs that may need further 

exploration to better understand their effects and disease penetrance among different 

population groups.

Due to limitated availability of phenotypic data, we were only able to assess the impact of 

DMs associated with cardiometabolic diseases with those specific phenotypes. This may 

limit inferences relating to potential impact of these mutations on other phenotypes. We 

focused on 38 DMs that were common (> 5%) in the UG2G cohort but rare or absent (< 1%) 

in the UK10K cohort (Table S4.3).

The Uganda Genome Resource as an Imputation Reference Panel: In order to assess 

improvement in imputation accuracy when using UG2G as a reference panel, we compared 

three panels: the 1000 Genomes Phase III dataset, the 1000 Genomes Phase III dataset 

merged with the African Genome Variation Project sequences from 320 individuals, and a 

combination of the 1000 Genomes Phase III dataset, the AGVP sequences and the UG2G 

data from 1,071 unrelated individuals from the GPC. The generation of the UG2G+AGVP 

panel has been outlined in Method Details.

For imputation, we used Omni 2.5M genotype data available for UGWAS and AGVP 

populations, as the target set. We measured the accuracy of imputation using the leave one 

out method in IMPUTE2 and calculating the correlation (r2) between the imputed and 

original genotype calls. This method systematically leaves out each SNP from the target data 

treating this as missing, and then imputes the marker from the reference data. Accuracy of 

imputation at each of these sites is then determined by calculating the correlation between 

imputed genotype calls and the original genotype data in the target set.

Heritability of traits in the General Population Cohort—We examined the 

heritability of traits within the General Population Cohort using the genotype data within the 

Uganda genome resource. In addition to assessing the narrow sense heritability across 

multiple traits, we were also able to examine the contribution of shared environment to the 

phenotypic variance, using novel methodology, and show that not accounting for this can 

lead to marked overestimation in estimates (Heckerman et al., 2016). We recapitulate our 

methods here.

Statistical model: The linear mixed model (LMM) is now routinely used to estimate narrow 

sense heritability. Unfortunately, LMM estimates of heritability can be inflated when 

environmental correlation is not explicitly modeled. To help avoid inflated estimates, we can 

use an LMM with two random effects—one based on genetic markers and one based on 

environmental factors. In order to assess narrow sense heritability, we used a mixed model 

approach in FaST-LMM using similar methodology to previous studies (Zaitlen et al., 2013). 

Given the unique pedigree structure in the cohort, we were able to phase the haplotypes for 

4,778 individuals (UGWAS) included in the analysis very accurately and generate very 
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accurate estimates of IBD. We have previously shown that haplotype phasing in this cohort 

using methods that leverage relatedness such as SHAPEIT2 are very accurate, even when the 

pedigree structure is not explicitly input into the algorithm (O’Connell et al., 2014). We 

further improved on accuracy by including the known complex pedigree structure into 

SHAPEIT2, using duo-HMM to correct any phasing errors. For this, we excluded pedigrees 

where the age differences did not match pedigree structure (parent was reported to be aged > 

60 when the child was born, parent-offpsring pairs with an age difference < 12). We ran 

KING (http://people.virginia.edu/wc9c/KING/) to check the pedigrees, and further excluded 

any sibling pairs where it was unclear whether these were full or half siblings and parent-

offspring pairs where the inferred parent seemed incorrect. These produced a highly accurate 

set of pedigrees for phasing. MERLIN (Abecasis et al., 2002) was used for error correction 

before using duo-HMM in SHAPEIT2 for phasing. For the remaining individuals who were 

excluded, haplotypes inferred from phasing the entire cohort as unrelated individuals were 

used, and merged with the haplotypes inferred using duo-HMM. Using these combined 

phased haplotypes, we calculated an IBD matrix, using methods that have been outlined 

previously (Price et al., 2011). This IBD matrix was used in the mixed model to provide 

accurate estimates of narrow sense heritability.

Previous studies examining heritability and genetic associations in large cohorts have tended 

to regard related individuals as having uncorrelated environment that contributes to 

phenotypic variance. This assumption is very unlikely to be true, and previous work has 

suggested that not accounting for this shared environment can lead to overestimation of 

heritability (Zaitlen et al., 2013). Here, we modeled environmental correlation using spatial 

distances and assessed the impact of this on heritability and GWAS estimates. These 

methods are described in detail elsewhere (Heckerman et al., 2016). We recapitulate these 

methods here:

For the environmental random effect, we constructed a radial basis function kernel, where 

the entry for a pair of individuals was the exponential of the negative scaled distance 

between the two individuals. The scaling parameter as well as the weights of the two random 

effects were determined by maximizing the restricted likelihood of the data. As the impact 

of various types of environmental clustering on phenotypic variance and estimates of 

heritability was unclear, we fit a number of models outlined:

1. In the first model, we only estimated the contribution of the IBD matrix to 

phenotype variance, and considered environmental effects as independent, as 

studies have done previously.

