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Abstract

Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that 

exploits optical contrast and ultrasonic detection principles to form images of the 

photoacoustically induced initial pressure distribution within tiaaue. The PACT reconstruction 

problem corresponds to a time-domain inverse source problem, where the initial pressure 

distribution is recovered from the measurements recorded on an aperture outside the support of the 

source. A major challenge in transcranial PACT of the brain is to compensate for aberrations and 

attenuation in the measured data due to the propagation of the photoacoustic wavefields through 

the skull. To properly account for these effects, a wave equation-based inversion method can be 

employed that can model the heterogeneous elastic properties of the medium. In this study, an 

optimization-based image reconstruction method for 3D transcranial PACT is developed based on 

the elastic wave equation. To accomplish this, a forward-adjoint operator pair based on a finite-

difference time-domain diseretization of the 3D elastic wave equation is utilized to compute 

penalized least squares estimates of the initial pressure distribution. Computer-simulation and 

experimental studies are conducted to investigate the robustness of the reconstruction method to 

model mismatch and its ability to effectively resolve cortical and superficial brain structures.

1. Introduction

Photoacoustic computed tomography (PACT) is a noninvasive hybrid imaging modality that 

combines the optical absorption contrast of tissue with acoustic detection (R.Kruger et al., 

1995; Kruger et al., 1999; Xu et al., 2011). In PACT, the target is illuminated with a short 

optical pulse resulting in the generation of acoustic pressure signals via the photoacoustic 

effect (Xu and Wang, 2006a; Oraevsky and Karabutov, 2003). The acoustic waves propagate 

out of the object and are subsequently detected by use of a collection of wideband ultrasonic 

transducers that are located outside the support of the object. Typically, the measured 
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pressure signals are employed to estimate the induced initial pressure distribution or, 

equivalently, if the Grueneisen parameter is known, the absorbed optical energy distribution. 

The utility of PACT has been demonstrated in a number of in vivo studies of biological 

structure and function and in facilitating a number of medically relevant diagnostic tasks 

(Jones et al., 1980; Cheong et al., 2003; Xu et al., 2011; Xia et al., 2014).

Transcranial brain imaging represents an important application that may benefit significantly 

by the development of PACT methods. Existing high-resolution human brain imaging 

modalities include X-ray computed tomography (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET). However, all suffer from significant shortcomings 

(Raichle, 1998; Pearce et al., 2013; Goo, 2013; Boxerman et al., 1995). Optical imaging 

modalities are desirable because they can provide functional information based on the high 

haemoglobin-contrast between tissues that contain different concentrations of blood. 

However, optical-only imaging, such as DOT, suffers from inherently low spatial resolution 

in transcranial imaging (Culver et al., 2003). On the other hand, PACT provides the same 

functional contrasts as optical imaging but has a superior spatial resolution due to the 

principles of ultrasonic detection. Hence, PACT is well-suited for anatomical and functional 

brain imaging applications. As PACT exploits haemoglobin-based endogenous optical 

contrast it can image anatomical structures such as blood vessels as well as measure 

functional parameters, such as oxygen saturation (sO2), and the metabolic rate of oxygen 

consumption (MRO2) (Yao et al., 2011; Zhang et al., 2006).

In vivo transcranial PACT studies have revealed structure and haemodynamic responses in 

small animals (Wang et al., 2003; Li et al., 2010; Xu et al., 2011). Because the skulls in 

these studies were relatively thin (~1 mm), they did not significantly aberrate the 

photoacougtic wavefields. Hence, conventional PACT image reconstruction algorithms such 

as backprojection (BP) (Kunyansky, 2007; Finch and Patch, 2004), that assume that the 

entire medium is acoustically homogeneous were successfully employed. This assumption in 

violated in transcranial PACT applications involving primate skulls. As a result, images 

produced by conventional reconstruction methods in the presence of a primate skull can 

contain significant distortions and degraded spatial resolution (Xu and Wang, 2006b; Jin et 

al., 2008; Yang and Wang, 2008; Nie et al., 2011; Huang et al., 2012). Thus, to render 

transcranial PACT an effective imaging modality for use in humans, it is necessary to 

develop image reconstruction methodologies that can accurately compensate for the skull-

induced aberrations and attenuation of the recorded photoacoustic (PA) signals.

Numerous image reconstruction methods have been proposed to compensate for aberrations 

and attenuation of the measured PA wavefields induced by an acoustically heterogeneous 

fluid medium (Huang et al., 2013; Jin et al., 2008; Huang et al., 2012). However, a limitation 

of such works is that they assume a simplified wave propagation model in which 

longitudinal-to-shear-wave mode conversion within the skull (Schoonover and Anastasio, 

2011; White et al., 2006; Fry, 1978) was neglected. As a result of the simplified models 

employed, only modest improvements in image quality were observed as compared to the 

use of a standard BP-based reconstruction algorithm. Therefore, there remains an important 

need for the development of improved reconstruction methodologies for transcranial PACT 

that are based on more accurate models of the imaging physics.
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To circumvent limitations of the aforementioned approaches, a numerical framework for 

image reconstruction in transcranial PACT based on an elastic wave equation that describes 

an isotropic, 1ossy and heterogeneous medium was proposed and validated (Mitsuhashi et 

al., 2017). In that work, a discrete forward operator (i.e., imaging model) and an associated 

adjoint operator for transcranial PACT were implemented based on the 3D elastic wave 

equation. The adjoint operator was validated and employed as a reconstruction operator to 

compensate for aberrations introduced by the skull. Even though the adjoint operator may 

perform better than existing filtered BP methods in compensating for the acoustic and elastic 

properties of the skull, the use of the adjoint operator as a reconstruction operator possesses 

limitations. For instance, for a lossy medium and/or a sparsely sampled measurement 

aperture, the adjoint operator is not a good approximation of the inverse operator.

