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Abstract

Caves formed by sulfuric acid dissolution have been identified worldwide. These caves can

host diverse microbial communities that are responsible for speleogenesis and speleothem

formation. It is not well understood how microbial communities change in response to sur-

face water entering caves. Illumina 16S rRNA sequencing and bioinformatic tools were

used to determine the impact of surface water on the microbial community diversity and

function within a spring pool found deep in the Monte Conca Cave system in Sicily, Italy. Sul-

fur oxidizers comprised more than 90% of the microbial community during the dry season

and were replaced by potential anthropogenic contaminants such as Escherichia and Lysini-

bacillus species after heavy rains. One sampling date appeared to show a transition

between the wet and dry seasons when potential anthropogenic contaminants (67.3%), sul-

fur-oxidizing bacteria (13.6%), and nitrogen-fixing bacteria (6.5%) were all present within

the spring pool.

Introduction

A number of caves worldwide are now recognized to be the result of a process often identified

as sulfuric acid speleogenesis (SAS) [see 1 and references therein]. This process was first pro-

posed by Principi [2] and is used to describe the formation of caves via dissolution of limestone

by sulfidic groundwaters. Among the most well-known and investigated SAS caves are those

from Guadalupe Mountains, USA [3, 4], Movile, Romania [5], Frasassi, Italy [6, 7], Cueva de

Villa Luz, Mexico [8, 9], and Lower Kane Cave, USA [10, 11].

Microbial communities in caves play a role in precipitation of speleothems, such as pool

fingers [12, 13], moonmilk [12, 14], snottites [8, 15], and appear to contribute to sulfuric acid

speleogenesis [8, 11, 16, 17]. Cave microbial communities are often diverse and influenced by

the cave environment [18, 19]. Soil bacteria may be brought into caves from surface water

inputs [20], whereas the presence of fecal coliforms may be caused by anthropogenic contami-

nation and/or bat guano deposits [21, 22].
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Cave microbes can have diverse metabolic functions [18]. Those involved in sulfur cycling

have been identified in several caves, including Cesspool [16], Frasassi [17, 23, 24], Movile [5,

25], and Lower Kane [26]. Carbon fixation [26], nitrogen cycling, and methane cycling [24,

25] appear to be important microbial processes within caves. Iron and manganese deposits

found in caves have been attributed to the presence of microbial iron and manganese cycling

[27, 28].

Monte Conca is a karst cave in Sicily, Italy that has a sulfidic spring within the inner part of

the lower gallery. The hydrochemistry of this spring was investigated by Messina et al. [29],

who suggested there could be an active sulfur-cycling microbial community. During heavy

rains, large volumes of water (3–15 L/s) enters the cave and reach the spring pool. The present

study focuses on identifying the impact of surface water entering the cave on the microbial

community diversity and function of the Monte Conca spring pool. We hypothesize that surfi-

cial inputs are the primary drivers of seasonal change within the microbial community func-

tion and diversity within the spring pool.

Materials and methods

Site description

Monte Conca (37˚29’23”N—13˚42’49”E) is the first reported gypsum cave with an active sulfi-

dic spring [29]. The cave develops in upper Miocene (Messinian) evaporites and is the longest

and deepest gypsum karst system in Sicily (Fig 1). Madonia and Vattano [30] provide the most

recent description of the cave’s genesis. A sulfidic spring is present within the inner part of the

lower gallery year-around (Fig 1). This spring creates a small pool, which changes depth

according to seasons. After heavy rains, surface water can reach the spring pool.

Sampling strategies. Water samples were collected from the sulfidic spring pool for bio-

logical and hydrochemical analyses on the following days: July 11, 2015; August 29, 2015; Feb-

ruary 6, 2016; and December 10, 2016. July and August samples reflect the dry season, whereas

the sample from February is typical for the wet season. Sampling was not possible during

much of the wet season due to dangerous conditions resulting from high water levels within

the cave. The December sampling is considered as a transition period between the wet and dry

seasons because the rainfall amount could not be classified as wet or dry season.

Five replicate water samples were collected using gloves and stored at 5˚C for each of the

following: sulfide, total organic carbon (TOC), sulfate, and biological analysis. Replicates for

sulfide were stabilized with 1.5 mL of zinc acetate (9 g/30 mL) and stored at room temperature

until UV-Vis spectrophotometric analysis. Total organic carbon samples were acidified at

pH<2 with phosphoric acid and stored in dark glass bottles. All bottles filtration apparatuses,

and filters were sterilized by UV treatment for 1 hour at 254 nm.

