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A.BSTRACT: The global pandemlc. of SARS—.COV—Z.,, the causatllve Extracellular Intracellular
viral pathogen of COVID-19, has driven the biomedical community
to action—to uncover and develop antiviral interventions. One Nucleotide
| i | . /)/\o —_—

potential therapeutic approach currently being evaluated in numerous AN NHZ ”
clinical trials is the agent remdesivir, which has endured a long and @2"0" o0 o Bofobon Sy mhivitsRaro

951 a.a g q o/ s 5T o) e —|
winding developmental path. Remdesivir is a nucleotide analogue s RS O
prodrug that perturbs viral replication, originally evaluated in clinical — tonit timsphate
trials to thwart the Ebola outbreak in 2014. Subsequent evaluation by Remaesnr

numerous virology laboratories demonstrated the ability of

remdesivir to inhibit coronavirus replication, including SARS-CoV-

2. Here, we provide an overview of remdesivir’s discovery, mechanism of action, and the current studies exploring its clinical
effectiveness.

B INTRODUCTION spread has led to a global pandemic (officially declared by the
WHO on March 11, 2020°%).

COVID-19 disease appears to be a spectrum of clinical
presentations ranging from asymptomatic to severe respiratory
failure. Common symptomology at the onset of illness are
fever, cough, and general myalgia, with less common symptoms
including sputum production, headache, and diarrhea.””"" An
initial case analysis from China through mid-February 2020
found 14% of cases were associated with severe disease
(dyspnea, respiratory frequency > 30/min, blood oxygen
saturation < 93%, partial pressure of arterial oxygen to fraction
of inspired oxygen ratio < 300, and/or lung infiltrates > 50%
within 24—48 h), and 5% of cases were critical (i.e., respiratory
failure, septic shock, and/or multiple organ dysfunction or
failure).'”” A more extensive meta-analysis found a slightly
higher severe disease percentage (20.3%)."* The disease case
fatality rate (CFR) varies depending on region, population
demographics, and heath care capabilities; for instance, in Italy
an overall CFR of 7.2% is estimated, in part driven by the
higher proportion of individuals of advanced age compared to
China."* On the basis of global data, the CFR from COVID-19
based on confirmed cases is estimated to be ~6.9%.'* Disease

Coronaviruses are a family of enveloped viruses with a positive-
sense, single-stranded RNA genome that infects animal species
and humans. Among coronavirus members are those
responsible for the common cold, severe acute respiratory
syndrome coronavirus (SARS), Middle East respiratory
syndrome-related coronavirus (MERS), and the recently
emerged severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2, the causative pathogen of the disease COVID-
19).!

Coronaviruses primarily cause respiratory and intestinal
infections in animals and humans.” Discovered in the 1960s,
they were originally thought to be only responsible for mild
disease, with strains such as HCoV 229E and HCoV OC43
responsible for the common cold.” That changed in 2003 with
the SARS pandemic and in 2012 with the outbreak of MERS,
both zoonotic infections that resulted in mortality rates greater
than 10% and 35%, respectively.” Both coronaviruses likely
emerged from native bat populations, which maintain a broad
diversity of coronaviruses, and were transmitted through an
intermediate host to humans. Loss of natural habitat and
increased exposure to new hosts are likely responsible for the
increased frequency of zoonotic infections originating from
bats.”® Evidence also supports that the novel coronavirus Received: April 21, 2020
which emerged in the Wuhan region of China in late 2019 also Published: May 4, 2020
originated from bats.” This novel coronavirus, SARS-CoV-2,
resulted in an outbreak of pathogenic viral pneumonia in
Wuhan, Hubei Province, China, as reported to the World
Health Organization (WHO) in December 2019. Subsequent
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Figure 1. Life cycle of SARS-CoV-2 in host cells. SARS-CoV-2 primarily infects the respiratory tract (nasal epithelial cells, pneumocytes, and
alveolar macrophages) and the gastrointestinal tract (enterocytes). The virus enters though direct interaction between the viral S protein and the
cellular receptor angiotensin-converting enzyme 2 (ACE2). Following entry, the viral genome is released and translated into the viral replicase
polyproteins PP1a and PP1ab, which are cleaved into functional proteins by viral proteases.” Viral genome replication is mediated by the viral
replication complex, including the RNA-dependent RNA polymerase (RdRp). Viral nucleocapsids are assembled from the packaged viral genomes
and translated viral structural proteins and released through exocytosis. Potential targets and postulated mechanism of action for antiviral
interventions are shown: blocking virus/host cell interaction through the use of antibodies/nanobodies (and convalescent plasma therapy) or
recombinant ACE2 protein; use of hydroxychloroquine (based on in vitro data) to inhibit endosome maturation; use of protease inhibitors to
inhibit viral/endosome membrane fusion or viral polypeptide maturation; nucleoside/nucleotide analogues to inhibit viral genome replication.

