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Abstract

In this article, we present (1) a feature selection algorithm based on nonlinear support vector 

machine (SVM) for fault detection and diagnosis in continuous processes and (2) results for the 

Tennessee Eastman benchmark process. The presented feature selection algorithm is derived from 

the sensitivity analysis of the dual C-SVM objective function. This enables simultaneous modeling 

and feature selection paving the way for simultaneous fault detection and diagnosis, where feature 

ranking guides fault diagnosis. We train fault-specific two-class SVM models to detect faulty 

operations, while using the feature selection algorithm to improve the accuracy and perform the 

fault diagnosis. Our results show that the developed SVM models outperform the available ones in 

the literature both in terms of detection accuracy and latency. Moreover, it is shown that the loss of 

information is minimized with the use of feature selection techniques compared to feature 

extraction techniques such as principal component analysis (PCA). This further facilitates a more 

accurate interpretation of the results.
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Introduction

The emergence of the fourth industrial revolution, Industry 4.0,1,2 along with the recent Big 

Data initiatives has enabled a research breakthrough in the field of data-driven (or statistical) 

process monitoring. The main goal is to ensure Smart Manufacturing, a concept envisioned 

by numerous agencies including the US Department of Energy (DoE) and the National 

Institute of Standards and Technology (NIST), which describes the motivation to design 

intelligent factories that can rapidly adapt to changes/disturbances by sharing and analyzing 

process data during manufacturing operation. Thus, integration of the advancements in 

information technology (i.e., enhanced networking, cloud services, and data analytics) with 

operations technology (i.e., adaptive automation, sensor, and software technology) is of 

utmost importance to produce a network communication between process instruments 

known as industrial Internet of Things.3 As the industry is moving toward such automated 

and integrated process architecture, the analysis of process data produced in large amount in 

real time is becoming more practical in various engineering applications to understand 

underlying trends and subsequently improve decision-making for operation. Data-driven 

process monitoring, specifically fault detection and diagnosis, is one of these major fields 

where industrial process data play a significant role in accurate and timely decision-making 

to maintain a safe and profitable operation.

Data-driven process monitoring exploits multivariate statistics and data mining methods to 

determine whether a fault has occurred or not during industrial process operations. Here, 

fault is defined as abnormal process behavior that may have caused by equipment failure, 

equipment wear, or extreme process disturbances.4 When compared to traditional first-

principle-based process monitoring methods, data-driven methods are advantageous in 

capturing intrinsic complexity of the industrial processes by benefiting of the abundance in 

process data. Thus, data-driven methodologies have sparked significant interest within the 

last two decades and their applications have become prevalent in wide range of industries 

including the chemical, energy, medical, photovoltaic, semiconductor manufacturing, and 

steel industries.5–12 The widely accepted, the so-called traditional, technique for fault 

detection is anomaly/outlier, out-of-control situation, identification via the Hotelling’s T2 

and Q-statistics.13,14 These multivariate statistical methods have found place in many 

applications. Yet, with the recent advancements in computational power along with the 

increased complexity in plant-wide process control structure, the focus has recently been 

shifted more toward the use of more advanced data mining algorithms with dimensionality 

reduction techniques. Prominent methods include latent variable-based models being 

principal component analysis (PCA), and partial least squares (PLSs) that aim to project the 

original data into a lower-dimensional space where accurate and simplified characterization 

can guide process monitoring.15 Nonlinear and dynamic extensions of these techniques (i.e., 

Kernel PCA/PLS,16,17 dynamic PCA/PLS18,19) have also been introduced to handle 
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nonlinearity and serial (temporal) correlations of process data, respectively. However, the 

assumption of Gaussian distributed process data poses limitation in producing accurate fault 

detection and diagnosis with these techniques.20 Other data-based methods centering around 

classification/regression-based analysis have been proposed that employ artificial neural 

network (ANN)21 and more recently deep learning algorithms,22 classification and 

regression decision trees (CART)23,24 as well as different support vector machines (SVMs) 

formulations being support vector classification (SVC),25–27 support vector regression 

(SVR),28 and support vector data description (SVDD).29 In particular, a major advantage of 

SVMs is their ability to provide nonlinear and robust models for non-Gaussian distributed 

process data, and due to their succinct representation as convex nonlinear optimization 

problem to obtain global parameters for models.

As the number of monitored process variables is increasing, the number of features that 

needs to be considered in the model development raises, which renders the dimensionality 

reduction as an essential component of data-driven process monitoring techniques. This 

further raises the need for development of novel data-driven fault detection and diagnosis 

techniques that employs powerful dimensionality reduction methodologies. Dimensionality 

reduction can be achieved via either by (1) feature extraction or by (2) feature selection. 

Here, features represent process variables used in model development. Feature extraction 

entails projection of the features of original space into a new, lower dimensional space, 

where the extracted features become linear combinations of the original ones. Latent 

variable models such as PCA and PLS inherently perform dimensionality reduction by 

performing feature extraction. However, a major disadvantage of these methods is the 

possibility of loss in information during the transformation of the original features into a 

lower dimensional space, which may impair fault diagnosis due to loss in physical 

interpretation. On the other hand, feature selection, which is the method of selecting optimal 

subset of original features, can reveal optimal set of original features that yield highest 

model accuracy without impairing fault diagnosis.

In our recent work, we have combined feature selection with nonlinear SVM classification 

algorithm by exploiting their optimization problem formulation and produced accurate fault 

detection and diagnosis models for batch process monitoring.30 Here, we are presenting 

application of our framework in continuous processes. The rest of the article is organized as 

follows: section “SVM Classification: Key Concepts and Application in Continuous Process 

Monitoring” provides brief overview of SVMs and their application in continuous process 

monitoring. Section “Feature Selection Algorithm Based on Nonlinear SVMs: Motivation 

and Theoretical Background” introduces the modified SVM formulation to perform 

simultaneous modeling and dimensionality reduction, which enables simultaneous fault 

detection and diagnosis. Section “Tennessee Eastman Process: Model and Dataset” 

introduces Tennessee Eastman process.31 The implementation of the proposed data-driven 

algorithm for fault detection and diagnosis is given in the “Proposed Framework for Fault 

Detection and Diagnosis in Continuous Processes” section. Finally, we provide the results 

and comparison in “Results” section and conclude within “Conclusion” section.