Hydrochemical analyses

The following measurements were performed in situ: pH (Carlo ERBA pH-meter), air

temperature (HOBOware sensor), water conductivity, and temperature (CM-35 Crison con-

ductometer). Sulfate and TOC were measured using Thermo Scientific Dionex ion chromatog-

raphy and Hach instruments, following the UNI EN ISO 10304–1:2009 and UNI EN

1484:1999 procedures, respectively. Sulfide concentrations were measured by Cline’s [32]

methylene blue method.

Statistical analyses of the replicate hydrochemical data were performed using Primer v7/

Permanova+ statistical software (Primer-E Ltd., Albany, New Zealand). Hydrochemical data

were transformed (log X+1), normalized (subtracted the mean across all samples and divided
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by the standard deviation of the variable), and clustered using Euclidean distance before visu-

alizing with principal coordinate analysis (PCoA, Primer v7/Permanova+).

Biological analyses

Water samples (500 mL) were filtered through sterile 0.22-μm filters (Isopore, Ireland). Filters

were shipped frozen and on ice to the lab in sterile 6 cm Petri dishes for DNA extraction. Environ-

mental DNA was extracted aseptically from the filters using the PowerSoil kit (Qiagen, USA). Pre-

liminary length heterogeneity polymerase chain reaction (LH-PCR) analyses were carried out as

described by Menning et al. [33], who profiled microbial communities utilizing the V4 region of

the 16S rRNA gene in bacteria. These preliminary measurements [34] were used to determine the

variability of the microbial communities at different sampling locations within the spring.

A year-long study using 16S Illumina 300-bp paired end sequencing on three replicate

DNA samples from each date. Gene sequencing was carried out by PCR amplification of the

V4 region with pro341f and pro851r primers [35] adapted for Illumina MiSeq sequencing by

Applied Biological Materials, Inc (Richmond, BC and subsequent purification with AmPure

XP beads (Illumina, San Diego, California, USA). Mothur software [36] was used to assemble

paired-end reads and to remove sequences that were ambiguous or greater than the expected

length. Chimeras were eliminated using the VSEARCH algorithm [37] in mothur. Sequences

Fig 1. Map of the Monte Conca Cave system in Sicily, Italy. Map of Sicily showing the location of Monte Conca (red

dot). Plan view map of the cave with indication of its entrance (E) and location of the sulfidic spring (blue circle)

republished from [31] under a CC BY license, with permission from the author, original copyright 2008. Photo of the

team sampling the water at the sulfidic spring pool. Note the stream discharging the pool in the foreground.

https://doi.org/10.1371/journal.pone.0232742.g001
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were aligned in mothur using the Silva Version 128 database. Operational taxonomic units

(OTUs,�97% similarity) were clustered using the OptiClust algorithm [38].

Microbial community structure and statistical analyses of the replicate sequence data were

analyzed using Primer v7/Permanova+ statistical software. Square-root transformation and

clustering using Bray-Curtis similarity were utilized for the top 2000 OTUs for Bacteria before

analyzing with PCoA (Primer v7/Permanova+). A Bio-Env (BEST) analysis was performed to

determine the relationships between the biological and abiotic data. Rarefaction curves were

produced using Mothur [36]. Diversity indices were calculated for each replicate separately for

all sequences excluding singletons, using EstimateS software (EstimateS 9.1.0). Evenness was

calculated by dividing the mean Shannon diversity by the natural log of the total number of

OTUs of each replicate.

The 100 most abundant Bacterial OTUs (referred herein as the top 100) were used in our

functional analysis to ensure over 80% of the sequence abundance for each date was analyzed.

A total of 342 Bacterial OTUs were investigated due to overlap of OTUs between dates. A rep-

resentative sequence from each OTU was used as a Genbank query for provisional identifica-

tion, and those that could not be identified were called “unidentified”. OTUs with the same

provisional identification were combined for subsequent analyses.