Var(Y ) = σG
2 IBD + σE

2 I

Var(Y) is the phenotype variance, while σG
2  and σE

2  are the genetic and environmental 

components of variance, respectively. IBD represents the IBD matrix, while I is an identity 

matrix representing uncorrelated environmental components. Narrow sense heritability is 

calculated as follows:
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ℎ2 =
σG

2

σG
2 + σE

2

2. Given the relatedness among individuals and the clustered nature of the cohort 

into villages, and households, the above model is an unlikely representation of 

the truth, as environment among individuals living in the same household/village 

is likely to be more correlated than those living further apart. Modeling 

environment as unrelated, in this case could potentially overestimate the genetic 

contribution to heritability. We modeled the effect of correlated environment as 

follows:

Var(Y ) = σG
2 IBD + σE

2 GPS + σR
2 I

Here, GPS represents the distance matrix derived from GPS coordinates, and σR
2  represents 

residual variance. Here, heritability was calculated as:

ℎ2 =
σG

2

σG
2 + σE

2 + σR
2

and the contribution of shared environment to phenotypic variance was calculated as:

e2 =
σE

2

σG
2 + σE

2 + σR
2

All parameters were estimated using maximum likelihood estimation. Standard errors for 

heritability for models 1 and 2 were calculated using a bootstrapping approach allowing 

comparison with published estimates for heritability in studies that have used a similar 

methodology.

In addition to the above two models, we also assessed gene-environment interaction for all 

phenotypes by fitting a model with the IBD matrix, distance matrix, in addition to a GXE 

term, as follows:

Var(Y ) = σG
2 IBD + σE

2 GPS + σGE
2 KGXE + σR

2 I

where i2 is the proportion of phenotypic variance explained by the interaction component.

i2 =
σGE

2

σG
2 + σE

2 + σGE
2 + σR

2
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For the variance estimates, we tested the null hypothesis that the variance component was 

equal to zero. To test σE
2 = 0, we performed a permutation test by permuting the distance 

matrix, by randomly shuffling identifiers of individuals. A p value for σGE
2 = 0, was similarly 

determined by permuting entries of the KGXE matrix. In both cases, we performed 10,000 

permutations. We carried out a comparison of our heritability estimates with those from 

Zaitlen et al. (2013) that had been obtained using very similar methods. We also re-

calculated heritabilities using GCTA for consistency, using the same method they outlined in 

the paper (Zaitlen et al., 2013) and found that using this for estimation of heritability in the 

Ugandan cohort did not materially alter comparisons of estimates with the Icelandic study 

(data not shown). The methods implemented in Fast-LMM are described in detail in 

Heckerman et al. (2016) and the relevant code is available at: https://github.com/

MicrosoftGenomics/FaST-LMM.

Comparison of heritabilities with European cohorts: We compared heritability estimated 

using our method with heritability estimated using similar methods in an Icelandic 

population (Zaitlen et al., 2013). We also compared our estimates with a pedigree based 

study from Pilia et al. (2006) in a Sardinian population which reported heritability on a large 

number of complex traits.

We note that the shared environment model of heritability estimated in the Sardinian study 

only modeled shared environment within pedigrees, and is therefore not directly comparable 

to estimation within the Ugandan cohort, where geographical distances were modeled; 

therefore, estimates from the Sardinian study may be more biased than the estimates from 

the Ugandan data.

We additionally evaluated whether the differences observed between European and Ugandan 

populations with regard to heritability could arise due to reduced bias in heritability 

estimation due to better correction of environmental sharing in the Ugandan cohort. In order 

to examine this, we compared uncorrected heritabilities in Uganda (heritability estimates 

calculated assuming un-correlated environment among indivduals) with those estimated by 

Pilia et al. (2006), Zaitlen et al. (2013), and Kang et al. (2010). Here, we used uncorrected 

estimates from the basic model in Pilia et al. (2006) not accounting for shared environment 

for consistency of comparison. The estimates in Zaitlen et al. (2013) are adjusted for 

geographical region, but not for any additional environmental sharing. We also compared 

with estimates of pseudoheritability estimated by Kang et al. (2010) using the EMMAX 

model. We note that pseudoheritability estimates calculated by EMMAX based on the IBS 

matrix are not actually estimates of narrow sense heritability, as outlined in Zaitlen et al. 

(2013) As these estimates do not utilize the thresholded IBS matrix, which provides similar 

estimates to the IBD matrix, these would provide estimates of heritability intermediate 

between GWAS heritability and narrow sense heritability (Zaitlen and Kraft, 2012); 

therefore, these are likely to be underestimates of narrow sense heritability. We, however, 

include these for completeness.
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Genome-wide association study of 34 traits

Meta-analysis across cohorts to maximize discovery: To discover loci associated with 

traits, we carried out a meta-analysis of association statistics across four cohorts: the 

Ugandan Genome Resource (n = 6,400), the Durban Diabetes Study (DDS) (n = 1,165), the 

Diabetes Case control study (n = 1,542), and the AADM study (n = 5,231). Details regarding 

studies are below.