Onel et al. Page 3

AIChE J. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SVM Classification: Key Concepts and Application in Continuous Process 

Monitoring

SVMs are popular machine learning algorithms that are introduced by Cortes and Vapnik.32 

Given a set of training data with known labels, categorical (for classification) or continuous 

(for regression), SVMs analyze the patterns to derive supervised learning models. These 

models are built based on the structural risk minimization (SRM) principle,33 where the 

selection of the simplest model, in terms of complexity (i.e., order) and empirical error on 

the trained data, is induced.34 SVM formulations have been continuously improved to tackle 

wide range of engineering problems involving classification,35–37 regression,38,39 outlier 

detection40,41 as well as clustering42 analysis. They have drawn significant interest for fault 

detection due to their high generalization and effective nonlinear data handling ability.
26,27,30 The main idea behind SVM classification is the following. By mapping the original 

data into a higher (possibly infinite) dimensional space (feature space), an optimal linear 

hyperplane in the mapped space that can maximally separate data points belonging to 

different classes can be determined. In the case of nonlinear SVMs, the optimal linear 

hyperplane of the mapped space (also known as feature space) corresponds to a nonlinear 

separating function in the original (input) space. The mappings are achieved via Kernel 

methods which rely on the similarity among data samples.

In this work, we train two-class C-parameterized SVM (C-SVM) classification models that 

can predict whether the operation performs under faulty (positive classification where yi = + 

1) or nominal condition (negative classification where yi = − 1) given a continuous operation 

process variables. We have l training instances (i.e., input data samples), corresponding to l 

different continuous operations, where xi ∈ ℝn. Indices i, j = 1, 2, …, l represent different 

continuous operations, whereas indices k, k′ = 1, 2, …, n belong to input features (i.e., 

process variable measurements). The primary C-SVM classification problem is formulated 

as a convex optimization with hinge loss, ℓ2-norm penalty, and linear Kernel as shown as 

follows32,33:

min
w, b, ξ

1
2‖w‖2 + C ∑

i = 1

l
ξi

s . t . yi wT ⋅ xi + b ≥ 1 − ξi i = 1, …, l
ξi ≥ 0 i = 1, …, l

(1)

where w is the vector including weights of features, which is normal to the optimal 

separating hyperplane of the mapped space (Figure 1). The margin separating the instances 

of the two classes (where class labels are denoted via yi) from each other is defined by 2
w , 

where ∥w∥ is the magnitude of the vector w. The offset of the separating hyperplane from 

the origin is given by b
w . The optimal separating hyperplane is achieved by maximizing 

the margin between two classes. Maximization of the margin, 2
w , is equivalent to the 

minimization of ∥w∥2 as shown in Eq. 1. The problem formulation shown above and is 

referred as “soft margin” formulation, which allows for misclassification of the instances. 
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This is important for the frequently encountered cases where training data cannot be 

separated without error. Hence, slack variable ξ is introduced to represent the extent of 

misclassification of vector xi. C is the cost parameter penalizing the objective of Eq. 1 due to 

any misclassification. Use of such a soft margin formulation is common practice to 

minimize the training error during model development, thereby plays an essential role in 

increasing the generalization of the developed models. Note that Eq. 1 is a convex nonlinear 

problem (NLP) satisfying the first-order constraint qualification; therefore strong duality 

holds and the Lagrange dual problem can be written as follows:

max
α

∑
i = 1

l
αi − 1

2 ∑
i = 1

l
∑
j = 1

l
αiαjyiyj xi, xj

s . t . ∑
i = 1

l
αiyi = 0

αi ∈ [0, C] i = 1, …, l

(2)

A nonlinear Kernel function, K(xi, xj), is introduced in the dual problem formulation to 

enable implicit mapping of the data points to a higher dimensional feature space for better 

separation as follows:

maxα ∑
i = 1

l
αi − 1

2 ∑
i = 1

l
∑
j = 1

l
αiαjyiyjK xi, xj

s . t . ∑
i = 1

l
αiyi = 0

αi ∈ [0, C] i = 1, …, l

(3)

Note that Eq. 3 generates a nonlinear decision function in the input (linear in the mapped) 

space shown as follows:

f(x) = w* ⋅ ϕ(x) + b* = ∑
i = 1

l
αi*yiK xi, x + b* (4)

where αi are Lagrange multipliers, and ϕ(x) is the function providing Kernel-induced 

implicit mapping. With the implicit mapping enabled by the Kernel trick, w* can reach 

infinite dimension where instances of different classes are separated effectively. The linear 

decision function or optimal separating hyperplane (Eq. 4) is specified by a subset of 

training samples of which Lagrange multipliers are larger than zero. These training samples 

are referred as support vectors. As the name suggests, they are the ones nearby the optimal 

separating hyperplane (Figure 1). The Lagrange multipliers of other training samples are 

null, thus they do not have any effect on the f (x) value, where f(x) value determines the 

group membership of the new samples (i.e., operations). Specifically, the group membership 

of a new operation x is determined as positive (i.e., faulty, yi = + 1) when f(x) > 0, or 

negative (i.e., normal or fault-free, yi = − 1) when f(x) < 0.
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Feature Selection Algorithm Based on Nonlinear SVMs: Motivation and 