Furthermore, the use of an adjoint operator as a reconstruction operator does not provide a 

general framework for incorporating regularization that can help mitigate the effects of 

measurement noise and incomplete measurement data. Hence, the use of the adjoint operator 

to directly reconstruct images can reault in suboptimal contrast and suboptimal tradeoffs 

between image variance and spatial resolution. The use of the optimization-based image 

reconstruction methods proposed in this work can help circumvent these shortcomings. In 

other works, the adjoint of the continuous wave operator, which describes the propagation of 

PA waves in linear isotropic viscoelastic media has been proposed (Javaherian and Holman, 

2018). Such studies have not explored image reconstruction problems with realistically sized 

3D volumes or utilized experimentally acquired data.

In transcranial PACT, the head is illuminated from the outside with a near-infrared optical 

pulse resulting in the generation of acoustic pressure signals via the photoacoustic effect. As 

the scalp vessels can strongly absorb the illuminated light, only a small fraction of the 

illuminated light or optical fluence makes its way to the cortex resulting in the generation of 

initial pressure distribution in the cortex. Hence, there is a large difference in amplitude 

between the photoacoustically induced initial pressure distribution in the cortex and the 

photoacoustically induced initial pressure distribution in the scalp. Thus, spatially resolving 

the weak cortical structures from the strong scalp or superficial structures pokes a significant 

challenge for image reconstruction (Nie et al., 2012). A challenge for any transcranial PACT 

reconstruction algorithm is to be able to accurately reconstruct the cortical structures in the 

presence of large di8erences in amplitude between the initial pressure distribution generated 

in the cortex and the initial pressure distribution generated in the scalp. Furthermore, in most 

transcranial PACT image reconstruction algorithms it is assumed that the acoustic properties 

of the skull are known accurately beforehand. However, such information may be difficult to 

obtain in practice. Any inaccuracies in modeling the acoustic properties of the skull will be a 

source of model mismatch error in conventional image reconstruction algorithms. Thus, an 

additional challenge for a transcranial PACT reconstruction algorithm is to be able to 

robustly model errors arising from inaccurate modeling of the acoustic characteristics of the 

skull.

Given the previously developed numerical framework for implementing the forward-adjoint 

operator pair (Mitsuhashi et al., 2017), a natural topic of investigation in to explore the use 

of these operators in studies of optimization-based image reconstruction. Hence, in this work 
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a modern optimization-based iterative image reconstruction algorithm for transcranial PACT 

in proposed and its performance in overcoming the aforementioned challenges is evaluated 

through computer-simulation and experimental studies. The computer-simulation studies 

explore the robustness of the optimization-based image reconstruction algorithm to noise as 

well as the model mismatch errors. In the presence of large differences in amplitude between 

the initial pressure distribution generated in the scalp and the initial pressure distribution 

generated in the cortex, the performance of the optimization-based reconstruction method 

(OBRM) in accurately spatially resolving the cortical and superficial structures is also 

investigated through computer-simulation and experimental studies.

The article is organized as follows. In Section 2, the physics of elastic wave propagation in 

elastic media is reviewed along with the modern optimization-based formulation of the 

image reconstruction problem. A description of the computer-simulation studies and a 

discussion of the corresponding results is provided in Section 3. In Section 4, the 

experimental phantom studies are described and the article concludes with a summary in 

Section 5.

2. Background

2.1. Photoacoustic wavefield propagation: Continuous and discrete formulation

Let the photoacougtically-induced stress tensor at location r ∈ ℝ3 and time t ≥ 0 be defined 

as

σ r, t ≡
σ11 r, t σ12 r, t σ13 r, t
σ21 r, t σ22 r, t σ23 r, t
σ31 r, t σ32 r, t σ33 r, t

, (1)

where σij (r, t) represents the stress in the ith direction acting on a plane perpendicular to the 

jth direction. Additionally, let p0(r) denote the photoacoustically-induced initial pressure 

distribution within the object, referred to as the object function, and let 

u̇ r, t ≡ u̇1 r, t , u̇2 r, t , u̇3 r, t  represent the vector-valued acoustic particle velocity. Here, 

ρ(r), λ(r), and µ(r) represent the spatial distribution of the medium’s density and the spatial 

distribution of the Larne parameters, respectively. The compressional and shear wave 

propagation speed are given by cl r = λ r + 2μ r
ρ r  and cs r = μ r

ρ r , respectively. The object 

function p0(r) and all functions that describe the elastic isotropic medium are assumed to be 

bounded with compact supports. Here, we model acoustic absorption of the skull by a 

diffusive absorption model (Moczo et al., 2007). The diffusive absorption model assumes 

that the wavefield absorption is independent of temporal frequency; this model does not 

accurately describe the power law based frequency-dependent absorption characteristics of 

soft tissue and bone (Szabo, 1994; Treeby and Cox, 2014). This model, however is 

sufficiently accurate in cases where the bandwidth of the photoacoustic signals is limited. 

Moreover the model also assumes that the shear absorption to compressional absorption 

ratio is given by the compressional velocity to shear velocity ratio. This is approximately 

true in bone, because slower shear waves are, in fact, more attenuated than faster 
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compressive waves (Pinton et al., 2011). The model also assumes that for fluid media (soft 

tissue), the diffusive absorption value only describes the absorption of compressional waves 

as ‘shear waves are not supported in fluid media.

In a heterogenous isotropic elastic medium with a diffusive acoustic absorption distribution 

α(r), the propagation of u̇ r, t  and σ(r, t) can be modeled by the following two coupled 

equations (Boore, 1972; Virieux, 1986; Madariaga et al., 1998; Alterman and Jr., 1968):

∂tu̇ r, t + α r u̇ r, t = 1
ρ r ∇ ⋅ σ r, t (2a)

∂tσ r, t = λ r tr ∇u̇ r, t I + μ r ∇u̇ r, t + ∇u̇ r, t T (2b)

subject to the initial conditions

σ0 r ≡ σ r, t
t = 0

= − 1
3 p0 r I, u̇ r, t

t = 0
= 0. (2c)

Here, tr (·) is the operator that calculates the trace of a matrix and I ∈ ℝ3 × 3 in the identity 

matrix. In Eq. (2c), the object function p0(r) is assumed to be compactly supported in a fluid 

medium where the shear modulus µ(r) = 0. Hence, the formulation of the initial value 

condition assumes that there are no optical absorbers inside the elastic solid.