The potential metabolic function of each OTU was assigned by a review of the literature for

each identified prokaryote. Predictive functional profiling may not accurately characterize the

extremophiles within caves due to high variability of some gene families [39] that may be pres-

ent within the cave microbiome. Obligate anaerobes and obligate or microoxic aerobes were

classified separately than facultative bacteria. Halotolerant and halophilic microbes were cate-

gorized together. Sulfur reducers included sulfur disproportionation and dissimilatory sulfate

reduction, whereas sulfur oxidizers comprised microbes that may oxidize any sulfur com-

pounds. Nitrogen reducers included microbes that carry out denitrification, nitrogen fixation,

and dissimilatory nitrogen reduction. Nitrogen oxidizers consisted of microbes that can utilize

nitrification and anaerobic ammonia oxidation. Though not technically a function, the term

“anthropogenic microbes” was used to describe microbes from potential contaminants that

may entered the cave system and could therefore affect the endemic community’s function.

The relative abundance of sequences with metabolic functions (referred to herein as

sequence abundance) was calculated independently by each date. The number of sequences

with a provisional function was divided by the total number of sequences in each date and con-

verted to a percent. The 342 Bacterial OTUs that represent the 100 most abundant Bacterial

sequences for each sampling date were analyzed for function and represent over 92% of the

sequences in our dataset.

Results

Conductivity, sulfate, hydrogen sulfide, and rainfall measurements were significantly different

between samples collected in the wet and dry seasons (Table 1). Conductivity was higher (3.81

mS/cm) at the transition between wet and dry seasons, whereas sulfate was lowest (1831 mg/L)

during this time. TOC values for the transition period (4 mg/L) were between the wet season

(2 mg/L) and the dry season (5–7 mg/L). Hydrogen sulfide concentrations during the dry sea-

son (10–14 ppm) are more similar to the transition period (8.5 ppm) compared to the wet sea-

son (3 ppm). The lowest temperature of the spring water was recorded during the wet season

(13˚C).

Mothur analysis of Illumina sequencing revealed a total of 353,008 sequences represented

by 16,381 Bacterial OTUs. Illumina sequences from the 2000 most abundant bacterial OTUs

encompassed over 97% of the sequence abundance and were analyzed with PCoA and coded
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by season (Fig 2). Each point on this PCoA represents a replicate that contains thousands of

sequences from the top 2000 OTUs from the entire dataset. Both axes together account for

48.7% of the total variation within these samples. The lines on Fig 2 correspond to a correla-

tional analysis of the hydrochemical results to the sequence data. Sequences from the wet sea-

son clustered separately from the dry season. The transition is different from the other two

seasons (p = 0.001) but appears more similar to the wet one.

Bioinformatic results are shown in S1 Table. These include the percent match to closest iden-

tified genus and the known metabolic functions of the provisionally identified genus. The rela-

tive abundance of each OTU from the triplicate samples are shown in S2 Table. The rarefaction

curves (Fig 3) are used here to indicate the completeness of the microbiome sequencing.

Identity and function of the top 100 Bacterial OTUs in each date were analyzed in detail

and represent 326,479 sequences. Excluding singletons, the 100 most abundant OTUs account

for ~95% of the sequences within the dataset. Despite a 97% cut-off for OTU clustering, some

OTUs have the same provisional identification, which were combined together under the

same provisional identification. The 10 most abundant provisionally-identified bacterial taxa

from each date are shown in Table 2.

An abbreviated potential metabolic function of the microbial communities is illustrated in

Table 3. Roughly 90% of the bacteria sequence abundance in the wet season was identified as

anthropogenic microbes (Table 3). Sulfur oxidizers were present in the dry season (90.5–

94.9%) and in the transition period (11.4%). Denitrification (6.8%) appears in the transition

period. Nitrogen fixers were identified in the dry season (3.8%) and in the transition period

(6.5%), but not in the wet season (0.0%). The percentage of microbial community function

does not equal 100% due to overlap in taxa that may perform more than one function.

The diversity indices for each date are shown in Table 4.

Discussion

Wet season

During the wet season, lasting from January until May, water runoff from the surface enters

the Monte Conca Cave [29]. Spring water temperature, conductivity, TOC, sulfate, and hydro-

gen sulfide concentrations were all lower in the wet season compared to the dry season,

whereas the microbial diversity was similar to the dry season (Table 1, Table 4). Microbes iden-

tified as potential anthropogenic contaminants, such as Escherichia and Lysinibacillus

Table 1. Meteorological, physical, and hydro-chemical data for Monte Conca spring.