progression to acute respiratory distress syndrome typically
occurs in older patients (over 63), often with underlyin,
medical conditions such as hypertension or diabetes;'
elevated risk of mortality was associated with advanced age,
sepsis, blood clotting deficiencies.'”'® In individuals less than
60 years of age, an increased body to mass index (over 30) was
associated with increased disease severity and progression to
acute respiratory distress syndrome.'” Other symptoms,
including neurologic symptoms and coagulopathies, have also
been reported in a portion of infected individuals.”*~**
Similar to other coronaviruses, SARS-CoV-2 primarily
infects the respiratory and gastrointestinal tract, with a cell
tropism of nasal epithelial cells, pneumocytes, and alveolar
macrophages in the lung and enterocytes in the bowel.”>™*
Although not limited to only these specific cell types, evidence
does support that cell binding via the viral S protein to the host
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receptor angiotensin-converting enzyme 2 (ACE2) is required
for infection (Figure 1).”**’ Following entry of the virus into
the host cell, the virus complex is then translocated to the
endosome, where endosomal acid proteases cleave the S
protein mediating membrane fusion.”® The viral genome is
released and translated into the viral replicase polyproteins
PP1la and PPlab, which are cleaved into functional proteins by
viral proteases. Subgenomic templates for mRNA synthesis and
translation of the viral structural proteins occur through
discontinuous transcription.” Viral genome replication is
mediated by the viral replication complex, which includes an
RNA-dependent RNA polymerase (RdRp), helicase, exonu-
cleaseN, and other accessory proteins. Subsequent assembly of
viral nucleocapsids from the packaged viral genomes and
translated viral structural proteins occurs at the endoplasmic
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reticulum-Golgi intermediate compartment,”® with infectious
virions then released from the cell through exocytosis.

As a new disease, SARS-CoV-2 does not have any clinically
proven therapeutics. Furthermore, a significant amount of
preclinical research was reported in the search for therapeutic
treatments for the related viruses SARS and MERS. As the
SARS and MERS coronavirus outbreaks did not persist, no
therapeutic or vaccine development programs were completed.
The consequence is that drug repositioning and repurposing
has received a significant amount of attention,”’ and approved
agents including hydroxychloroquine, azithromycin, ritonavir,
ruxolitinib, and camostat have entered clinical trials to address
the current SARS-CoV-2 pandemic (Figure 1).>*7>* Although
some candidates do have pre-existing data to support activity
against coronaviruses, other repurposing candidates for
potential use against SARS-CoV-2 are based on their ability
to inhibit SARS-CoV-2 viral replication in vitro.””**~*" These
include hydroxychloroquine, a known autophagy inhibitor that
suppresses lysosomal function,”® and the serine protease
inhibitor camostat.”” The ability of these compounds to act
as prophylactic agents, treat disease, or even modulate viral
replication in vivo has not been demonstrated, although clinical
evaluation of several of these potential therapeutics is ongoing.

One of the first clinical candidates that has received
attention is remdesivir, a pre-existing drug candidate developed
by Gilead Sciences as part of an antiviral development effort,
with initial results against Ebola virus (EBOV) reported in
2015.% 1t was recently authorized for compassionate use and
has now entered controlled clinical trials. Like all other
therapeutic approaches for patients with COVID-19, remde-
sivir was not developed specifically to treat COVID-19, and
here we review its discovery and mode of action.

B DEVELOPMENT OF REMDESIVIR

Remdesivir (GS-5734) was developed by Gilead Sciences and
emerged from a collaboration between Gilead, the U.S.
Centers for Disease Control and Prevention (CDC) and the
U.S. Army Medical Research Institute of Infectious Diseases
(USAMRIID). They sought to identify therapeutic agents for
treating RNA-based viruses that maintained global pandemic
potential, such as those that indeed emerged following the
initiation of the program, including EBOV and the
Coronaviridae family viruses exemplified by Middle East
respiratory syndrome (MERS) and severe acute respiratory
syndrome (SARS).