Consider that p r0, t = tr σ r0, t  is recorded outside the support of the object for r0 ∈ ∂Ω

and t ∈ 0, T , where ∂Ω ⊂ ℝ3 denote a measurement aperture. In this case, the imaging 

model can be described by a continuous-to-continuous (C-C) mapping as:

p r0, t = ℳℋp0 r , (3)

where r ∈ Ω and ℋ:L2 Ω L2 Ω × 0, T  in a linear operator that denotes the action of the 

wave equation given in Eq. (2). Moreover, p r0, t ∈ L2 ∂Ω × 0, T  denotes the measured data 

function, and the operator ℳ is the restriction of ℋ to ∂Ω × 0, T .

In practice, the detected pressure wavefield is discretized temporally and spatially at specific 

transducer locations. Let p ∈ ℝNrL denote the discretized pressure signal, where Nr 

represents the number of transducers and L represents the total number of discrete temporal 

samples. In the imaging model described in Eq. (3), the effects of the acousto-electrical 

impulse response (EIR) as well as the spatial impulse response (SIR) of the transducer have 

been ignored. However, the transducer responses can be incorporated into the imaging 

model readily (Huang et al., 2013). A continuous-to-discrete (C-D) PACT imaging model, 

can be generally expressed as

p kL + l = p r, t r = r0
k, t = lΔt (4)
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for k = 0, 1, 2, …, Nr, — 1 and l = 0, 1, 2, …, L — 1. Here, ∆t is the temporal sampling 

interval and the vectors r0
k ∈ ℝ3, k = 0, 1, 2, …, Nr − 1, represent the position vectors of the 

Nr, receivers on the aperture ∂Ω.

To obtain a discrete-to-discrete (D-D) imaging model for use with OBRM, finite-

dimensional approximate representations of the object function p0(r) and the material 

parameters ρ(r), α(r), λ(r), and µ(r) need to be introduced. In this study, the numerical 

method employed to solve the wave equation in Eq. (2) was a 10th-order staggered grid 

finite difference time domain (FDTD) scheme. Note that for the staggered finite-difierence 

(FD) scheme, the material properties, stress, and particle velocity functions are sampled at 

different points of a staggered FDTD cell as shown in Fig. 1. Let ρ, α, λ, µ, and p0 ∈ ℝN be 

the finite dimensional representations of ρ(r), α(r), λ(r), µ(r) and p0(r) respectively, where 

N is the total number of grid points on the 3D grid. For a given ρ, α, λ, µ, and p0, the FDTD 

method for solving the elastic wave equation can be described in operator form as

p = Mℍp0, (5)

where ℍ ∈ ℝNL × N is the discrete approximation of the wave operator ℋ that solves the 

initial value problem defined in Eq. (2) and M ∈ ℝNrL × NL is a sampling matrix that maps 

pressure data sampled on the computational grid onto the transducer locations. In this study, 

the transducers are assumed to be point-like and thus when the receiver and grid point 

locations do not coincide, an interpolation method is required. In this study, the elements of 

M are chosen such that trilinear interpolation is performed. The goal of image reconstruction 

in a discrete setting is to determine an estimate of p0 given the measured data p and the 

forward model in Eq. (5).

In our previous work, the use of the adjoint operator as a reconstruction operator was 

investigated (Mitsuhashi et al., 2017). The reconstructed estimate of p0 obtained by use of 

the adjoint operator is given by

p0 = ℍTMTp . (6)

2.2. Optimization-based image reconstruction method (OBRM)

By use of the proposed D-D imaging model defined in Eq. (5), a variety of OBRMs can be 

employed for determining estimates of p0. In this work, we utilize an iterative reconstruction 

algorithm that seeks to compute penalized least squares estimates (PLS) by solving

p0 = argmin
p0 ≥ 0

p − Mℍp0
2

2
+ γℛ p0 , (7)

where γ is a regularization parameter and ℛ p0  is a regularizing penalty term. In the studies 

below, the total variance (TV) semi-norm penalty, given by

Poudel et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℛ p0 = p0 TV

= ∑
n = 1

N
p0 n − p0 n1− 2 + p0 n − p0 n2− 2 + p0 n − p0 n3− 2

1
2
,

(8)

was employed. Here, [p0]n denotes the nth grid node, and [p0]n1-, [p0]n2-, and [p0]n3- are the 

neighboring nodes before the nth node along the first, second and third dimension, 

respectively. The fast iterative shrinkage/thresholding algorithm (FISTA) with backtracking 

linesearch and adaptive restart was employed to solve the optimization problem in Eq. (7) 

(Beck and Teboulle, 2009a; Beck and Teboulle, 2009b; Beck, 2014; O’donoghue and 

Candes, 2015).

3. Computer-simulation studies

The performance and robustness of the proposed OBRM was initially evaluated by use of 

computer-simulation studies as described below. Additionally, computer-simulation studies 

that assess the performance of the OBRM in the presence of measurement noise and the 

effects of TV regularization are summarized in Appendix A.

3.1. Resolution of superficial and cortical structures

As a consequence of the large differences in amplitude between the initial pressure 

distribution generated in the cortex and the initial pressure distribution generated in the 

scalp, spatially resolving the weak cortical structures from the strong scalp or superficial 

structures poses a significant challenge for transcranial image reconstruction (Nie et al., 

2012). A computer-simulation study was performed to evaluate the performance of the 

proposed OBRM in accurately reconstructing cortical structures in the presence of strong 

absorbers in the scalp.

3.1.1. Methods—To study the performance of the OBRM in resolving scalp and cortical 

structures, the numerical blood vessel phantom shown in Fig. 2 was employed. The 

superficial blood vessels located in the scalp and the cortical vessels are visible in the 

maximum intensity projection (MIP) images. For display purposes, the dynamic range was 

adjusted so that the cortical vessels are visible; as a result, the superficial vessels appear 

saturated. The optical fluence ratio between the superficial and cortical vessel was assumed 

to be 50 (Nie et al., 2012). Hence, the ratio of initial pressure distribution between 

superficial and cortical blood vessels in the phantom shown in Fig. 2 was set to 50. A 3D 

computational volume of 408.0 mm × 408.0 mm × 190.2 mm was employed. A 3D 

approximately hemispherical measurement system, as shown in Fig. 3(a), was emulated. The 

measurement system consisted of a total 38400 transducers distributed evenly across 64 

rings. The measurement system was similar to the experimental system used for acquisition 

of pressure data as described in Section 4. The position of the measurement system with 

respect to the skull is shown in Fig. 3(b).
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A 3D X-ray CT image of an intact human skull was utilized to generate the isotropic, elastic 

medium employed for the simulation studies. The CT images of the skull were employed to 

infer the thickness and contour of the skull and place it within the 3D simulation volume. 