Mixed model analysis

Uganda Genome Resource.: In order to identify loci associated with traits within the 

Uganda Genome Resource, we used a linear mixed model (LMM) approach to account for 

relatedness (including cryptic relatedness) and population structure.

Given the influence of environmental correlation on estimation of heritability, we first 

evaluated whether modeling environmental correlation influenced beta estimates and p 

values obtained in GWAS of the 34 traits, and independent signals observed above the 

threshold for statistical significance. We conducted these analyses using the Fast-LMM 

model discussed before. We did not identify any additional loci at the genome-wide 

significance threshold using the 2 kernel (IBD and GPS coordinates) versus the 1 kernel 

(IBD matrix only) model (Table S5.5) and found no systematic difference in p values 

between the two models (kruskall wallis p = 0.46), suggesting that although modeling 

environmental correlation did alter heritability estimates, GWAS results were not altered 

significantly. We, therefore opted to use a simple LMM approach with uncorrelated 

environment for GWAS.

For this, we used the exact linear mixed model approach implemented in GEMMA v24 for 

analysis of pooled data from 6,407 individuals in the Uganda Genome Resource. We 

evaluated different approaches for generation of the kinship matrix to control type I error in 

analysis. It has been shown that inclusion of causal SNPs in the kinship matrix can lead to 

overly conservative results for these SNPs, and reduction in power for GWAS discovery. In 

order to maximize discovery, we used the leave one chromosome out (LOCO) approach for 

analysis (Listgarten et al., 2012; Yang et al., 2014). In this approach each chromosome is 

excluded from generation of the kinship matrix in turn, for association analysis for markers 

along that chromosome. This ensures that causal SNPs at a locus on a given chromosome are 

not used for generation of the kinship matrix used in analysis of that specific chromosome. 

Therefore, we generated 22 kinship matrices for analysis, each excluding the chromosome 

being analyzed using the given matrix.

For computational efficiency, and to avoid correlation effects due to LD, we LD pruned the 

data prior to calculation of the GRM matrix for each LOCO analysis. We carried out 

sensitivity analyses using different r2 thresholds for pruning, to examine whether type I error 

was appropriately controlled on examining genome inflation factors from QQ plots. We 

finally used all markers with an MAF > 1%, pruned to an r2 threshold of 0.5, using PLINK 

(Purcell et al., 2007) with the flags–maf 0.01 and–indep-pairwise 100 10 0.5, where 0.01 is 

the minimum MAF threshold of 1% and 0.5 is the r2 threshold within each 100 marker 
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window sliding by a step size of 10 markers during each iteration. All genome inflation 

factors for traits were noted to be below 1.05 using this approach.

We also included a covariate to indicate whether data originated from imputed genotyped 

individuals or sequenced individuals to allow for any systematic differences between data 

(although earlier PCA suggested no systematic effects in filtered data). A MAF threshold of 

0.5% was applied in GEMMA analysis.

DDS and DCC: Analyses for the DDS and DCC datasets were carried out in exactly the 

same way as described for the UGR dataset. LOCO analysis was used for each chromosome, 

and 22 GRM matrices were generated for each dataset. Analyses were carried out separately 

for DDS and DCC in GEMMA using an MAF threshold of 0.5% for each cohort. We 

confirmed that genome inflation factors were < 1.05 for all traits.

AADM: For AADM, analyses of all markers were carried out using EPACTS (Efficient and 

Parallelizable Association Container Toolbox) pipeline (https://genome.sph.umich.edu/wiki/

EPACTS), which includes an implementation of EMMAX (Kang et al., 2010), which is an 

approximate linear mixed model approach similar to GEMMA. While a LOCO approach 

was not used in these analyses, we note that this would only make results more conservative 

for a given locus, and would not generate increased type I error. We carried out filtering for 

info score (0.3) following analysis, in this case, as we only had access to summary statistics. 

On examining QQ plots, we confirmed that genome inflation factors were < 1.05 for all 

traits.

Meta-analysis Methods: In order to maximize power for discovery, we carried out meta-

analysis of results across all four cohorts (UGR, DDS, DCC and AADM), subject to 

availability of phenotypic data for given traits (Table S1.3). Given genomic diversity, 

admixture, and geographical distribution of studies, we used a union set of all SNPs (rather 

than the intersection), to maximize discovery, and allow for heterogeneity of effect, as well 

as to examine population-specificity and reproducibility of associations. Rather than exclude 

associated variants with heterogeneity in effect observed, we explored the underlying factors 

contributing to this heterogeneity of effect. While we do expect for heterogeneity in effect to 

arise as a result of artifactual associations in some cases, we opted to use this approach to 

allow for real heterogeneity in effect across populations; we discuss this in more detail 

subsequently, and describe implications of heterogeneity in meta-analyses of GWAS among 

diverse African populations.