As a starting point for discovery, a library of ~1000 small
molecules focused around nucleoside analogues was compiled,
based on prior knowledge of effective antiviral compounds
targeting RNA viruses. Nucleosides are poorly cell-permeable
(and therefore can have a low hit rate in cell-based screens
such as antiviral screens), so modified nucleosides such as
monophosphate, ester, and phosphoramidate prodrugs com-
posed a significant portion of the library. Such prodrugs are
typically more permeable and metabolized to liberate the
nucleoside or phosphorylated nucleoside within cells.""~*
While the data from the original full screen does not appear to
have been disclosed, a 1’-CN modified adenosine C-nucleoside
hit (GS-441524), along with a prodrug form of the
monophosphate of GS-441524 (GS-5734, later renamed as
remdesivir), was found to be highly potent.*’ GS-441524 and
its S-acyl-2-thioethyl monophosphate prodrug had previously
been reported in 2012 as potent leads from a series of 10-
substituted 4-aza-7,9-dideazaadenosine C-nucleosides, with
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broad activity against a panel of RNA viruses: yellow fever
virus (YFV), Dengue virus type 2 (DENV-2), influenza A,
parainfluenza 3, and SARS.** The primary assay used was the
cytoprotection effect (CPE) assay, in which live virus is
incubated with a target cell line and the antiviral activity is
inferred by the ability of a test agent to rescue cell death,
measured using a standard cell viability reagent.*’ In a 2012
study, GS-5734 showed CPE activity against SARS strain
Toronto 2 (ICs, = 2.2 uM) without causing cytotoxicity
toward the host Vero African green monkey kidney epithelial
cells used in the CPE assay (note that different target cells
were utilized in viral CPE assays).

When the Ebola outbreak occurred in 2014, the assembled
library was utilized to identify and prioritize compounds with
efficacy against EBOV. The study by Madelain et al. found that
GS-5734 reduced EBOV replication in HeLa cells with an ICs
~ 100 nM, and it retained potency in in vivo nonhuman
primate EBOV infection models, while GS-441524 was
inactive.**” In addition to demonstrating activity against
EBOV, Warren et al. showed that remdesivir also had antiviral
activity against several other viruses, including the coronavirus
MERS, with an ICy, of 340 nM in vitro.

With the demonstration that GS-5734 (remdesivir)
possessed broad activity against RNA viruses, multiple groups
assessed antiviral activity both in vitro and in vivo,****
validating its activity against coronaviruses. Antiviral activity
was confirmed against SARS, MERS zoonotic coronaviruses,49
as well as the circulating human coronaviruses HCoV-OC43
and HCoV-229E, causative agents of the common cold.>®
Furthermore, de Wit et al. demonstrated that remdesivir had
both prophylactic and therapeutic activity against MERS in a
nonhuman primate in vivo model.>!

The pharmacokinetics of remdesivir have been summarized
in compassionate use documentation published by the
European Medicines Agency (EMA, 2020). Remdesivir is
administered via an intravenous injection (IV) with a loading
dose on day 1 (200 mg in adults, adjusted for body weight in
pediatric patients) followed by a daily maintenance dose (100
mg in adults) for up to 10 days. In nonhuman primates, daily
administration of 10 mg/kg of remdesivir yielded a short
plasma half-life of the prodrug (t,,,= 0.39 h), but sustained
intracellular levels of the triphosphate form.

In vitro and preclinical in vivo animal models supported the
effectiveness of remdesivir against SARS-CoV-2 and related
coronaviruses. These include a recent in vitro study of
remdesivir assessing antiviral activity against SARS-CoV-2
(previously known as 2019-nCov, strain nCoV-2019BetaCoV/
Wuhan/WIV04/2019) using qRT-PCR quantification of viral
copy number in infected Vero E6 cells. This study
demonstrated an ICs, of 770 nM and an ICy, equal to 1,760
nM (with cytotoxic concentration >100 mM).>* In addition,
works by Sheahan et al. and de Wit et al. demonstrated in vivo
efficacy of remdesivir at inhibiting viral replication and
reducin% viral related pathology against related coronavi-
ruses.””>” These findings, along with the safety profile of
remdesivir in the clinical trial assessment against EBOV,™*
support the evaluation of remdesivir as a potential therapeutic
drug for repurposing against the SARS-CoV-2 pandemic.