Theoretical Background

With the advances in sensor technology, a large number of process measurements have 

become available to be used in data-driven process monitoring. Although the number of 

features to be considered during predictive model development has increased significantly, 

turning the data-driven process monitoring into a high-dimensional data analysis problem, 

not all of these process measurements (i.e., features) may be valuable in knowledge 

extraction. On the other hand, redundant features may lead to overfitting problem and 

deteriorate model performance significantly. Therefore, the use of effective dimensionality 

reduction techniques is essential to achieve high-performance models for accurate detection 

and isolation of the process faults during operation. There are two main categories to 

perform dimensionality reduction: (1) feature extraction and (2) feature elimination (i.e., 

feature selection) techniques. Feature extraction techniques transform the input space onto a 

lower space where the most relevant information is preserved, whereas feature elimination 

reduces the dimensionality of space without altering the original representation of features, 

by selecting the most informative feature subset. Major drawbacks of feature extraction 

include (1) the possible loss in information during the transformation to a lower feature 

space and (2) difficulty in interpretation due to having features as linear combination of 

transformed features. In our previous work, we have introduced a novel feature selection 

algorithm based on nonlinear SVM formulation utilized in bioinformatics43 and process 

systems engineering applications (process monitoring30,44) for accurate predictive model 

development. In this study, we incorporate previously introduced feature selection algorithm, 

which enables simultaneous modeling and dimensionality reduction via greedy (i.e., 

recursive) feature elimination, for continuous process monitoring. The use of our algorithm 

is highly valuable for rigorous fault detection and diagnosis, where the selected top 

descriptive features yield the major causes of the detected fault instantaneously. 

Simultaneous detection and diagnosis of process faults is crucial in order to take rapid 

actions to correct the detected fault.

To perform model-informed feature selection, we introduce binary variables z ∈ {0, 1}n in 

Model 3 for the selection of feature k to be involved in the optimal feature subset. zk = 1 

corresponds to the selection, whereas zk = 0 corresponds to the elimination of feature k. The 

resulting model becomes a min–max problem as follows:

min
z

 max
α

∑
i = 1

l
αi − 1

2 ∑
i = 1

l
∑
j = 1

l
αiαjyiyjK xi ∘ z, xj ∘ z

s . t . ∑
i = 1

l
αiyi = 0

αi ∈ [0, C] i = 1, …, l
∑

k
zk = m

zk ∈ 0, 1 k = 1, …, n

(5)

where m is the size of the optimally reduced feature subset, and operator ∘ is the Hadamard 

product operator45 for component-wise multiplication. Model 5 can be used for dot-product 
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Kernel functions that include linear, polynomial, and sigmoid Kernel functions, and isotropic 

stationary Kernel functions that involve Gaussian radial basis, exponential, circular, 

spherical, rational quadratic, Matérn, inverse multiquadric, log, power distance, wave, and 

triangular Kernel functions.46–48 Model 5 is the formal representation of the feature 

selection problem via nonlinear SVMs, which is highly challenging and impractical to solve 

to global optimality in real-life applications. Therefore, instead of solving Model 5 to global 

optimality, we adopt heuristic algorithms to achieve high-quality feasible solutions. 

Specifically, we perform sensitivity analysis on the inner maximization problem of Model 5 

with respect to zk at (α*; z), where α* is the optimal solution of the inner maximization 

problem over α at some fixed z, and zk is treated as a fixed parameter. Thus, to attain the 

first-order sensitivity of the objective function of the Model 5 at an optimal solution with 

respect to the parameter zk, which is located in the objective function and constraints, we use 

the partial derivative of the Lagrange function of the Model 5 as shown as follows49:

∂ζ
∂zk

= ∂
∂zk ∑

i = 1

l
αi* − 1

2 ∑
i = 1

l
∑

j = 1

l
αi*αj*yiyjKz xi, xj + λ ∑

i = 1

l
αi*yi − ∑

i = 1

l
μi

1 αi* + ∑
i = 1

l
μi

2 αi* − C

z = z*
= − 1

2 ∑
i = 1

l
∑

j = 1

l
αi*αj*yiyj

∂Kz xi, xj
∂zk z = z*

where λ ∈ ℝ, μ(1), μ(2) ∈ [0, ∞)n are Lagrange multipliers. z does not appear in the 

constraints of Model 5. The final criterion contains only terms from the inner maximization 

objective function as shown as follows:

critk = − 1
2 ∑

i = 1

l
∑
j = 1

l
αi*αj*yiyj

∂K xi ∘ z, xj ∘ z
∂zk z = z*

(6)

kworst = arg max
k

 critk . (7)

Equation 6 results from the Lagrangian sensitivity-based analysis and forms the perturbation 

criterion for greedy reductive feature elimination algorithm. Specifically, we follow an 

iterative procedure where we build nonlinear SVM models, rank features based on the 

derived criterion (Eq. 6), and finally eliminate one feature (feature kworst) in each iteration. 

One can also eliminate features in blocks (i.e., as % of total features). The presented feature 

selection algorithm is equivalent to well-known recursive feature elimination (RFE)-SVM 

classification algorithm50 when performing SVM classification with linear Kernels. The 

detailed derivation of the presented feature selection algorithm can be found elsewhere.51

Tennessee Eastman Process: Model and Dataset

The Tennessee Eastman process (Figure 2), an extensively used benchmark case for 

comparative assessment of process monitoring algorithms, was designed by the Eastman 

Chemical Company.31 Numerous data-driven fault detection and diagnosis methodologies 

tested with the Tennessee Eastman process are available in the literature.13,14,25,27 The 

process is based on a real industrial process, in which the components, kinetics, and 
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operating conditions have been modified for proprietary reasons.13 There are five primary 

units in the process being: a reactor, condenser, compressor, separator, and a stripper, where 

chemicals G and H are produced from feedstocks A, C, D, and E with byproduct F and inert 

compound B. The process contains 11 manipulated and 41 measured variables. The detail 

for the process variables is provided in the Supporting Information.