For this set of simulation studies, the skull was assumed to be an acoustically homogeneous. 

In reality, however the skull bone is acoustically heterogeneous and consists of three 

relatively homogeneous layers: the outer table, inner table and the central diploe layer 

(Sadleir and Argibay, 2007; Marieb, 2011).

In order to extract the contour and location of the skull from CT images, a segmentation 

algorithm was employed. The segmentation algorithm generated a binary mask specifying 

the location of the skull within the 3D volume. The value of the medium parameters in the 

3D volume were assigned such that the skull acoustic parameters (ρ = 1850 kg
m3 , ct = 3.0mm

μs , 

cs = 1.48mm
μs  and α = 0.75 1

μs ) were set at all grid positions where the mask was equal to one 

and the background acoustic parameters (ρ = 1000 kg
m3 , ct = 1.5mm

μs , cs = 0.0mm
μs  and α = 0.0 1

μs ) 

were set all grid positions where the mask was equal to zero. At the material interface 

between the skull and the background fluid medium, the density and the absorption values 

were averaged to avoid any instability with the FDTD wave equation solver (Moczo et al., 

2007).

Different discretization strategies were employed to generate the simulated pressure data and 

to reconstruct the initial pressure distribution, thereby avoiding inverse crime (Colton and 

Kress, 2013). The simulated pressure data were generated by use of a spatial grid size of ∆x 
= 0.225 mm and a temporal sampling rate of 50 MHz. The simulated pressure data were 

corrupted white Gaussian noise with a standard deviation 10 percent of the maximum 

amplitude of cortical signals.

3.1.2. Results—The MIP images of the 3D volumes reconstructed by use of the adjoint 

operator and the OBRM are shown in Figs. 4(a) to 4(c) and Figs. 4(d) to 4(f), respectively. 

Each column of images represents the MIPs of the reconstructed initial pressure distribution 

along the x-, y- and z-axes, respectively. All images were reconstructed with a uniform 

spatial grid sampling of ∆x = 0.3 mm. From Figs. 4(a) to 4(c), it is observed that the images 

produced by use of the adjoint operator do not clearly reveal the cortical vessels. This is 

because the bleed down effect from the superficial structures overwhelms the signal from the 

cortical structures. However this is not the case in the images reconstructed by use of the 

OBRM, as shown in Figs. 4(d) to 4(f). In these images, the superficial vessels are accurately 

resolved because the strong signals from the superficial vessels are spatially separated and 

do not overwhelm the cortical vessels. The OBRM was successful in improving the 

resolution of the superficial structures, thereby reducing the amount of contamination that 

affects the cortical structures. Hence, compared to the images reconstructed by use of the 

adjoint operator, the cortical vessels are prominent and visible in the images reconstructed 

by use of the OBRM.
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3.2. Model mismatch studies

The proposed OBRM requires that the acoustic properties of the skull are known. However, 

such information may be difficult to obtain in practice. Any inaccuracies in modeling the 

acoustic properties of the skull will be a source of model mismatch error in Eq. (5). Model 

mismatch errors can result in artifacts in the reconstructed images. Hence, in this section, 

computer-simulation studies were conducted to evaluate the robustness of the proposed 

OBRM to model mismatch.

There are at least two major types of skull model errors/mismatches that are challenging to 

account for in OBRM. The first source of model mismatch resides in the inaccuracies in 

modeling the frequency-dependent absorption characteristics of the skull (White et al., 2006; 

Fry, 1978). In transcranial PACT imaging applications, the acoustic absorption is not 

negligible. In the initial value problem described in Eq. (2), the acoustic absorption within 

the skull was described by a diffusive absorption model (Aubry et al., 2003). The model 

ignores the fact that the wavefield absorption within the skull is dependent on the temporal 

frequency of the PA signals (White et al., 2006). This approximation, however, may be only 

reasonable for cases where the bandwidth of the PA signals are limited (Aubry et al., 2003). 

Computer-simulation studies were performed to explore the feasibility of the proposed 

OBRM when there was significant model mismatch with respect to accurately modeling the 

acoustic absorption characteristics of the skull.

The second major source of model mismatch that we commonly encounter originates from 

the failure to model the presence of acoustic heterogeneities within the skull. Various 

adjunct imaging data based methods as well as joint reconstruction methods can be 

employed to account for acoustic variations in the skull in the proposed optimization-based 

image reconstruction framework (Matthews et al., 2018; Poudel et al., 2018; Huang et al., 

2016). A study of these techniques is beyond the scope of this study.

3.2.1. Methods—To study the impact of model mismatch associated with acoustic 

absorption, the cortical blood vessel phantom shown in Fig. 5 was employed. The forward 

pressure data were generated employing a skull model that had linear frequency-dependent 

absorption characteristics. The linear dependence of the compressional wave absorption 

value with respect to frequency is shown in Fig. 6(a). The slope of the linear frequency-

dependent was 16 dBcm−1MHz−1. The shear wave absorption value is dependent on the 

ratio between the compressional speed and shear speed. hence, for the configuration 

described in Fig. 6(a), the shear wave absorption characteristics will be linear with respect to 

frequency and will have a slope of 32 dBcm−1MHz−1.