Driven by the EBOV outbreak in 2014 and based on in vitro
and animal model in vivo efficacy against EBOV," Gilead
Sciences initiated clinical evaluation of remdesivir for EBOV.
Gilead pursued FDA evaluation under the FDA’s Animal Rule,
permitting the reliance on efficacy findings from animal studies
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for drugs in which it is not feasible or ethical to conduct
human trials. As such, remdesivir was included in a
randomized, controlled trial of Ebola virus therapeutics in
patients within the Democratic Republic of the Congo
(NCT02818582); however, midstudy primary analyses found
remdesivir inferior to the antibody based therapeutics MAb114
and REGN-EB3, with respect to mortality, and the remdesivir
intervention arm was terminated.”* Mulangu et al. reported
one serious adverse event related to remdesivir, an instance of
hypotension, along with elevated creatinine and aspartate
aminotransferase plasma levels (a suggestive marker for
impaired kidney or liver function, respectively) in remdesivir-
treated patients compared to either antibody based therapeutic
arms. Although remdesivir was inferior against EBOV based on
efficacy compared to antibody therapy, the study arm did
provide an initial insight into the safety profile in patients.

Repurposing or repositioning an
effective small-molecule thera-
peutic promises the fastest ther-
apeutic means to stem the tide of
the pandemic.

B REMDESIVIR MODE OF ACTION

Antiviral chemotherapeutic interventions often target specific
viral enzymes or attack a weak point of viral replication within
the host, such as targeting the divergent RNA-dependent RNA
polymerase (RdRp; Figure 2). Nucleoside analogues represent
a class of antiviral agents that has proven efficacious against
several viruses, including hepatitis B and C as well as HIV.
Generally, these fall into three general classes: mutagenic
nucleosides, obligate chain terminators, or delayed chain
terminators.” Ribavirin, a mutagenic nucleoside, targets the
viral reliance on an RdRp to catalyze the replication of the
RNA genome from the original RNA template.’®” In a
seminal paper, Crotty et al. demonstrated that the RNA virus
poliovirus exists on the edge of viability, due to the proportion
of virus particles with deleterious mutations. Furthermore,
treatment with concentrations of ribavirin that caused a 9.7-
fold increase in mutations was sufficient to induce “error
catastrophe,” in effect lethally mutating the poliovirus, reducing
infectivity by 99.3%.>® Obligate chain terminators, such as
azidothymidine (AZT), lack the reactive 3'-hydroxyl group,
which directlZ prevents additional DNA synthesis after
incorporation.”” Lastly, delayed chain terminators, which
include remdesivir, block transcription despite still possessing
the 3’-hydroxyl and thus can still form a phosphodiester bond
with the next incorporated nucleotide. However, evidence
suggests that the 1'CN substituent of remdesivir sterically
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Figure 2. SARS-CoV-2 genome and RNA-dependent RNA polymerase structure. (a) Representation of the SARS-CoV-2 RNA genome. As SARS-
CoV-2 is a positive-sense RNA virus, the genome serves as a direct template for protein translation. Replication of the viral genome requires a
functional viral replication complex, including an RNA-dependent RNA polymerase (RdRp). (b) Domain organization of the SARS-CoV-2 RdRp
(encoded by nsp12) domains bound to cofactors nsp7 and dimers of nsp8, that serve as essential cofactors that increase polymerase activity. The
rendering was based on the cryo-EM structure at a resolution of 2.9-A, published by Gao et al, 2020 (PDB: 6M71). The nsp12 RdRp domain is
shown in green, nsp7 in purple, nsp8 in cyan, nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain in yellow, interface in blue, and a
newly identified -hairpin domain is shown in red.®’ Highlighted is RdRp residue S861, which is predicted to sterically interact with the 1'CN

substituent of remdesivir inducing delayed chain termination.*
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Figure 3. Remdesivir and its intracellular conversion. (a) Chemical structures of GS-441524 that compose the nucleoside analogue core (blue) of
remdesivir (GS-5734). (b) Intracellular processing of the prodrug remdesivir (GS-5734), the aryloxy phosphoramidate (purple) prodrug of GS-
441524 monophosphate. Upon diffusion of remdesivir into the cell, it is metabolized into the nucleoside monophosphate form via a sequence of
steps that are presumably initiated by esterase-mediated hydrolysis of the amino acid ester that liberates a carboxylate that cyclizes on to the