Among several simulation designs, we adopt the one whose plant-wide control structure is 

provided by Lyman and Georgakis.52 In this study, we use two sets of simulation dataset 

based on the Tennessee Eastman process with the second control structure in Lyman and 

Georgakis. The first simulation dataset is adopted from the study by Chiang et al.,13 which 

includes measurements from normal and 21 distinct faulty operations (Table 1). It includes 

single set of simulation for normal and 21 faulty operations separately (yielding 22 

simulation datasets). The latter is taken from the study by Rieth et al.53 having 

measurements from normal and first 20 faults provided in Table 1. It involves 500 set of 

simulations for normal and 20 faulty operations separately (yielding 10,500 simulation 

datasets). In this work, we have randomly selected 2 out of 500 sets of simulations from the 

study by Rieth et al. dataset, which lead us to employ a twice size of Chiang et al. data for 

model building. The aim in using two different simulation datasets with different size is to 

test the importance of data size involved in model development for fault detection and 

diagnosis. Training and test sets have been collected by running 25 and 48 h of simulations, 

respectively, where faults have been introduced 1 and 8 h into the simulation and each 

variable is sampled every 3 min. Thus, training sets consists of 500 samples, whereas test 

sets contain 960 samples per set of simulation. Further information on the process and 

simulation can be found in other references 13,31,53.

Proposed Framework for Fault Detection and Diagnosis in Continuous 

Processes

In this study, we are building SVM binary classifiers for 21 (20 for Rieth et al.) different 

faults (fault-specific classifier) introduced in the process data. Thus, for each of the model 

building phase, we combine data from normal and relevant faulty operation. The proposed 

framework consists of two phases: (1) Offline phase includes the formulation of the fault-

specific models for fault detection and diagnosis via signal process data where the 

optimization-backed feature selection algorithm is used; (2) Online phase monitors ongoing 

process in real time by employing the fault-specific models, raises alarm when faults occur 

and reports diagnosis of the detected fault simultaneously. Common to both phases, data 

need to be re-organized and/or processed a priori.

Data preprocessing

The common first step in data-driven modeling is the assessment of data quality. This is 

achieved via several different data preprocessing techniques such as (1) data cleaning that 

involves identification and removing outliers, smoothening the noisy data, and imputation of 

any missing values and (2) data transformation that includes scaling and normalization of 

the data to give all features equal weight, thus avoid bias during model development. In this 

study, we are using simulation-based dataset, which is free of outliers or missing values and 
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solely involves Gaussian white noise.13 Therefore, only normalization is performed on 

process data by calculating their corresponding z-scores, by subtracting the mean of relevant 

measurements and then dividing into the standard deviation of them, prior to the offline 

phase. In the online phase, where actual process data are monitored in real time, both data 

cleaning and transformation steps are performed prior to the use of the developed models.

Offline phase: Model building

In this phase, we build fault-specific two-class C-SVM models using simulation-based 

process signal data. Here, the initial step is to collect relevant faulty operation process data 

and process data under normal operation. Next, we normalize the process data as described 

in the “Step 1: Tuning C-SVM Hyperparameters with the Active Set of Features” section 

and construct balanced training and validation sets to be used in model building. Use of 

imbalanced datasets may cause insufficient learning of one class than the other, thus may 

lead to inaccurate models. Therefore, we initially create balanced training and validation sets 

via 100 runs of fivefold cross validation where each fold includes 480 (960) normal and 480 

(960) faulty samples for Chiang et al. dataset (Rieth et al.). Next, we build binary fault-

specific C-SVM classifier models for each of the 21 (20) faults separately. Specifically, as 

we have 52 process variables in Tennessee Eastman process, we build 52 C-SVM classifiers 

for each 21 (20) faults (one per each feature subset). Finally, we select the end-model for 

each fault (fault-specific end-model), which has the optimal feature subset yielding best 

model performance, for online implementation. The performance metrics utilized throughout 

model building phase are provided in the Supporting Information. The iterative model 

building procedure, which consists of three main steps, is described below and illustrated in 

Figure 3.

Step 1: Tuning C-SVM Hyperparameters with the Active Set of Features.—
Parameter tuning is essential and required for developing generalizable models that will be 

implemented as a decision tool in online phase. In this work, we build C-SVM classification 

models by adopting one of the widely used nonlinear Kernel function, Gaussian radial basis 

function (RBF) (Eq. 8).

K xi, xj = exp −γ xi − xj 2 , (8)

Hence, we have hyperparameters C and γ that are tuned using training and validation 

datasets with the active set of features (whole feature set in the first iteration). During the 

selection of hyperparameter γ, data density plays a critical role to prevent overfitting in the 

obtained decision function. Thus, we tune parameter γ  where

γ = 2γ

n . (9)

In each iteration of model building, where features are eliminated in a greedy reductive 

manner (Section “Step 2: Training Fault-Specific C-SVM Classifiers for each Feature 

Subset”), γ  is updated with the available set of features as follows:

Onel et al. Page 9

AIChE J. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



γ = 2γ

zT1
(10)

In addition, we tune parameter Ĉ where C = 2ĉ. We perform a grid search to tune parameters 

Ĉ, and γ  for all value combinations between −10 and 10. In each iteration, we train and 

validate two-class C-SVM models using 500 training-validation dataset pairs that include the 

corresponding active set of features. Then, the hyperparameter combination yielding the 

highest average testing AUC, accuracy, recall along with minimum false alarm rate across 

the 500 dataset pairs for each feature subset are chosen for further modeling steps.

Step 2: Training Fault-Specific C-SVM Classifiers for each Feature Subset.—
We adopt the selected hyperparameters from the previous step and build C-SVM classifiers 

with Gaussian RBF, where the class probabilities are smoothened using median of 

probabilities with a window size of 3.

Step 3: Feature Rank Criteria Calculation and Elimination of the Least 
Informative Feature.—We obtain feature ranks using Eq. 6. Then, according to the 

criteria formulated as in Eq. 7, we eliminate the “worst,” which is most redundant or least 

informative, feature from the dataset.