In order to generate the simulated pressure data that modeled the frequency-dependent 

absorption characteristics of the skull, multiple runs of the imaging model with different 

diffusive absorption values had to be performed. This is due to the fact that the imaging 

operator in Eq. (5) assumed a diffusive absorption model where the absorption coefficient 

value is independent of frequency of PA signals. In order to account for the frequency-

dependent absorption characteristics of the skull, multiple runs of the imaging operator and 

filtering operations need to be performed. A schematic describing the generation of the 

forward pressure data from a skull model with frequency-dependent absorption 
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characteristics is shown in Fig. 6(b). The set of discrete diffusive absorption coefficient 

values αi i = 0
Nbin − 1

 used to generate the forward data are given by αi = α0fi, where α0 is the 

linear slope value of the frequency-dependent absorption model. Here, Nbin are the number 

of frequency bins and fi represents the central frequency of the each bin. Let ∆f be the size 

of each frequency bin. To generate the pressure data, the frequency spectrum was discretized 

into different bins and the corresponding diffusive absorption value is assigned based on the 

central frequency of the bin. Hence, each frequency band was assigned its own constant 

diffusive absorption coefficient value that was calculated based on the frequency-dependent 

absorption characteristics shown in Fig. 6(a). Subsequently, pressure data corresponding to 

each of the diffusive absorption value αi were generated using the imaging model ℍ αi . 

Here, ℍ αi  represents the D-D imaging model when the diffusive acoustic absorption value 

of the skull was set to αi. The pressure data corresponding to each fi are then subsequently 

filtered and summed to generate the final pressure data. Hence, the final pressure data 

contains contribution from all the frequency bands that have been appropriately weighted 

based on the action of the imaging operator ℍ αi  and the filtering operation. For the 

simulation studies, we assume Nbin = 10 and ∆f = 0.2 MHz.

The same 3D computational volume and the measurement geometry employed in Section 

3.1 were utilized. Furthermore, different discretization strategies were employed to generate 

the simulated pressure data and to reconstruct the initial pressure distribution. The simulated 

pressure data were generated using a spatial grid size of ∆x = 0.225 mm and a temporal 

sampling rate of 50 MHz. The simulated pressure data were corrupted with white Gaussian 

noise with a standard deviation 5 percent of the maximum amplitude of cortical signals 

before the application of the reconstruction method. The OBRM employed a diffusive 

absorption model with a fixed skull absorption coefficient for image reconstruction. All 

other acoustic properties of the skull other than the absorption coefficient value were 

assumed to be known.

3.2.2. Results—The MIPs of the 3D images reconstructed by use of the OBRM are 

shown in Fig. 7. Each column of images represent the maximum intensity projections of the 

reconstructed initial pressure distribution along the x-, y- and z-axes, respectively. Each row 

of Fig. 7 displays images reconstructed with a different diffusive absorption value. All the 

reconstruction was performed with a spatial grid sampling of ∆x = 0.3 mm. From Fig. 7, one 

can observe that the minimum root mean square error (RMSE) was obtained for the initial 

pressure distribution reconstructed with a diffusive absorption value of α = 0.75 1
μs . The 

optimal value of the diffusive absorption value of α = 0.75 is associated with a central 

frequency of 0.5 MHz and the frequency bin of [0.4 MHz, 0.6MHz]. The optimal diffusive 

absorption value is defined as the diffusive absorption value associated with the OBRM that 

produced images with the lowest RMSE. The optimal absorption value was associated with 

the frequency band that contains the most energy in the measured pressure data. From the 

results, one can observe that the model mismatch due to inaccuracy in modeling for 

frequency-dependent characteristics of the skull can be accounted for by using a diffusive 

absorption model, as long as the diffusive absorption value is representative of the dominant 

Poudel et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frequency band in the measured pressure data. The line profiles through the reconstructed 

3D images, shown in Fig. 9(a), also emphasize these observations.

The MIPs of the reconstructed 3D images reconstructed by use of the adjoint operator are 

shown in Figs. 8(a) to 8(c). The adjoint operation was performed with the optimal diffusive 

absorption value of α = 0.75 1
μs . From Fig. 7 and Figs. 8(a) to 8(c), the contrast of the images 

obtained using the adjoint as the reconstruction operator is observed to be poor compared to 

the images obtained using the OBRM. The sharp difference in contrast can be also be 

observed by comparing the line profiles through the reconstructed images shown in Fig. 

9(b).

In summary, one can observe that the impact of the failure to model the frequency-dependent 

absorption characteristics of the skull results in blurring of the reconstructed images. 

However, the impact of model mismatch errors on the accuracy of the reconstruction can be 

minimized by employing diffusive absorption value associated with the dominant frequency 

band in the measured pressure data. This conclusion was confirmed by calculating at the 

RMSE of the reconstructed pressure distribution with different diffusive absorption values.

4. Experimental studies

In this section, studies that utilized experimental PACT data produced by use of a physical 

phantom are presented. Two sets of experimental PACT data were employed to validate the 

proposed OBRM. The experimental phantoms and the setup employed to acquire the 

measurement data are described below.

4.0.1. Phantoms

The design of the physical phantom employed for the experimental studies was motivated by 

transcranial PACT. The phantom was comprised of a spherical acrylic globe of thickness of 

2.5 mm and an inner radius of 76.2 mm, placed within a 3D volume filled with water. The 

acrylic globe is an elastic solid that possesses acoustic property values that are representative 

of a human skull.

For the experimental studies, two configurations of optical absorbing vessel-like structures 

were employed with the acrylic globe. In the first configuration, referred to as phantom #l, 

optically absorbing vessel-like structures were painted on the inner surface of the acrylic 

globe, as shown in Fig. 10. These vessels were intended to mimic cortical vessels that reside 

near the top surface of a brain. Some of the cortical vessels painted on the acrylic globe have 

been labeled in Fig. 10 and will be referred to in the subsequent discussions. In the second 

configuration, also referred to as phantom #2, strips of superficial absorbers were placed 

outside the acrylic globe along with cortical vessels of phantom #l as shown in Fig. 11. 

Hence, the experimental data obtained from illuminating phantom #2 mimicked the more 

realistic Scenario described in Section 3.1 whereby the PACT data were generated from 

cortical aa well as superficial structures.
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4.0.2. System

A 64 element transducer arc was scanned over 600 evenly distributed locations in the 

azimuthal direction in an approximately hemispherical configuration as shown in Fig. 12 to 

acquire the experimental data. The location of the acquisition system with respect to the 

acrylic globe is shown in Fig. 12(a). A short 6 ns laser pulse (Nd-YAG Quantel Brilliant B 

laser) with a repetition rate of 10 Hz at a wavelength of 1064 nm was used to irradiate a 

sample located in the center of the measurement system as shown in Fig. 12(a). The 

generated acoustic signals were detected by unfocused transducers, with a center frequency 

of 1 MHz and a −6 dB fractional bandwidth of 80 %. The electrical signals recorded by the 

transducers were sampled at a temporal sampling rate of 25 MHz. This system was 

employed to image the physical phantoms.