Consistent with previous literature, we used the Han-Eskin random effects meta-analysis 

approach implemented in METASOFT (RE2) (Han and Eskin, 2011). This approach 

corrects for the overly conservative standard random effects meta-analysis approach by 

correctly assuming no heterogeneity of effect sizes if the null hypothesis is true (i.e., all 

betas are zero).

We find this approach gives highly comparable results to MANTRA meta-analysis (Morris, 

2011), a bayesian approach used commonly for trans-ethnic meta-analyses, but is more 

computationally tractable, and easily interpretable with the output including a frequentist p 
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value for combined effect. This also provides insight into heterogeneity across studies, 

which we examine in greater detail subsequently. We observed a strong correlation of 0.80, p 

< 2.2e-16, between log10(BF) from MANTRA analysis and −log10(pval) from METASOFT 

analysis (for variants with support from single studies the p value from GEMMA analysis 

within the study was used instead of the RE2 p value). For LDL METASOFT analyses, we 

observed that of 546 variants with p values < 5e-09 in METASOFT analysis, 97.4% (532) 

exceeded a log10(BF) threshold of 7 in MANTRA analysis, suggesting high concordance 

between results, and validating the approach used here.

Derivation of a genome-wide significance threshold for GWAS in African 
populations: Genome-wide association studies examining common variation across the 

genome for association with complex traits typically use a significance threshold of p < 

5.0×10−08, with more stringent thresholds suggested for examination of rare variants (Xu et 

al., 2014). The 5×10−08 threshold has been derived from the total number of effective 

common variant (MAF ≥ 0.05) tests in European populations and has been based on 

HapMap data. When studying populations of African descent, a new statistical significance 

level needs to be defined, as lower levels of linkage disequilibrium between common 

variants may necessitate a more stringent threshold in Africans compared to Europeans.

Many methods exist which exploit the correlation structure, either haplotypic or genotypic, 

between variants to estimate the effective number of independent tests, and then use standard 

techniques for independent tests (Sidak or Bonferroni correction for multiple testing) to 

calculate an appropriate significance threshold. Some methods use the eigenvalues of the 

correlation matrix, since their absolute values correspond to the amount of the overall 

variance accounted for by the corresponding principal component (see for instance Gao et 

al., 2008). However, for large datasets of SNPs, it is not feasible to calculate the 

eigenvectors, and instead techniques have been developed which rely solely on the 

coefficients (see for instance Chen and Liu, 2011 and Moskvina and Schmidt, 2008). In 

Chen and Liu (2011) the correlation coefficients are used directly to estimate the effective 

number of tests, while in Moskvina and Schmidt (2008) the joint distributions of the event 

that the markers are not deemed significant are found based upon the correlation 

coefficients. We implemented 4 of these methods: SimpleM (Gao et al., 2008), Chen and Liu 

Method (Chen and Liu, 2011), Keffective (Moskvina and Schmidt, 2008), and Cheverud-

Nyholt (Table S6.1) (Nyholt, 2004). The Keffective method produced the most robust 

results, which we present here. It uses the pairwise haplotypic Pearson’s correlation 

coefficients between SNPs to estimate the statistical independence between each SNP and 

those which preceded it, and sums them to estimate the total number of independent tests 

(Table S6.1).

Three populations from the 1000 Genomes Project (sequence data, phase 1 integrated public 

data release) were used; Luhya in Webuye, Kenya (LWK) and Yoruba in Ibadan, Nigeria 

(YRI), to estimate the significance thresholds for African data, and Utah residents (CEPH) 

with Northern and Western European ancestry CEU dataset as a European comparison. 

Standard quality control steps were performed on all autosomes after excluding indels.
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Definition of distinct loci: Based on our derivation of a new threshold for statistical 

significance in African popualtions, we applied a statistical significance threshold of 

5.0×10−9 to define statistical significance at a given locus in Han-Eskin meta-analysis. 

MANTRA-meta-analysis (Morris, 2011) was carried out for fine mapping across loci 

identified to be statistically significant. We calculated 99% credible intervals, and credible 

sets, as has been discussed previously (Morris, 2011).

We defined a significant locus based on the peak SNP with the lowest p value in a given 

region. A significant locus was defined as a 500MB region flanking a peak SNP on either 

side (total 1MB region). If there were SNPs outside this region that were statistically 

significant, these were defined as separate associated loci, once again identifying the variant 

with the lowest p value in the region, and defining a 500MB region around it on either side. 

We note that this definition is arbitrary, and in regions of high LD, or regions with strong 

association signals, statistically significant variation can extend across several MB. 