This iterative framework involving greedy reductive feature elimination leads us to have 

fault-specific C-SVM models for each feature subset. Thus, we attain one C-SVM model per 

feature subset per fault. This leads to 52 model generation for each fault classification, 

which renders 1092 (1040 for Rieth et al. dataset) fault-specific classifiers. The final step of 

the offline phase is the selection of the fault-specific end-models. These are the fault-specific 

models that yield highest model performance with the optimal feature subset. Specifically, 

these models produce highest AUC along with minimum number of features, false alarm 

rate, false negative rate, and latency (fault detection time). In this work, we have picked 21 

(20 for Rieth et al. dataset) fault-specific end-models among 1092 (1040) developed models.

Online phase: Fault Detection and Diagnosis in real time

In this phase, 21 fault-specific end models, which are chosen at the end of the offline phase, 

are implemented to monitor the online process data. Here, we are using the test datasets 

obtained from the simulation of Tennessee Eastman process, which includes 160 normal and 

800 faulty samples, to assess the performance of the selected models. The test datasets are 

normalized with the mean and standard deviation obtained from the training sets (to attain z-

scores) before being sent into the end-models. In an industrial setting, the real-time process 

data need to be preprocessed with cleaning and transformation (i.e., normalization) steps as 

described in the “Data Preprocessing” section before use of the implemented C-SVM 

models for fault detection and diagnosis. Fault-specific end-models generate binary answer 

for detection of each fault independently. Here, we adopt an alarm policy to identify the fault 

occurrence. In compliance with the studies of Mahadevan and Shah25 and Russell et al.,18 

fault occurrence is reported after we observe six consecutive positive alarms within the 

system. Once a fault is detected from any of the end-models, the developed framework 
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simultaneously produces the root-cause analysis by solely checking the corresponding 

optimal set of features (process variables).

Results

Fault-specific C-SVM binary classifier models have been built using the training datasets 

created from the two different simulation datasets of different size. The adopted simulation 

datasets, namely Chiang et al. and Rieth et al. datasets, include all of the 52 process 

variables but differ in terms of the number of simulated continuous operations where the 

latter is the twice size of the former one. The evaluation of the proposed framework for 

continuous processes is examined via fault detection performance in the “Fault detection” 

section, where increasing number of instances have been observed to increase the model 

accuracy for the detection of distinct faults. The “Fault detection” section compares the 

fault-detection latency of the reported end-models with the ones in the literature. Finally, 

diagnosis of the successfully detected faults is provided according to the most accurate C-

SVM model in the “Fault detection” section.

Fault detection

In this section, we evaluate the performance of the chosen fault-specific end-models for fault 

detection. The 21 (20 for Rieth et al. dataset) end-models yield highest AUC along with 

minimum number of features, false alarm rate, false negative rate, and latency (fault 

detection time). The results are tabulated in Tables 2 and 4, respectively, for Chiang et al. 

and Rieth et al. datasets. As mentioned earlier, in compliance with the studies of Mahadevan 

and Shah,25 and Russell et al.,18 we report fault occurrence at the end of six consecutive 

positive alarms within the system. This policy is widely adopted in industry to minimize the 

number of false alarm rates, thus disruption of the operator. Furthermore, in accordance with 

the same studies, the fault-detection latency is reported as the first time when the initial 

alarm is raised.

The end-models reported in Table 2 are obtained with the Chiang et al. dataset, which is 

smaller compared to Rieth et al. data. In particular, fault-specific models are trained with 

480 normal and 480 faulty samples and tested on 48 h simulation data where each fault is 

introduced at the end of eighth hour, which corresponds to having 160 normal and 800 faulty 

samples sequentially.

An ideal model would give 100% AUC, accuracy, detection rate along with 0% false alarm 

and negative rates. Among the introduced performance metrics (Supporting Information), 

accuracy and fault detection rate (recall) are the two common ones used for model 

performance evaluation in the literature.25,26 Yet, evaluation based on only these two metrics 

would be insufficient for a thorough analysis. In this study, we inspect the model 

performance via collective evaluation of AUC, fault-detection rate, accuracy as well as false 

alarm rate and false negative rate. We believe collective judgment of AUC, fault-detection 

rate, accuracy along with false alarm rate and false negative rate is essential and required 

because a model may simultaneously yield high accuracy, and fault detection rate, but also 

high false alarm rates which would lead to misleading conclusions. Such models would be 

very sensitive and frequently raise fault alarm, consequently making them unreliable.
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As shown in Table 2, fault-specific models perform well excluding Faults 3, 9, 11, 15, 16, 

and 19. Specifically, Faults 3, 9, and 15 are the ones that could not be detected with the 

available algorithms in the literature. This is due to the absence of observable change in the 

process variable behavior (mean and standard deviation) between their corresponding faulty 

and normal operation.18 In other words, these faults could not be detected with the set of 

provided process variables; however models can always be improved by considering 

additional process variable information. For instance, for Fault 15, which is sticking 

condenser cooling water valve, additional process variables such as position of the valve 

and/or condenser pressure would have been extremely helpful for the detection. Then, using 

the presented simultaneous modeling and feature selection algorithm (“Feature Selection 

Algorithm based on Nonlinear Support Vector Machines: Motivation and Theoretical 

Background” section), we can obtain the optimal feature subset that would produce the most 

accurate model to detect these faults. Particularly for Faults 3, 9, and 15, although high fault 

detection rate and accuracy have been obtained in particular models built for the detection, 

high false alarm rates have also been recorded, whereas corresponding AUC metric has 

fluctuated around 42.8%–64.51%, 42.51%–66.29%, and 42.08%–75.71%, respectively. Of 

note, 50% of AUC indicates random assignment of the class label. Specifically, highest AUC 

received for Fault 3, 64.51%, is recorded for the fault-specific model developed with 35 

optimal features yielding 82.19% accuracy, 98.62% fault detection rate but with 100% false 

alarm rate. This means that the model is very sensitive and raises alarm for fault detection 

frequently regardless of the operation characteristics, which turns the model into an 

inaccurate tool. Similarly, for Fault 9, highest AUC yielding model is obtained with 17 

features which produce 65.21% accuracy, 69.00% fault detection rate together with 53.75% 

false alarm rate; whereas for Fault 15, highest AUC. This shows that AUC metric becomes 

significantly informative in data-driven model selection, especially when the testing dataset 

is unbalanced with the number of samples from two different classes. Moreover, as 

unbalanced dataset would be very common in continuous operation online data, we offer use 

of AUC metric in the future fault detection studies, where problem is formulated as 

classification problem, to attain a more complete picture of the results.