4.0.3. Data preprocessing

Prior to image reconstruction, the measured data were preprocessed. The preprocessing 

involved deconvolving the acquired EIR of the transducer. The Wiener deconvolution 

method was employed to estimate the deconvolved PA signals from the raw electrical 

transducer measurements. After deconvolution, the data were filtered with a Hann-window 

low-pass filter with a cutoff frequency of 2 MHz. The filtered data were also upsampled by a 

factor of 2.5, with the goal of circumventing numerical stability issues with the wave 

equation solver.

4.1. Results—When employing either the adjoint operator or the OBRM for image 

reconstruction, the acoustic parameters of the acrylic globe were set to be ρ = 1200 kg
m3 , 

cl = 2.8m m
μs , cs = 1.4mm

μs α = 0.1 1
μs . Similar to the computer-simulation study, at the material 

interface between the globe and the background fluid medium, the density and the 

absorption values were arithmetically averaged to avoid any instability issues with the 

FDTD wave equation solver. The images reconstructed from experimental data are shown in 

Figs. 13 and 14. The first set of results shown in Fig. 13 corresponds to an experiment where 

the pressure data were generated by illuminating phantom #l. Each column of images shown 

in Fig. 13, corresponds to 2D maximum intensity projections of the reconstructed 3D 

volume along three mutually perpendicular directions. The first row of images shown in Fig. 

13 corresponds to images reconstructed by use of the adjoint operator while the second row 

of images corresponds to images reconstructed by use of the OBRM with no regularization.

The vessels in the reconstructed images in Fig. 13 are given the same labels (v1, v2, v3) as 

the vessels shown in Fig. 10 to facilitate comparison between the reconstructed images and 

the photographic images. Similar to the computer-simulation studies, the contrast of the 

images reconstructed by use of the OBRM, shown in Figs. 13(d) to 13(f), is significantly 

higher compared to that of the images reconstructed by use of the adjoint operator shown in 

Figs. 13(a) to 13(c). The contrast was quantitatively evaluated in 3D region demarcated by 

the red bounding box shown in Fig. 13. The contrast was evaluated by dividing the 

difference in mean signal intensity of the vessel structure and the background in the selected 

3D volume and dividing it by the variance of the background signal. It was found that the 

contrast of the image reconstructed by use of the the OBRM was 12.6 compared to a 
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contrast of 3.2 for the image reconstructed by use of the adjoint operator. Hence, an 

improvement of contrast by a factor of approximately 4 was observed when the image was 

reconstructed by use of the OBRM as opposed to reconstructed by use of the matched 

adjoint operator. Furthermore, one can observe vessel like structures labelled v1, v2, v3 

towards the outer periphery of the images are distinctly visible in the images reconstructed 

by use of the OBRM while the same structures are not in the images reconstructed by use of 

the adjoint operator. The results in Fig. 13 demonstrate that the use of OBRM to reconstruct 

initial pressure distribution within an elastic media can lead to significant improvement in 

image quality compared to the images generated using the adjoint operator. The second set 

of experimental resu1tg corresponding to pressure data generated by illuminating phantom 

#2 is shown in Fig. 14. Each column of images shown in Fig. 14 have been generated by 

performing MIP of the reconstructed 3D volume along three mutually perpendicular 

directions. In addition, the first row of images shown in Fig. 14 corresponds to images 

reconstructed by use of the adjoint operator while the second row of images corresponds to 

images reconstructed by use of the OBRM with no TV regularization. In the images 

reconstructed by use of the adjoint operator as shown in Figs. 14(a) to 14(c), the signals 

from the superficial structures spread into the cortical region to considerably degrade the 

image quality of the reconstructed cortical structures. In the computer-simulation results 

obtained using the adjoint as a reconstruction operator, the cortical structures were not 

visible as they were completely overwhelmed by signals from the superficial structures. In 

the images reconstructed by use of the adjoint operator from the experimental data, the 

signal from the superficial structures do not overwhelm the cortical structures to the same 

extent as shown in the images reconstructed with the use of the adjoint operator in the 

computer-simulation studies. This is due to the fact that the acrylic globe is far less 

absorbing than a human skull. Hence, the fluence mismatch in the experimental setup using 

a acrylic skull is not high enough for the signals from the superficial structures to completely 

overwhelm the cortical vessels in the images reconstructed by use of an adjoint operator.

However, the signals from the superficial structures that contribute to obscuring the cortical 

structures, is significantly mitigated in the images reconstructed with the aid of the OBRM, 

as shown in Figs. 14(d) to 14(f). The vessel like cortical structures are much more clearly 

visible in the images reconstructed by use of the OBRM as compared to the images 

reconstructed by use of the adjoint operator. Hence, the results in Fig. 14 demonstrate that 

the OBRM is effective in accurately resolving the superficial structures and is successful in 

mitigating the signals from superficial structures that contribute to obscuring the cortical 

structures. This leads to significant improvements in image quality of the reconstructed 

cortical structures when employing the OBRM as compared to the adjoint operator.

5. Conclusion

In this work, an OBRM for use in transcranial PACT was proposed and investigated. The 

proposed method was based on the 3D elastic wave equation that accurately modeled the 

physics of acoustic wave propagation in linear, isotropic elastic lossy, heterogeneous media. 

Such modern reconstruction methods allow for accurate modeling of the imaging physics 

and provide a general framework to incorporate regularization, which can help mitigate the 

effects data incompleteness, model mismatch and noise. The proposed OBRM was validated 
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and investigated in computer-simulation and experimental phantom studies whose designs 

were motivated by transcranial PACT applications.