Therefore, where loci were adjacent to each other, we considered the hypothesis, that these 

loci represented one locus primarily, with ‘satellite’ loci representing the same peak signal. 

In order to understand whether these adjacent loci represented the same causal signal, we 

carried out joint conditional analyses to examine whether joint conditional analysis 

abolished the association at the ‘satellite’ locus. Following joint analyses, we reported 

‘distinct’ loci as those that were associated with traits independently from surrounding 

regions. We found that for almost all adjacent loci, these satellite loci represented the same 

peak signal; we therefore collapsed these into single ‘distinct’ signals.

Conditional analyses and conditional meta-analyses: We carried out joint and conditional 

analyses to identify distinct association signals; these analyses were carried out for two 

scenarios:

1. To identify whether two or more adjacent loci (defined based on distance) 

represented a single locus, or multiple distinct loci.

2. To examine whether a peak variant at a known locus (previously associated with 

the given trait) was distinct from previously associated variants at that locus.

In both these scenarios, we carried out joint and conditional analyses either on the most 

significant SNP in the region (in scenario 1), or on all previously known SNPs identified to 

be associated with the trait (in scenario 2). Joint conditional analyses were carried out in 

GEMMA separately for each cohort, and these conditional estimates were then meta-

analyzed using the Han-Eskin method implemented in METASOFT. As we did not have 

access to individual level data for the AADM cohort, or accurate LD reference data, we 

could not carry out conditional analysis for AADM. As a result, whether a locus was distinct 

was determined by a comparison of the conditional meta-analyzed p value from random-

effects meta-analysis, to the original p value from meta-analysis across all cohorts excluding 

AADM. Association signals were considered distinct if the conditional meta-analytic p value 

< 5×10−09, or if in joint analyses with all other SNPs, the given SNP emerged most 

statistically significant in joint conditional analysis.
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Previously known trait-associated SNPs within a given locus were extracted from the 

NHGRI catalog (MacArthur et al., 2017), from large consortium meta-analyses for given 

traits, and from a literature search.

Analyses of Transferability: Analyses across populations of differing ancestry and from 

different geographical regions across Africa allows an examination of transferability of 

association signals across regions. Understanding transferability of association signals has 

implications for the design and analysis of medical genetic studies in Africa.

For statistically significant association signals observed, we define transferability as the 

presence of nominally significant p values (p < 0.05) in at least two or more studies.

We note that the lack of transferability of association signals across diverse cohorts or 

populations does not always indicate artifactual signals. This can arise from differences in 

statistical power to observe association, including from differences in demographic structure 

of cohorts, measurement error in phenotypes, allele frequency differences, differential LD of 

sampled variants with the causal SNP(s), differences in accuracy of imputation across 

different populations and sample size and real differences in effect size due to gene-

environmental interactions.

We examined statistical heterogeneity of effect as one of the factors affecting transferability 

of association signals across cohorts. In order to assess heterogeneity, we used the Cochran’s 

Q statistic, as output by METASOFT. We assessed this genome-wide, applying a stringent 

threshold of 5×10−09, equivalent to the genome wide association threshold for statistical 

significance. We note that this statistic is likely to be highly conservative, and that 

statistically significant heterogeneity is unlikely to be due to chance and is suggestive of real 

differences in effect size (as a result of either artifactual or biological factors). These 

differences are unlikely to be due to differences in allele frequency or sample size (which 

would affect the SE). We also evaluated the consistency of this statistic with the null (using 

QQ plots), and examined whether there were regions of high heterogeneity in associations 

with traits across the genome, and whether these were in regions of known associations with 

given traits. We confirmed that heterogeneity statistics did not show any inflation relative to 

the null (lambda < 1.05 for all traits).

Classification of discovered Loci: We defined distinct loci based on conditional analysis 

and distance metrics as defined in previous sections. Among identified independent loci, we 

define different categories of association signal as follows:

1. Novel locus (NL):

A locus that has not been previously associated with the given trait, or any 

biologically similar and correlated traits in previous GWAS, or in the literature.

2. Novel locus – known for related trait (NL-KRT):

A locus that has not been previously associated with the given trait, but has been 

associated with biologically similar or correlated traits in previous GWAS, or in 

the literature.
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3. Known locus:

A locus that has been previously associated with the trait in a previous GWAS or 

in the literature. These loci can be divided into the following sub-categories:

a. Known locus – known SNP (KS):

The peak associated SNP at the locus has been previously identified as 

associated with the trait of interest in a previous GWAS or in the 

literature.

b. Known locus – unknown SNP:

The given locus has been associated with the trait in a previous GWAS 

or in the literature, but the specific SNP is not known to be associated 

with the given trait. This can be further divided into two subcategories:

i. Known locus – distinct association (KL-DA): On joint and 

conditional analysis the peak associated SNP is distinct from 

previously known SNPs associated at this locus.

ii. Known locus- non-distinct association (KL-NDA): On joint 

and conditional analysis, the peak associated SNP is not 

distinct from previously known SNPs associated at this locus.