Moreover, Table 2 reveals that our proposed data-driven algorithm has achieved to detect 

Fault 21, regarding a fixed Stream 4 valve at the steady-state position, successfully with an 

AUC of 99.7%, accuracy and detection rate of 100% with 0% false negative rate and 0.6% 

false alarm rate. Here, we would like to highlight that this is one of the most challenging 

faults of the Tenneessee Eastman process simulation, where, to the best of our knowledge, 

highest fault detection rate recorded in the literature is 59.4% along with 26.1% false alarm 

rate via one-class SVM algorithm.27 Again, to have a detailed analysis of this model, we 

strongly suggest to evaluate AUC and false negative rate metrics as well. Here, we show that 

with the advances in C-SVM formulation for feature selection, we achieve to detect Fault 21 

with high AUC, accuracy, detection rate and minimum false negative and alarm rates by 

considering solely one feature, which is a manipulated process variable—total feed-flow rate 

of Stream 4. This also demonstrates the requirement for feature elimination during model 

development. Consideration of any further process variable in addition to 45th process 

variable has deteriorated the model performance significantly. In other words, other process 

variables become redundant to detect this fault.
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The selection of end-models is a multi-objective task. The fault-specific end-models are the 

ones producing the highest AUC with minimum number of features, false alarm and 

negative rates, and latency (Tables 2 and 4). Here, we also report alternative models 

demonstrating similar performance to end-models but with lower number of features 

(process variables) (Tables 3 and 5).

On the other hand, the end-models trained via Rieth et al. dataset perform well for all faults 

excluding only Faults 3, 9, and 15. This shows that models can be improved with the 

addition of more simulation data. As the Big Data era has started playing significant role in 

industrial decision making, today large amount of process data collection has been 

extremely facilitated. Therefore, accessibility to further process data is assumed not to be an 

issue. As for the opposite scenario, where historical process data are not available or not 

adequate, one can simulate more process data with the dynamic model of a process to 

improve model performance with the proposed framework. Here, we see that using larger 

data has improved fault detection model performances for Faults 11, 16, 19, and 20. This is 

the result of the fact that the models have learned much better by being trained with 

increased number of scenarios (i.e., simulations) for both normal and faulty operation. 

Furthermore, we would like to highlight that the addition of new and more training data 

(scenarios) also affects the learning pattern of the models and due to the nonlinear dynamics 

of the process, this may lead to the selection of different feature sets with two different 

datasets used in this study. Yet the key goal in data-driven modeling is to obtain 

generalizable models and, in this study, we ensure this using 100 runs of fivefold cross 

validation technique during model development.

Next, we compare the obtained end-models with Chiang et al. and Rieth et al. datasets 

provided in Tables 2 and 4 as well as the alternative models given in Tables 3 and 5. We 

select the most simple end-models for the online decision-making. According to the 

scientific interpretation of the Occam’s razor philosophy, if one has two competing theories 

that would yield the same predictions, the simpler one is the better.54 By following this 

principle, we select the fault-specific end-models (for Faults 1–20) with lower number of 

features if they demonstrate similar performance between the two datasets. The selected 

“simple” end-models are marked with asterisks. This also facilitates relevant sample data 

collection and analysis due to decreased number of sample collection and analysis.

Finally, we pick our fault-specific models yielding highest fault detection rate among the 

developed 1092 and 1040 fault-specific models from two simulation datasets and compare 

our results with the available data-driven methods performed on the Tennessee Eastman 

process data.14,25,27 These methodologies are based on well-known and widely used 

algorithms, where in some of them only normal operating data is used25,27 and in the others 

normal and faulty operation data is utilized simultaneously.14 Table 6 shows that our 

proposed framework produces better results than the other methods; however, we need to 

highlight that the models producing highest detection rate do not necessarily produce the 

most reliable models for all faults. As mentioned earlier, a model can produce not only high 

fault detection rate but also high false alarm rate. In fact, this is the case for Faults 8, 10, 11, 

13, 16, 17, 19, and 20 reported in Table 6. For these faults, although we achieve high fault 

detection rates as reported in Table 6, we observe false alarm rate of 68.1%, 91.2%, 100.0%, 
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83.8%, 81.9%, 100.0%, and 97.5%, respectively. Therefore, we strongly suggest to evaluate 

all metrics described in the Supporting Information in order to make a fair comparison 

between models. Specifically, the end-models reported in this study are selected based on 

AUC, which considers fault detection rate and false alarm rate, false negative rate, and 

latency (fault detection time).

Fault-detection latency

The average latency among the reported faults, all faults excluding Faults 3, 9, and 15, has 

been stated as 306.19, 145.58, 263.12, 151.00, and 98.50 min for PCA-T2, PCA-Q, DPCA-

T2, DPCA-Q, and 1-class SVM,25 respectively, whereas the latency information is not 

provided by Yin et al.26 In this work, we report significantly lower fault detection latency 

along with higher detection accuracy as reported in Tables 2 and 4. When we exclude Faults 

3, 9, and 15, faults that cannot be detectable from the available process variable data 

accurately, the average fault detection latency among the remaining 18 (17) faults of Chiang 

et al. (Rieth et al.) dataset is 37.50 (42.00) min. Moreover, the average fault detection latency 

for the selected “simple” end-models for online implementation, which are marked with 

asterisks, is 35.83 min. This reveals the power of the proposed framework for rapid and 

precise fault detection and diagnosis.