The computer-simulation and experimental studies compared and contrasted the 

performance of the OBRM and the adjoint as a reconstruction operator. The results from the 

studies demonstrated that the use of adjoint as a reconstruction operator yielded 

reconstructed images that possessed suboptimal contrast. The images reconstructed by use 

of the OBRM had improved contrast and also allowed for flexibility in reconstructing 

images with improved tradeoff between image variance and spatial resolution. Furthermore, 

the robustness of the OBRM to model mismatch was also studied. The model mismatch 

associated with failure to model accurately the acoustic absorption capabilities of the skull 

was explored through computer-simulation studies. The results demonstrated that when 

employing the OBRM, the failure to model the frequency-dependent characteristics did not 

have a significant effect on the reconstructed image quality when an appropriate diffusive 

absorption coefficient value was employed, that corresponded to the dominant frequency 

band in the measured pressure data.

A challenge for any transcranial PACT reconstruction algorithm is to be able to accurately 

reconstruct the cortical structures in the presence of large differences in amplitude between 

the initial pressure distribution generated in the cortex and the initial pressure distribution 

generated in the scalp. Hence, computer-simulation studies and experimental phantom 

studies were conducted to explore the feasibility of the proposed OBRM in resolving 

superficial and cortical structures. The results from both computer-simulation and 

experimental phantom studies demonstrated that the OBRM is effective in accurately 

resolving the superficial structures and cortical structures. The significant improvement in 

the image quality of the cortical structures when employing the OBRM was more 

pronounced when the difference in optical fluence between the scalp and the cortex was 

high.

There remain several important topics for further investigation. One of the major sources of 

model mismatch that we commonly encounter in transcranial PACT originates from the 

failure to model the presence of acoustic heterogeneities within the skull. Therefore, future 

studies should work towards formulation of joint reconstruction problem for transcranial 

PACT applications. In such joint reconstruction formulations, the optimization-based 

reconstruction procedure can be employed to reconstruct both the initial pressure 

distribution and the spatial distribution of the skull acoustic parameters concurrently.

Acknowledgments

This work was supported in part by National Institutes of Health grants R01 NS102213, U01 NS099717 and 
5T32EB01485505.

Appendix A.: General reconstruction studies

The performance of the OBRM with varying TV regularization parameters was evaluated in 

the presence of measurement noise. The performance of the OBRM was evaluated by 

comparing the image quality of the iteratively reconstructed images with different 
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regularization parameters with that of images reconstructed by use of the matched discrete 

adjoint operator. Although employing the matched discrete adjoint operator as a 

reconstruction operator allows one to compensate for the presence of elastic media such as 

the skull, it is ineffective in compensating for measurement noise and also yields images 

with suboptimal contrast.

Methods

The initial pressure distribution employed in the simulation studies mimicked cortical blood 

vessels (CBVs). The numerical phantom, shown in Fig. 5, consisted of CBVs positioned 

approximately 6 mm below the inner surface of the skull. The 2D maximum intensity 

projection images along the x-, y-, and z-axes of the initial pressure distribution are shown in 

Fig. 5. The same 3D computational volume and the measurement geometry employed in 

Section 3.1 were utilized. In addition, the skull model described in Section 3.1 was used to 

simulate the pressure data. The simulated pressure data were generated using a spatial grid 

sampling of ∆x = 0.225 mm and a temporal sampling rate of 50 MHz The simulated 

pressure data were corrupted with white Gaussian noise with a standard deviation 5 percent 

of the maximum amplitude of cortical signals before the application of the reconstruction 

operator.

Results

The MIP of the reconstructed 3D images using the OBRM are shown in Fig. Al. Each 

column of images represent the MIP of the reconstructed initial pressure distribution along 

the x-, y- and z-axes, respectively. Each row of images in Fig. A1 were reconstructed with a 

different TV regularization parameter value γ. The reconstruction algorithm was performed 

with a spatial grid sampling of ∆x = 0.3 mm.

The images reconstructed by use of the OBRM with different TV regularization parameter 

values show that with increased regularization, the images get less noisy along with getting 

increasingly blurred. Hence, the tradeoff between variance and spatial resolution with 

different regularization parameter values is illustrated by comparing the reconstructed 

images shown in Fig. Al. The line profiles through the reconstructed 3D images, shown in 

Fig. 3(a), also illustrate the impact of TV regularization on the mitigation of noise in the 

reconstructed image. The root mean square error (RMSE) between the original initial 

pressure distribution and the reconstructed initial pressure distribution is shown on the image 

corresponding to the projection along x-axis in Fig. Al. The minimum RMSE was obtained 

for the initial pressure distribution reconstructed with a TV regularization parameter value of 

γ =0.05.

The MIP of the reconstructed 3D images using the adjoint as the reconstruction operator is 

shown in Figs. 2(a) to 2(c). From the images shown in Fig. A1 and Figs. 2(a) to 2(c), we can 

observe that the contrast of the images obtained using the adjoint operator as the 

reconstruction operator is poor compared to the images obtained using the OBRM. The 

sharp difference in contrast can be also be observed by comparing the line profiles through 

the reconstructed images shown in Figs. 3(a) and 3(b). Owing to the lack of regularization in 
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the adjoint formulation, the images reconstructed by use of the adjoint operator are noisy 

and have poor image quality.
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Figure Al: 
The MIPs of the reconstructed 3D initial pressure distribution by use of the OBRM. The first 

row of images corresponds to images reconstructed with a TV regularization value of γ = 0, 

the second row of images corresponds to images reconstructed with a TV regularization 

value of γ = 0.05 and the third row of images corresponds to images reconstructed with a 

TV regularization value of γ = 0.1. Each column of images corresponds to MIP projections 

along x-, y-, and z-axes, respectively.
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Figure A2: 
The maximum intensity projections of the reconstructed 3D initial pressure distribution 

using the adjoint operator along (a) x-, (b) y-, and (c) z-axes, respectively.
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Figure A3: 
The line profiles through the 3D volumes reconstructed by use of the (a) the OBRM with 

different valuea of TV regularization parameters. (b) The line profile through the 3D volume 

reconstructed using the adjoint operator is compared with the line profile of the 3D volume 

reconstructed with the OBRM (γ = 0.05).