phosphorus displacing the phenoxide. The unstable cyclic anhydride is

hydrolyzed by water to the alanine metabolite GS-704277 whose P—N bond

is hydrolyzed by phosphoramidase-type enzymes to liberate the nucleoside monophosphate or nucleotide analog. The artificial nucleoside
monophosphate is routed to further phosphorylation events (hijacking the endogenous phosphorylation pathway) yielding the active nucleoside
triphosphate analogue form that is utilized by the viral RNA-dependent RNA polymerase (RdRp). Utilization of the GS-441524 nucleoside
triphosphate analogue by RdRp inhibits viral replication through inducing delayed chain termination.

clashes with RdRp (residue S861) upon further chain
elongation (remdesivir + three additional nucleotides),
distorting the positioning of the RNA and hampering
translocation to the remdesivir + fourth position (Figure 2).%°

Remdesivir (GS-5734), a prodrug, is metabolized within
cells into an alanine metabolite (GS-704277), further
processed into the monophosphate derivative and ultimately
into the active nucleoside triphosphate derivative (Figure 3).
Nucleotide analogues are not highly cell permeable, and once
in the cell they require di- and then triphosphorylation to
produce the nucleoside triphosphate (NTP) that can be
utilized by the viral RNA-dependent polymerases for genome
replication. As such, NTPs can then be misintegrated into viral
RNA by the viral RNA-dependent RNA polymerase (RARP;
Figure 2). To address this, an approach to antiviral drug design
can employ the utilization of phosphoramidate prodrugs
(ProTides, inferred as prodrugs of nucleotides).®*~% Protides
are composed of a nucleoside monophosphate capped with an
aryl group and an amino acid ester (a phosphoramidate).
Following diffusion into the cell, the prodrug is presumed to

metabolize in a sequence of hydrolytic steps that starts with
esterase-mediated ester hydrolysis to a carboxylate that cyclizes
internally to the phosphonate ejecting the phenoxide; the
resultant unstable cyclic anhydride is hydrolyzed open by water
to the alanine metabolite GS-704277 whose P—N bond is
hydrolyzed by a phosphoramidase-type enzyme (Figure
3).°7% This final step liberates the nucleoside mono-
phosphate, which is highly polar, and does not diffuse back
across the cell membrane (essentially trapping it within the
cell). Subsequent phosphorylation by host cell kinases convert
the compound into the NTP analogue that can be used as a
substrate by the viral RARp enzyme.”” While the nucleoside
analogue core of remdesivir, GS-441524, can diffuse into cells,
the initial phosphorylation step for nucleosides is rate-limiting
(slow), which is believed to account for the reduced antiviral
activity of GS-441524 compared to remdesivir.*””" This
approach has been successfully applied to a number of FDA-
approved antiviral drugs including the Gilead products
sofosbuvir (for treating HCV) and tenofovir alafenamide
(first approved for treating HIV).**

676 https://dx.doi.org/10.1021/acscentsci.0c00489

ACS Cent. Sci. 2020, 6, 672—683


https://pubs.acs.org/doi/10.1021/acscentsci.0c00489?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00489?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00489?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.0c00489?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://dx.doi.org/10.1021/acscentsci.0c00489?ref=pdf

ACS Central Science

http://pubs.acs.org/journal/acscii

Among the candidate therapies,

remdesivir has demonstrated ef-

ficacy in both in vitro and in vivo
models against coronaviruses

Remdesivir’s antiviral activity, sterically interacting with the
viral RdRp to induce delayed chain termination, has been
demonstrated in vitro against multiple coronaviruses (SARS,
MERS, contemporary human CoV and bat-CoVs).”” Remde-
sivir was also shown to perturb pan-CoV RdRp function by
inhibiting viral replication of SARS, MERS, and the model -
coronavirus murine hepatitis virus (MHV), even in settings
with intact exonuclease proofreading activity.”” Biochemical
data from recombinant respiratory syncytial virus (RSV) RdRp
suggested the primary mechanism of action was through
delayed chain termination.”*”” Importantly, remdesivir
inhibits viral replication (demonstrated with both Ebola and
RSV) in cell-based assays with ICg, values of approximately
100 nM, whereas human RNA Polymerase (RNAP) II and
human mitochondrial RNAP are not inhibited in the presence
of compound,” providing approximately 500-fold selectivity.
This selectivity is achieved, at least in part, due to the
nucleoside analogues being poor substrates for the human
polymerases.”® Interestingly, in vitro assays demonstrate that
the triphosphate form of the inhibitor was incorporated at
increased rates compared to natural nucleotide pools,”” likely
adding to strong antiviral potency of remdesivir through
premature RNA synthesis termination.