Fault diagnosis

Here, we present the root cause diagnosis of the detected faults using the chosen end-models 

for online implementation (the models with asterisks). Below, we discuss the obtained 

diagnosis results for the selected faults (Table 7). The diagnosis with the end-models 

reported in Tables 2 and 4 is provided in the Supporting Information. Of note, we may 

observe distinct feature sets for different types of faults but related with the same unit in the 

process (e.g., Faults 5 and 12 in Supporting Information, Table S7). This is mainly because 

of the fact that varying fault types realize themselves in distinct ways due to the nonlinear 

dynamics of the process, which leads to the selection of different process variables as key 

ones for fault diagnosis.

Fault 1: Sudden Decrease in A/C Feed Ratio (Stream 4).—Fault 1 occurs due to a 

step change in the A/C feed ratio which also changes B composition constant at Stream 4. 

The chosen end-model (Table 2) is able to detect this fault by monitoring process variables 

16, and 44, that are stripper pressure on Stream 5 and A feed flow rate, respectively. Here, 

sudden increase in C flow rate causes an increase in the stripper pressure, which is a 

measured process variable. To compensate this sudden effect and maintain the B 

composition constant on Stream 4, the flow controller increases the feed-flow rate of A. 

This, in turn, reverses the stripper pressure to the original operating range, however, the raise 

in the A feed-flow rate carries the operation to a new steady state which can be clearly 

observed in Figure 4.

Fault 4: Step Change in Reactor Cooling Water Inlet Temperature.—The end-

model selected for detection of this fault is given in Table 4. By monitoring the manipulated 

process variable 51, we are able to detect this fault with 100.0% accuracy along with 0% 

false negative and alarm rates in 3 min. To decrease the elevated reactor cooling water inlet 
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temperature, the controller increases the condenser cooling water flow rate (Figure 5). 

Therefore, monitoring of this process variable provides valuable insights for the 

identification of this fault.

Fault 5: Step Change in Condenser Cooling Water Inlet Temperature.—Fault 5 

is generated with a step change in the condenser cooling water inlet temperature in the 

simulations. We are able diagnose this fault by monitoring process variables 52, 11, and 17, 

which are agitator speed (manipulated variable), product separation temperature (measured 

variable), and stripper underflow (measured variable), respectively. Because of the 

temperature increase in the cooling water, the cooling performance of the condenser 

decreases. To compensate this adverse effect, the flow controller increases the flow rate of 

the condenser cooling water by increasing the agitator speed (process variable 52). The step 

change in cooling water temperature also affects the product separation temperature and 

accordingly stripper flow rate. We have plotted the selected process variables, which provide 

the most informative set of samples to detect this fault, and clearly seen the distinction 

between normal and faulty operation (Figure 6). By monitoring these three process 

variables, the fault-specific model reported for Fault 5 in Table 5 is able to detect the fault 

with 99.9% accuracy with 0.0% false alarm rate and 0.1% false negative rate in 6 min.

Fault 7: C Header Pressure Loss.—The selected end-model, given in Table 2, detects 

this fault with 100.0% accuracy with 0% false alarm and false negative rates in 3 min. The 

diagnosis of this fault is obtained from process variables 45, 7, and 13, which are 

manipulated process variable—total feed-flow rate on Stream 4, measured process variables 

reactor pressure and product separation pressure, respectively. Here, to compensate the 

decreased C header pressure, total feed-flow rate is increased via the adjustment of the flow 

valve on Stream 4, which in turn affects the reactor pressure and product separation pressure 

within the process. Therefore, monitoring these three key process variables has enabled 

accurate detection of the Fault 7.

Fault 14: Sticking Reactor Cooling Water Valve.—We detect this fault using the end-

model provided in Table 4, where we achieve 100.0% accuracy with 0% false alarm and 

false negative rates in 3 min. The analysis reveals that process variables 51 (manipulated) 

and 9 (measured) are the two key process variables to identify this fault. Here, if the reactor 

cooling water temperature is elevated, thus there occurs a lost cooling effect on the reactor, 

we observe a direct temperature increase in the reactor (measured process variable 9). The 

controller then tries to decrease the elevated reactor temperature by increasing the condenser 

cooling water flow rate (manipulated process variable 51). On the other hand, if the reactor 

cooling water temperature decreases due to the sticking valve, creating increased cooling 

effect on the reactor, we notice a decline in the reactor temperature, where the controller 

would decrease the condenser cooling water flow rate for balance (Figure 7—left plot). 

Moreover, we are able to achieve same model performance by observing an additional 

process variables along with process variables 51 and 9, whereas the model with less number 

of process variables was favored due to the simplicity. The third ranked key process variable 

is the measured process variable 21, reactor cooling water outlet temperature, which is 

directly affected with the sticking reactor cooling water valve. When we consider this third 

Onel et al. Page 15

AIChE J. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ranked key process variable and visualize the sampling data, the distinction between normal 

and faulty operation becomes more evident (Figure 7—right plot).

Fault 19—Unknown.—The cause of this fault is not provided in Downs and Vogel31 

However, we observe the clear distinction between normal and faulty operation with the 

optimal set of diagnosed process variables (Figure 8). These are measured process variables 

13, and 16, as well as a manipulated process variable 46, which are product separation 

pressure, stripper pressure, and compressor recycle valve, respectively.