Appendix B.: OBRM algorithm

The proposed OBRM is described in detail in Algorithm 1. Since, the regularization term is 

non-smooth, the use of accelerated proximal gradient-based methods like, FISTA, can be 

employed to solve the optimization problem. The following notation to describe the 

proximal operator of a scaled function κf, wheres κ > 0, is employed to describe the 

algorithm

proxkf v ≡ argmin
x

f x + 1
2k x − v 2

2 . (B.1)

For brevity, the following notation is employed

The data fidelity term, F p0 ≡ 1
2 g − Mℍp0 2

2
(B.2)

Gradient of the fidelity term, G p0 ≡ ℍTMT Mℍp0 − g (B.3)

The cost function, C p0 ≡ F p0 + γℛ p0 (B.4)
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The algorithm described in Algorithm 1 has a number of advantages over alternative first-

order optimization methods. First-order optimization methods refer to the set of methods for 

which the computation of the descent direction involves a linear or first order taylor 

approximation of the cost function. Hence, information about the gradient of the function is 

employed to compute the descent direction. The FISTA method belongs to a subset of the 

first-order methods called the proximal-gradient methods that permits the use of non-smooth 

regularization terms, such as the TV semi-norm. Furthermore, it also belongs to a family of 

optimization methods that for weakly convex optimization problems achieves the optimal 

asymptotic convergence rate (Beck and Teboulle, 2009a; Beck and Teboulle, 2009b; Beck, 

2014). Namely, for a weakly convex function C(p0) FISTA obtains the convergence rate

C p0
k − min

p0
k

C p0
k ≈ O 1

k2 (B.5)

where k is the iteration number and p0
k  is the estimate of the sought-after quantity for the k-

th iteration. The problem given by Eq. (7) represents a weakly convex optimization problem 

whenever ℍ is not full rank and ℛ θ  is convex.
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Algorithm 1 Adaptive FISTA with backtracking

Input: Initial guess to the initial pressure distribution p0
0 , Measured data g,

Stopping criterion for the cost function ϵ
Initial Lipschitz constant value for the linesearch algorithm L0, and
Scaling factor for the linesearch algorithm η .

Output:p0 .
1: k 0, where k is the iteration number .
2: t0 1, ϵF ∞
3: while ϵ < ϵF do

4: Compute G k ℍTMT Mℍp0
k − g

5: ik 0, where ik is the linesearch iteration number
6: done false
7: while not done do

8: Lik ηikL0
9:

Q k prox γ
Lik

ℛ p0
k −

G p0
k

Lik
− p0

k , G p0
k

+
Lik
2 prox γ

Lik
ℛ p0

k −
G p0

k

Lik
− p0

k

2

2

10: if F prox γ
Lik

ℛ p0
k −

G p0
k

Lik
≤ F p0

k + Q k then

11: done true
12: L Lik
13: end if
14: ik ik + 1
15: end if

16: p0
tmp p0

k

17: p0
k p0

k −
G p0

k

L

18: tk + 1
1 + 1 + 4tk

2

2 and p0
k + 1 p0

k +
tk − 1
tk + 1 p0

k − p0
k − 1

19: if C p0
k + 1 > C p0

tmp then

20: tk 1 and tk + 1
1 + 1 + 4tk

2

2

21: p0
k + 1 p0

k +
tk − 1
tk + 1 p0

k − p0
k − 1

22: else

23: ϵF =
C p0

k + 1 − C p0
tmp

C p0
k

24: end if
25: k k + 1
26: end while

26: p0 p0
k + 1
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Figure 1: 
A staggered-grid FD cell with positions of the wavefield variables (Moczo et al., 2007).
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Figure 2: 
The maximum intensity projections of the numerical phantom that represents the 3D initial 

pressure distribution along (a) x-, (b) y- and (c) z-axes, respectively.
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Figure 3: 
(a) The map of transducer locations employed for the simulation studies. (b) The position of 

the skull relative to the transducer locations.
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Figure 4: 
The MIP of the reconstructed 3D initial pressure distribution. The first row of images 

corresponds to images reconstructed using the matched adjoint operator. The second row of 

images corresponds to images reconstructed using the OBRM. Each column of images 

corresponds to the MIP of the 3D initial pressure distribution along x-, y- and z-axes, 

respectively.
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Figure 5: 
The maximum intensity projections of the 3D initial pressure distribution along (a) x-, (b) y- 

and (c) z-axes, respectively.
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Figure 6: 
(a) The linear frequency-dependent compressional wave absorption characteristics of the 

skull. (b) A schematic describing the generation of forward data when employing the 

frequency-dependent absorption model.
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Figure 7: 
The maximum intensity projections of the 3D initial pressure distribution reconstructed by 

use of the OBRM. The first row of images corresponds to images reconstructed using a 

diffusive absorption value of α = 0.45. The second row of images corresponds to images 

reconstructed using a diffusive absorption value of α = 0.75, and the third row of images 

corresponds to images reconstructed using a diffusive absorption value of α = 1.05. Each 

column of images corresponds to MIP projections along x-, y-, and z-axes, respectively.
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Figure 8: 
The maximum intensity projections of the reconstructed 3D initial pressure distribution 

using the adjoint operator with α = 0.75 along (a) x-, (b) y-, and (c) z-axes, respectively.
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Figure 9: 
The line profiles through the 3D volumes reconstructed using (a) the OBRM with different 

diffusive absorption values. (b) The line profile through the 3D volume reconstructed using 

the adjoint operator (α = 0.75) is compared with the line profile of the 3D volume 

reconstructed with the OBRM (α = 0.75).
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Figure 10: 
Pictures of the vessels drawn on the inner surface of the acrylic globe.
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Figure 11: 
Pictures of the superficial structures placed outside the globe and the cortical structures 

placed inside the globe
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Figure 12: 
(a) The schematic of the experimental transcranial PACT imaging system. (b) The position 

of the acrylic globe relative to the measurement system.
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Figure 13: 
The maximum intensity projections along three mutually perpendicular directions of the 3D 

cortical structures of phantom #l reconstructed by use of the (a)-(c) adjoint operator and, (d)-

(f) the OBRM.
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Figure 14: 
The maximum intensity projections along three mutually perpendicular directions of the 3D 

cortical and superficial structures of phantom #2 reconstructed by use of (a)-(c) the adjoint 

operator, and (d)-(f) the OBRM.
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