Date Parameters July 11, 2015

Dry

August 29, 2015

Dry

February 6, 2016

Wet

December 10, 2016 Transition

Rainfall (mm) (previous month) 37 18 117 56

Number of rainy days (previous month) 11 5 21 19

Conductivity (mS/cm) 3.37 3.21 2.83 3.81�

TOC (mg/L) 5 7 2 4�

Sulfate (mg/L) 2210 2114 1886 1831�

Hydrogen sulfide (ppm) 10 14 3 9�

Cave water temperature (ºC) 15 15 11 14�

Spring pool water temperature (ºC) 17 17 13 15�

Cave air temperature (ºC) 16 16 11 16�

Air temperature (ºC) at the spring site 12 17 15 17�

� denotes average of five replicate measurements

https://doi.org/10.1371/journal.pone.0232742.t001
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comprise 89.5% and 3.7% of the sequences within the wet and dry season, respectively

(Table 2, Fig 4). The abundance of these microbes during the wet season suggests that surface

runoff introduces them into the cave, and their dominance of over 90% of the community may

explain the low evenness values found during this season (Table 4).

Fig 2. Principal coordinate analysis (PCoA) of the top 2000 OTUs. Each data point represents a replicate sample of bacterial

communities, depicting thousands of 16S rRNA sequences from the data in S2 Table. The three replicates from each date are shown

and labeled by season. The hydrochemical information from Table 1 is incorporated in this PCoA plot.

https://doi.org/10.1371/journal.pone.0232742.g002
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The presence of Escherichia has been documented outside cave entrances [40] and in caves

[e.g. 41, 42]. Surface water can be contaminated by a number of mechanisms [43, 44] and can

support Escherichia for several days [45]. Once inside the cave, contaminated water may flow

along karst conduits for several kilometers allowing for large portions of the cave to become

contaminated with fecal microbes [46]. Sources of contamination, the storage capacity of bac-

teria in soil and water, and the bacterial survival rate in groundwater are responsible for sea-

sonal variations of bacterial contaminants in caves [47]. Since enterobacteria are known to

survive in soils [45], the Escherichia in Monte Conca are likely derived from the surrounding

soils, particularly from the agricultural terrains above the cave. The presence of Lysinibacillus,
a common soil microbe [48, 49], also supports this hypothesis. Some Lysinibacillus species are

pathogenic and/or can be found in farming soil (see S1 Table), thus this genus could be consid-

ered “anthropogenic” for the purposes of this study. The presence of soil and enteric bacteria

identified in Monte Conca are consistent with other subsurface studies [e.g. 41, 42, 46, 50].

Molecular-grade water processed through each step in the biological analyses process did not

yielded these genera, therefore it is unlikely that these communities are the result of process

contamination.

Dry season

During the dry season, which lasts from June through December, the Monte Conca spring

pool has a different microbial community compared to the wet season (Fig 4). Communities

in the dry season had low diversity and evenness (Table 4), likely because fewer taxa are domi-

nant during this period. Although Messina et al. [29] suggested that Acidithiobacillus and Beg-
giatoa could be responsible for sulfur oxidation within this cave, this study identified

Sulfurovum, Sulfurimonas, Thiovirga, and Arcobacter in the Monte Conca spring pool

(Table 3). These genera have been found in Movile Cave and the Frasassi cave system [16, 17],

but other sulfur-oxidizers have been documented from many other cave environments [16, 23,

Fig 3. Microbial diversity of the Monte Conca spring pool. Bacterial rarefaction curves of the triplicates from each

season/period.

https://doi.org/10.1371/journal.pone.0232742.g003
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24, 50]. Decreases in pH of the sulfidic spring during the dry season [29] may be attributed to

these microbes. Similar sulfidic environments with high concentrations of carbon [51] and

low levels of oxygen [52] have been shown to host sulfur oxidizers. Denitrifiers are known to

be inhibited by high concentrations of hydrogen sulfide [53, 54], which may explain why they

are not abundant in the dry season community.

Transition between wet and dry seasons

Large volumes of water entering the Monte Conca Cave (3–5 L/s) can create dangerous situa-

tions that limit access to the spring pool during the wet season. The December 2016 sampling

Table 2. The abundance (abund.) and relative abundance (relative abund.) of the 10 most common bacterial taxa for each sampling date. Relative abundance was

calculated by dividing the sequence abundance of each taxon by the total number of sequences for the sample date.