Conclusions

Dimensionality reduction is a key task in most data-driven applications, in areas such as 

multiscale systems engineering, where vast amounts of data must be reduced to an essential 

subset that is used to provide actionable insights. Process monitoring, specifically fault 

detection and diagnosis, is one of the major fields in process systems engineering that 

benefits the advances in data-driven modeling and dimensionality reduction techniques with 

the increased availability of process data. In this article, we present theoretical advances in 

the feature selection algorithm based on nonlinear SVMs, describe a data-driven framework 

for fault detection and diagnosis in continuous processes, and finally apply it to the 

Tennessee Eastman benchmark process. The presented feature selection algorithm is based 

on nonlinear Kernel-dependent SVM feature rank criteria, which is derived from the 

sensitivity analysis of the dual C-SVM objective function. This enables simultaneous 

modeling and feature elimination which paves the way for simultaneous fault detection and 

diagnosis, where feature ranking guides fault diagnosis. Thus, once the implemented fault 

detection models detect a fault within the process, they are able to instantly report the 

diagnosed process variables. Moreover, by adopting feature selection techniques which list 

the most informative features in the original space rather than feature extraction (i.e., PCA 

and PLS) where features become linear combination of the original features in a transformed 

space, loss of information is highly minimized and interpretation of the results become more 

convenient.

In this work, we have developed 1092 and 1040 fault-specific C-SVM binary classifier 

models for 52 feature subsets of the 21 and 20 faults simulated in Chiang et al. and Rieth et 

al. datasets, respectively. The fault-specific end models that yield highest Area Under the 

ROC Curve (AUC) along with minimum number of features, false alarm rate, false negative 

rate, and latency (fault-detection time) are selected for online implementation. For the cases 

where we have observed similar model performances for the detection of a fault, we have 

followed the Occam’s razor principle and selected the one that provides diagnosis with 

minimum process variables, for simplicity. The achieved results with the presented 

framework are highly promising. Specifically, excluding the Faults 3, 9, and 15, the models 

that we report in this study outperforms the available ones in the literature not only in terms 

of detection accuracy but also in terms of detection latency. The detection latency is attained 

as low as 35.83 min for the 18 faults (excluding Faults 3,9, and 15) analyzed with our 

framework. Of note, Faults 3, 9, and 15 are the ones that are not accurately detected neither 

in this work nor previous studies. This is due to the fact that available process variable set 

does not provide a distinct observable change between normal and corresponding faulty 
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operation. However, we also note that consideration of further process variables for certain 

faults, specifically Faults 3, 9, and 15, can highly improve the model performances. 

Furthermore, for distinct set of faults (i.e., Faults 11, 16, 19, and 20), we have benefited from 

the larger simulation dataset (Rieth et al.) where added samples have contributed the 

learning of the developed models.

Finally, we highlight the importance of utilizing additional evaluation metrics (i.e., AUC, 

accuracy, false alarm rate, and false negative rate) for detailed model performance 

assessment. Commonly used metric in the previous studies is fault detection rate. However, 

one can end up with a model producing high fault detection rates along with high false alarm 

and false negative rates, meaning that the model would become very sensitive, thus 

unreliable. Therefore, collective interpretation of these metrics is critical to avoid such 

unstable models that would obfuscate the decision-making process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two-class classification via soft margin C-SVM formulation.
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Figure 2. 
Tennessee Eastman process flowsheet with the second control structure in Lyman and 

Georgakis.52
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Figure 3. Schematic representation of the offline phase–model building section.
Gaussian Radial Basis kernel is used for nonlinear C-SVM training. Iterative procedure is 

performed for each fault separately.
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Figure 4. 
Fault 1 diagnosis–plot of the root cause variables.
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Figure 5. 
Fault 4 diagnosis–plot of the root cause variables.
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Figure 6. 
Fault 5 diagnosis–plot of the root cause variables.
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Figure 7. 
Fault 14 diagnosis–plot of the root cause variables. Left: With top two key process variables. 

Right: With top three key process variables.
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Figure 8. 
Fault 19 diagnosis–plot of the root cause variables.
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Table 1.

Overview of Faults and Corresponding Fault Types in the Tennessee Eastman Process Dataset

Fault no Fault Fault type

1 A/C feed ratio Step

2 B composition Step

3 D feed temperature Step

4 Reactor cooling water inlet temperature Step

5 Condenser cooling water inlet temperature Step

6 A feed loss Step

7 C header pressure loss Step

8 A,B,C feed composition Random variation

9 D feed temperature Random variation

10 C feed temperature Random variation

11 Reactor cooling water inlet temperature Random variation

12 Condenser cooling water inlet temperature Random variation

13 Reaction kinetics Slow drift

14 Reactor cooling water valve Sticking

15 Condenser cooling water valve Sticking

16 Unknown N/A

17 Unknown N/A

18 Unknown N/A

19 Unknown N/A

20 Unknown N/A

21 The valve for Stream 4 Constant position
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Table 7.

Diagnosis from the Selected End-Models (Marked with Asterisks in Tables 2–5) via Occam’s Razor Principle. 

Faults 3, 9, and 15 are excluded

Faults Optimal feature subset size Selected process variables

1 2 16, 44

2 5 7, 16, 10, 47, 13

4 1 51

5 3 52, 11, 17

6 2 44, 1

7 3 45, 7, 13

8 4 39, 44, 16, 20

10 14 41, 39, 38, 37, 40, 50, 19, 18, 20, 7, 13, 16, 31, 29

11 2 9, 51

12 5 16, 38, 35, 25, 11

13 7 39, 40, 18, 7, 38, 23, 3

14 2 51, 9

16 2 19, 50

17 27 38, 39, 40, 41, 21, 37, 19, 20, 33, 27, 34, 30, 1, 11, 25, 28, 24, 23, 35, 36, 26, 10, 3, 2, 22, 14, 48

18 2 22, 8

19 3 13, 16, 46

20 13 38, 39, 41, 16, 52, 17, 18, 30, 35, 29, 40, 13, 7

21 1 45
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