Assessment of allelic heterogeneity: We assessed allelic heterogeneity at this locus by 

examining whether multiple causal variants were present in joint and conditional analysis 

within the Ugandan cohort. We carried out joint and conditional analysis by conditioning 

SNPs within a 1MB region (500KB flanks) around the peak SNP, and examining if another 

distinct signal below p < 5e-09 was observed following conditioning. If this was the case, we 

continued iteratively, conditioning on the two distinct SNPs identified, and so on. At each 

stage, prior to the conditioning step, we carried out joint analysis of the distinct SNPs 

identified, and dropped any SNPs with a p < 5e-09 in joint analysis.

Fine-Mapping at the HBA1/HBA2 Locus: In order to fine-map identified associations 

with serum total bilirubin and HbA1c locus, we considered that peak associations identified 

at this locus may be tagging a known common alpha thalassemia variant observed in African 

populations. This thalassemia variant has been thought to have risen to high frequencies in 

Africa due to protection conferred against severe malaria (Mockenhaupt et al., 2004), and 

has previously been associated with several hematological markers in cohorts including 

individuals of African-American ancestry (Chen et al., 2013). This deletion was not called in 

the 1000 Genomes Phase 3 project data, but was present in a previous release of the 1000 

Genomes Project Phase 1 Project data with an MAF = 22% among Africans. In order to 

assess whether associations identified at this locus were being driven by the α−3.7 

thalassemia deletion, we re-imputed data within this region with the 1000 Genomes Phase I 

imputation panel, and re-analyzed data using the same methods across all cohorts where 

phenotype data on bilirubin and HbA1c were available. We carried out joint conditional 

analysis between the α−3.7 thalassemia deletion, and the peak SNP identified in the region 
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within our analysis in the data that did not include the deletion to identify the primary driver 

of the association signal within the region.

DATA AND CODE AVAILABILITY

Summary GWAS and allele frequency data are publicly available at https://www.ebi.ac.uk/

gwas/downloads/summary-statistics. The combined UG2G+AGV imputation panel is 

available for imputation from the Haplotype Reference Consortium: http://www.haplotype-

reference-consortium.org/participating-cohorts. All individual level data, phenotype, 

genotype and sequence data are available under managed access to researchers. Requests for 

access to the phenotypic data will be granted for all research consistent with the consent 

provided by participants. This would include any research in the context of health and 

disease, that does not involve identifying the participants in any way. The UMIC committees 

are responsible for curation, storage, and sharing of phenotypic and genetic data under 

managed access. The array and low and high depth sequence data have been deposited at the 

European Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/, accession numbers 

EGAS00001001558/EGAD00010000965, EGAS00001000545/EGAD00001001639 and 

EGAS00001000545/EGAD00001005346 respectively). Requests for access to data may be 

directed to segun.fatumo@mrcuganda.org. While data cannot be released on public 

databases as this would conflict with the study protocol and participant consent under which 

data were collected, we aim to facilitate data access for all bona fide researchers. 

Applications are reviewed by an independent data access committee (DAC) and access is 

granted if the request is consistent with the consent provided by participants within two 

weeks of submission. The data producers may be consulted by the DAC to evaluate potential 

ethical conflicts. Requestors also sign an agreement which governs the terms on which 

access to data is granted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The Uganda Genome Resource comprises genetic and phenotypic data on 

6,400 individuals

• Ugandans show geographically correlated genetic substructure and complex 

admixture

• The Uganda sequence panel substantially improves imputation in African 

populations

• The Uganda Genome Resource enables novel discovery of loci associated 

with traits
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Figure 1. Genetic Substructure and Population Admixture within the General Population 
Cohort, Uganda
(A) Study area that encompasses 25 villages in the southwestern region of Uganda.

(B) fineSTRUCTURE inferred principal components (PCs) among unrelated individuals 

with the clines along PC1 and PC2 representative of Eurasian and East African gene flow 

respectively (n = 1,893). See also Figure S2 for PCA of Ugandans in a regional and global 

context. Modest structure is observed by ethno-linguistic group.

(C) Map of the district structure of Uganda during the colonial era, representing different 

districts different ethno-linguistic groups are likely to have migrated from (map reproduced 

with permission from (Richards, 1954).

(D) Dendrogram tree of population relationships among ethno-linguistic groups inferred by 

fineSTRUCTURE based on a summary co-ancestry matrix in analysis of unrelated 

Ugandans. The tree represents the summary of population relationships for ethno-linguistic 

groups and shows substructure among populations based on their geographical source (see 

also Tables S2.2–S2.4 for Procrustes analyses). Two major clades are represented, one from 

central Uganda and the second from populations migrating from western and southwestern 

Uganda.