B CLINICAL STUDIES FOR COVID-19

With the COVID-19 outbreak increasing in size and a lack of
alternative therapeutics, two clinical trials using remdesivir
were designed and initiated in China. On February 5, 2020, a
phase 3 randomized, quadruple-blind, placebo-controlled
clinical trial was registered at Capital Medical University,
with the goal to determine safety and efficacy of remdesivir in
patients with mild to moderate SARS-CoV-2 infection
(NCT04252664, since suspended).”® A day later, a second
trial (NCT04257656, since terminated) was registered at the
same location, focused on patients with advanced COVID-19
respiratory disease.”” Both trials had planned to track the
primary outcome as time to clinical improvement, up to 28
days: normalization of fever, oxygen saturation, and respiratory
rate, and alleviation of cough which is sustained for 72 h. Both
trials delivered remdesivir as a 200 mg loading dose on the first
day, with 9 subsequent days of maintenance dosing at 100 mg;
this regime is identical to that utilized in the previous
NCT03719586 Ebola trial, which appears to be the model for
all subsequent trials involving remdesivir (discussed below;
Figure 4 and Table 1, registered trials of remdesivir).
Contemporaneous to the development of the Chinese trials,
the first cases of COVID-19 were emerging in the USA. On
January 20, 2020, a patient reported to urgent care in
Snohomish County, Washington with subjective fever and a
4-day history of cough, later to be confirmed as the first
positive case of COVID-19 in the USA.* On the seventh day
of hospitalization and after worsening clinical status, the
patient was given IV remdesivir under compassionate use
access (Gilead Sciences), with no adverse events observed on
infusion.”® The patient’s clinical condition improved the next
day, though concurrent treatment with acetaminophen,
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Figure 4. Remdesivir global clinical trials. Shown are the locations of the clinical study sites for the ongoing clinical studies of remdesivir for SARS-
CoV-2/COVID-19. Number of sites participating for each respective study, if no specific information was given, shown are the countries
participating (e.g., ISRCTN83971151). Listed are the number of sites participating for each respective study, if no detailed information was
provided; shown are the number of countries participating. NCT04302766 is an expanded access trial with no specific sites listed in the registration.
Figure created with R’ utilizing the packages rnaturalearth,” sf”® and ggplot2.94
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Table 1. continued

expected com-

location (s)

pletion date

study design

phase

interventions

sponsor

status

start date

study title

study identifier

NCT04323761”

expanded ac-
cess

remdesivir

Gilead Sciences

available

Protocol: Remdesivir (RDV;

GS-5734) for the Treatment
of SARS-CoV-2 (CoV) In-

fection
“Registered remdesivir clinical studies (as of 4/15/2020) for SARS-CoV-2/COVID-19. “Clinicaltrials.gov registered. ISRCTN registered (www.isrctn.com). “Clinicaltrialsregister.eu registered.

Expanded Access Treatment

679

ibuprofen, guaifenesin, vancomycin, cefepime, and supplemen-
tal oxygen confound the direct interpretation of remdesivir’s
impact.

Subsequently, 12 patients were confirmed to be infected
with SARS-CoV-2 between January 20, 2020, and February 5,
2020.%" Of these 12 patients, seven were hospitalized and three
received remdesivir (compassionate use access; Gilead
Sciences) upon worsening clinical disease. Treatment was
continued for 4—10 days with 200 mg IV on the first day and
100 mg each following day. Following the initial dose, all
patients experienced “transient gastrointestinal symptoms,
including nausea, vomiting, gastroparesis, or rectal bleeding,”
although treatment was continued until improvement in
respiratory symptoms, with all 12 patients reporting symptom
resolution by February 22, 2020.*" The small sample size and
lack of controlled randomization preclude analysis of clinical
efficacy or safety.