(E) Unsupervised tree structuring with fineSTRUCTURE analysis of unrelated Ugandans. 

The dendrogram shows the inferred tree structure with various panels annotated for 

additional information below, including ethno-linguistic group (EL group), proportion of 

Eurasian ancestry as inferred by ADMIXTURE, K = 4 (EUR anc), proportion of Nilo-

Saharan ancestry as inferred by ADMIXTURE (NS anc), and transformed latitude (south 

gps) and longitude (east gps) coordinates for each individual. Prominent clustering of clades 

is observed by ethno-linguistic group and Eurasian ancestral proportions.
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See also Figures S3, S4, and S5.
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Figure 2. Unsupervised ADMIXTURE Analysis of Ugandan Populations in a Global Context (n 
= 3,904) for clusters K = 2 to K = 18
K = 2 represents separation of African, and non-African ancestry. Subsequent clusters show 

further delineation of Eurasian, East Asian, African hunter-gatherer (light purple ancestry 

seen in the Khoe-San), and Nilo-Saharan ancestry (light pink component observed 

predominantly in the Dinka). The Ugandans appear to be represented by multiple ancestral 

components, including ancestry predominant in East African Bantu populations, Nilo-

Saharan populations, as well as different proportions of Eurasian-like components. We 

confirm these results with formal tests of admixture: QpWave (Tables S3.1, S3.8, and S3.9), 

f3 tests (Table S3.2), MALDER (Table S3.3), GLOBETROTTER (Figure S3), MT and Y 

chromosome analysis (Figure S4; Table S3.4), and the double-conditioned site frequency 

spectrum (Figure S5; Table S3.6).
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Figure 3. Genomic Diversity and Mutational Spectrum within the Uganda Genome Resource
(A) Discovery of autosomal SNP variation among 1,978 individuals from UGR relative to 

the 1000 Genomes Project phase 3 project (n = 2,504), the AGVP (n = 320), and UK10K 

cohorts (n = 3,781).

(B) Number of heterozygous sites per individual for each population in AGVP and the UGR 

(see Table S1.8 for number of individuals in each population group and Table S4.1 for the 

mean total number of variants per individual).

(C) Comparative allele frequency spectrum between 379 Europeans from the 1000 Genomes 

Project phase 1, a random sample of 379 individuals from all Ugandans (Uganda-all-379), 

and a random sample from only unrelated Ugandans (Uganda-unrel-379).

(D–F) Distribution of different functional classes of HGMD mutations within the UGR and 

also in comparison with UK10K ALSPAC; disease-causing mutations (DM), mutation 

reported to be pathogenic but with some degree of uncertainty (DM?), funcional 

polymorphisms (FP), disease-associated polymorphisms (DP), DPs with supportive 

functional evidence (DFP), frameshift or truncating variants (FTV). See Table S4.2 for the 

distribution of Clinvar clinically significant variants across populations. (D) We stratified the 

variation in four categories depending on allele frequency: common (>5% AF), low 

frequency (0.5%–5% AF), rare (0.1%–0.5% AF), and very rare (<0.1% AF). We find that 

while categories (FP, DFP, and DP) are preferentially observed as common variants in the 

UG2G data, the DM and DM? categories (disease-causing) are mainly observed as low-

frequency or rare variants, as expected with deleterious mutations that are prone to purifying 

selection. In order to better understand the relevance of these mutations, we specifically 

examine DMs common in Uganda but rare among Europeans (see Figure S9 and Table 
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S4.3). (E) Allele frequency spectrum for different functional classes of HGMD mutations 

within UGR. Expectedly, DMs are highly enriched for rare variation. (F) Distribution of DM 

among individuals in UG2G compared to UK10K ALSPAC.
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Figure 4. Improvement in Imputation Accuracy with Addition of the African Genome Variation 
Project (AGVP) and Ugandan Sequence (UG2G) Panel to the 1000 Genomes Project Phase 3 
(1000Gp3) Imputation Panel (n = 3,895 for the Combined Reference Panel) when Imputation Is 
Carried Out into the Omni 2.5M Genotype Data for AGVP Population Sets Not Included in the 
Reference Panel
Marked improvements are observed for East African populations such as Kalenjin and 

Kikuyu across the allele frequency spectrum. We also observe substantial improvements 

when imputing into the unrelated individuals from different ethno-linguistic groups in 

UGWAS. The tables below the figure show the number of variants successfully imputed 

(info score ≥ 0.3) into the Omni 2.5M array data for each population using different 

reference panels. We see a substantial increase in informatively imputed variants with 

addition of the UG2G sequence reference panel across all populations.
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Figure 5. Heritabilities for 34 Complex Traits within the Ugandan GWAS Cohort (UGWAS, n = 
4,778) (Green Markers) Measured Using FAST-LMM (Blue Markers), Compared with Those 
Estimated in a Sardinian (Red Markers) and Icelandic Population (Blue Markers)
The estimated heritabilities in UGWAS are adjusted for environmental correlation among 

individuals using GPS coordinates. The heritabilities in Pilia et al. (2006) are also adjusted 

for shared environment in pedigrees. We observe statistically different heritability for LDL-

cholesterol, total cholesterol, height, and serum GGT. See Tables S5.1–S5.4 for raw data.
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Figure 6. Locusview Plots for Selected Novel Association Signals Associated with Specific Traits 
in a GWAS of up to 14,126 Individuals
(A) Novel association of the GULP1 locus with HbA1c.

(B) We highlight functionally important and novel associations of the α−3.7 thalassemia 

deletion with total bilirubin.

(C) We identified a novel association with WBC count at the CD44 locus; CD44 encodes a 

cell-surface protein that regulates neutrophil adhesion, migration, and apoptosis, among 

other functions

(D and E) Associations of Africa-specific variants with HDL levels (D) and total albumin 

(E).

(F) Association of the sickle cell variant with RDW, recapitulating the known 

pathophysiology of sickle cell disease.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Whole blood samples - General 
Population Cohort Study

General Population Cohort Study; Asiki 
et al., 2013

N/A

Critical Commercial Assays

NUCLEON® chemistry Hologic proprietary

PicoGreen® quantitation assay Life Technologies, Thermo Fisher 
Scientific Inc.

P11496

Illumina Omni 2.5M-8 array (Infinium) Illumina 20024550

Illumina HumanOmni Multi-Ethnic 
Genotype array (Infinium assay)

Illumina WG-316–1003

Affymetrix® Axiom® Genome-Wide 
PanAFR Array

Thermo Fisher Scientific Inc. 901788

iPLEX Sequenom Inc. 10116

Deposited Data

Uganda resource Genotype data European Genome-Phenome Archive EGAS00001001558/EGAD00010000965

Uganda resource low coverage Sequence 
data

European Genome-Phenome Archive EGAS00001000545/EGAD00001001639

Uganda resource high coverage sequence 
data on one trio

European Genome-Phenome Archive EGAS00001000545/EGAD00001005346

Summary statistics from GWAS meta-
analysis

European Genome-Phenome Archive https://www.ebi.ac.uk/gwas/downloads/summary-
statistics

Uganda Genome Resource, African 
Genome Variation Project, and 1000 
Genomes Phase 3 Project merged 
reference panel

Haplotype Reference consortium http://www.haplotype-reference-consortium.org/
participating-cohorts

Software and Algorithms

Plink 2.0 Chang et al., 2015 https://www.cog-genomics.org/plink/2.0/

Eigensoft Price et al., 2006; Patterson et al., 2006 https://github.com/DReichLab/EIG

ChromoPainter Lawson et al., 2012 https://people.maths.bris.ac.uk/~madjl/finestructure-
old/chromopainter_info.html

fineSTRUCTURE Lawson et al., 2012 https://people.maths.bris.ac.uk/~madjl/finestructure/
index.html

GLOBETROTTER Hellenthal etal., 2014 https://people.maths.bris.ac.uk/~madjl/finestructure/
globetrotter.html

MALDER Pickrell et al. 2014 https://github.com/joepickrell/malder/tree/master/
MALDER

ALDER Loh etal., 2013 http://cb.csail.mit.edu/cb/alder/

SHAPEIT2 O’Connell et al., 2014 https://mathgen.stats.ox.ac.uk/genetics_software/
shapeit/shapeit.html

IMPUTE2 Howie et al., 2012 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

ADMIXTOOLS Patterson et al., 2012 https://github.com/DReichLab/AdmixTools

MSMC2 Schiffels and Durbin, 2014 https://github.com/stschiff/msmc2

F2 variant analysis Mathieson and McVean, 2014 https://github.com/mathii/f2

Beagle Browning and Browning, 2007 https://faculty.washington.edu/browning/beagle/
b4_0.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bcftools N/A http://samtools.github.io/bcftools/

BWA Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

ANGSD Korneliussen et al., 2014 http://www.popgen.dk/angsd/index.php/ANGSD

GATK DePristo et al., 2011 https://software.broadinstitute.org/gatk/

ms Hudson, 2002 http://home.uchicago.edu/rhudson1/source/
mksamples.html

GEMMA Zhou and Stephens, 2012 https://github.com/genetics-statistics/GEMMA

Fast-LMM - accounting for shared 
environment

Heckerman et al., 2016 https://github.com/MicrosoftGenomics/FaST-LMM

MANTRA Morris, 2011 Available on request

METASOFT2 Han and Eskin, 2011 http://genetics.cs.ucla.edu/meta_jemdoc/

R https://www.r-project.org/ https://www.r-project.org/
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