The National Institute of Allergies and Infectious Diseases
(NIAID), NIH initiated the Adaptive COVID-19 Treatment
Trial (ACTT), a double-blind, randomized, placebo-controlled
phase 3 trial to evaluate the safety and efficacy of remdesivir
compared with a remdesivir placebo-control
(NCT04280705).°* NIAID developed this study in part
based on the existing Chinese clinical trials in addition to
consulting with the WHO.® This study is currently recruiting
patients, tracking the primary outcome of patient status
severity on an eight-point ordinal scale, with multiple
secondary outcomes of interest. A total of 7S clinical sites
are anticipated to participate in the study, with distribution
across the United States, and an estimated primary completion
date of April 2023.

Subsequently, Gilead Sciences initiated two clinical trials
that began in mid-March, comparing remdesivir to standard of
care in patients with moderate or severe coronavirus disease
(COVID-19) in an open-label, randomized trial,
NCT04292899.%* This trial will explore the safety and efficacy
of remdesivir in combination with standard of care to compare
study arms of 5- or 10-day remdesivir dosing on the primary
outcome of fever and oxygen saturation. NCT04292730
maintains three study arms to compare remdesivir provided
over S or 10 days, to standard of care alone, with the primary
outcome being the proportion of patients discharged by the
14th day.*

To determine the most effective treatments for COVID-19
and ensure sufficient power to observe definitive results, the
WHO announced the SOLIDARITY clinical trial, a four-arm
trial comparing remdesivir, lopinavir/ritonavir, lopinavir/
ritonavir with interferon-fla, and chloroquine or hydroxy-
chloroquine (ISRCTN83971151). With the goal of reducing
trial design time and start-up, the WHO seeks to rapidly
facilitate comparison of treatments on a worldwide scale. Data
will be analyzed on an interim basis by an independent group
of experts, the Global Data and Safety Monitoring
Committee,*® enabling the modification of study design if
particular treatments show early promise. As of March 27,
2020, over 70 countries had committed to participating.

In a trial sponsored by the Oslo University Hospital, the
WHO NOR (Norwegian)-COVID 19 study is a multicenter,
adaptive, randomized, open label study to evaluate the safety
and efficacy of hydroxychloroquine, remdesivir, and current
standard of care (NCT04321616, 2020-001052-18).” The
comparative arms of the study are daily remdesivir,
hydroxychloroquine loading dose of 800 mg X 2 followed by

https://dx.doi.org/10.1021/acscentsci.0c00489
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400 mg X 2 daily for a total of 10 days, or the standard of care.
Primary outcome is all cause in-hospital mortality, with
secondary measures of duration of mechanical ventilation,
ICU duration, 28-day mortality, viral clearance, readmittance,
occurrence of coinfections, and organ dysfunction. Inclusion
criteria include confirmed SARS-CoV-2 infection by PCR, 18
years of age, and admittance to the hospital ward or ICU.
Importantly, exclusion criteria include prolonged QT interval
(>450 ms) due to the known toxicity issues associated with
hydroxychloroquine.

An observational study sponsored by the Groupe Hospitalier
Pitie-Salpetriere, with collaborator CMC Ambroise Paré, was
initiated to investigate adverse events in COVID-19 treatment
(NCT04314817).% The study will consider events as classified
by the international classification of disease ICD-10, and track
lopinavir/ritonavir, chloroquine, azithromycin, remdesivir, and
interferon-f1a, potentially expanding the scope in the future
prior to the primary completion date in January 2021.

The DisCoVeRy trial is an adaptive, open-label, randomized
interventional trial that includes five treatment modalities
(NCT04315948): standard of care alone or standard of care
plus the following: remdesivir, hydroxychloroquine, lopinavir
and ritonavir, or lopinavir, ritonavir, and interferon-fla. ° The
remdesivir dose regime is identical to existing trials, with
maintenance dosing continuing up to 10 days. Lopinavir and
ritonavir tablets are to be administered every 12 h for 14 days
(400 mg of lopinavir /100 mg of ritonavir). In combination
with the lopinavir/ritonavir schedule, interferon-ffla will be
administered subcutaneously at a dose of 44 yig, for three doses
in 6 days (day 1, day 3, day 6). Hydroxychloroquine will be
given 400 mg, twice on the first day, followed by 400 mg once
daily for 9 days. Initially, the study will include five French
hospitals (Paris — Hopital Bichat-AP-HP, Lille, Nantes,
Strasbourg, Lyon) with potential expansion to other
participating sites.”’ The primary outcome is the reported
disease severity on a seven-point ordinal scale, assessed on the
15th day, with secondary outcomes tracking various physio-
logical and clinical metrics.

B EXPANDED ACCESS

With the overwhelming influx of compassionate use requests,
on March 23, 2020, Gilead Sciences suspended compassionate
use access to remdesivir for all cases save children and
pregnant women, shifting their focus to support mounting
clinical trials and establish a system of expanded access,
wherein hospitals or physicians can request emergency use of
remdesivir for multiple patients at one time.” In an open letter
to the public on March 28, 2020, Gilead CEO reported that
they had provided over 1000 doses of remdesivir through
compassionate use requests.”’ To date, the FDA has granted
expanded access treatment protocols for remdesivir, sponsored
by the U.S. Army Medical Research and Development
Command (NCT04302766)°° and Gilead Sciences
(NCT04323761).”” The primary objective of these studies is
the provision of expanded access to remdesivir for the
treatment of SARS-CoV2 infections. Gilead Sciences has
acknowledged that production of remdesivir is an involved
process, and this is being scaled up to meet demand.

B OTHER NUCLEOSIDE CANDIDATES

Remdesivir is certainly not the only nucleoside analogue that is
being investigated for use against SARS-CoV-2, but it is the

680

most clinically advanced. A recent publication by Sheahan et al.
describes the ribonucleoside analogue, -p-N*-hydroxycytidine
(NHC, EIDD-1931), that has in vitro activity against SARS-
CoV-2 and in vivo against the related SARS virus.”® Although
in preclinical development, EIDD-1931 is orally bioavailable, a
significant advantage compared to remdesivir, and has
increased potency against viruses containing mutations in
RdRp that conferred increased resistance to remdesivir,
supporting the potential for a combination therapy to address
the risk of SARS-CoV-2 becoming clinically drug resistant.
Other clinically approved nucleoside/nucleotide analogues,
such as the hepatitis C drug sofosbuvir and HIV drugs
alovudine and zidovudine, have also been shown to be active
against the SARS RdRp in in vitro biochemical assays and
might have the potential to be repurposed against COVID-
19.”” For a general review of nucleoside and nucleotide
analogues for cancer and viral diseases, including approved

drugs and clinical candidates, please reference Jordheim et
100
al.

While remdesivir represents one
compound whose consideration
may yet play a role in mitigating
the morbidity, mortality, and
strain on global healthcare sys-
tems caused by COVID-19, on-
going clinical trials will provide
much-needed clarity surrounding
the repurposing of approved
drugs and experimental agents
against SARS-CoV-2.

B CONCLUSIONS

As the COVID-19 pandemic races across the globe, the
scientific community, from academic and government
laboratories to small biotechnology companies and multina-
tional pharmaceutical corporations, has mobilized to develop
and evaluate potential therapeutics and vaccines.'”' ™%
Repurposing or repositioning an effective small-molecule
therapeutic promises to be the fastest therapeutic means to
stem the tide of the pandemic.'”'°° Among the candidate
therapies, remdesivir has demonstrated efficacy in both in vitro
and in vivo models against coronaviruses. Recently, through a
compassionate use indication, remdesivir has supportive
evidence for yielding some clinical improvement in COVID-
19 patients."”” In addition, an interim analysis of the Adaptive
COVID-19 Treatment Trial (NCT04280705) supports
improvement in the primary endpoint for patients receiving
remdesivir, compared to control, with a 31% faster time to
recovery.'”® Based on these initial findings, the U.S. Food and
Drug Administration has issued an Emergency Use Author-
ization for the emergency use of remdesivir for the treatment
of hospitalized COVID-19 patients. With no drug having FDA
approval for marketing as a treatment for SARS-CoV-2, this is
the first FDA authorization of an investigational therapeutic for
use in treating SARS-CoV-2.'""” While remdesivir represents
one compound whose recent use authorization may, in part,
mitigate the morbidity, mortality, and strain on global

https://dx.doi.org/10.1021/acscentsci.0c00489
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healthcare systems caused by COVID-19, additional ongoing
clinical trials will provide much-needed clarity surrounding the
repurposing of approved drugs and experimental agents against
SARS-CoV-2.
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