Dry season

July 11, 2015 August 29, 2015

Provisional identification Num. OTUs Abund. Relative abund. Provisional identification Num. OTUs Abund. Relative abund.

Thiovirga 12 72157 92.91% Sulfurovum 17 52013 41.26%

Sulfurimonas 5 13188 16.98% Thiovirga 18 22775 18.07%

Sulfurovum 9 5086 6.55% Sulfurimonas 5 4512 3.58%

Arcobacter 3 3605 4.64% Thiomicrospira 4 4496 3.57%

Unidentified 7 1526 1.96% Arcobacter 1 3168 2.51%

Escherichia 1 1175 1.51% Escherichia 2 2197 1.74%

Sulfurospirillum 4 712 0.92% Sulfurospirillum 4 613 0.49%

Sulfuricurvum 2 648 0.83% Unidentified 13 386 0.31%

Bacillus 5 249 0.32% Lysinibacillus 1 329 0.26%

Thiomicrospira 2 201 0.26% Paludibacter 4 251 0.20%

Wet season Transition

February 6, 2016 December 10, 2016

Provisional identification Num. OTUs Abund. Relative abund. Provisional identification Num. OTUs Abund. Relative abund.

Escherichia 71 64501 81.79% Escherichia 23 34595 54.66%

Lysinibacillus 18 7358 9.33% Unidentified 18 5826 9.20%

Phyllobacterium 3 85 0.11% Lysinibacillus 11 3551 5.61%

Mycoplasma 2 43 0.05% Sulfurimonas 16 2941 4.65%

Afipia 1 28 0.04% Thiovirga 13 2671 4.22%

Sphingopyxis 1 21 0.03% Sulfurovum 4 886 1.40%

Unidentified 1 16 0.02% Thiothrix 4 316 0.50%

Bdellovibrio 1 16 0.02% Phaeocystidibacter 2 179 0.28%

Pseudomonas 1 16 0.02% Arcobacter 3 155 0.24%

Shigella 1 16 0.02% Sulfurospirillum 1 76 0.12%

https://doi.org/10.1371/journal.pone.0232742.t002

Table 3. The percent abundance of the potential metabolic functions.

Potential Bacterial Function (%)

date 7/11/2015 8/29/2015 2/6/2016 12/10/2016

season dry dry wet transition

anthropogenic 3.6 3.7 89.5 67.3

sulfur oxidizer 94.9 90.5 0.0 13.6

denitrifier 0.2 0.1 0.0 6.8

nitrogen fixation 3.8 3.8 0.0 6.5

https://doi.org/10.1371/journal.pone.0232742.t003
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was carried out after heavy rainfall, originally to be included as a wet season sample. Rainfall

during this period (56 mm) was approximately half of the typical wet season (117 mm) and

greater than the dry season (18–37 mm), so these samples were designated as representing a

transition between the wet and dry seasons.

The microbial analysis identified microbes that are common to both the wet and dry sea-

sons (Table 2). Sulfur oxidizers and anthropogenic microbes recognized in the dry and wet

seasons, respectively, were present within this sampling date. Anthropogenic microbes at this

sampling date (67.3%) were less abundant than the wet season (89.5%), but richer than the dry

season (3.6–3.7%). Microbes with the ability to fix nitrogen were higher during the transition

period (6.5%) compare to the dry season (3.8%), and absent in the wet season. Microbes with

the potential for denitrification were only identified within the December 2016 sample (6.8%).

The ecosystem

Surface water inputs greatly affect the Monte Conca Cave environment. Examination of the

bacterial PCoA analysis in Monte Conca Cave demonstrates different wet/dry season

Table 4. The average microbial diversity of each sampling date.

Microbial diversity indices

Date 7/11/2015 8/29/2015 2/6/2016 12/10/2016

Average of total OTUs 289 228 626 1017

Shannon Mean 1.14 ± 0.43 1.70 ± 0.22 1.82 ± 1.08 3.77 ± 0.17

Evenness 0.20 ± 0.07 0.31 ± 0.03 0.28 ± 0.14 0.54 ± 0.17

https://doi.org/10.1371/journal.pone.0232742.t004

Fig 4. The seasonal relationship between surface runoff and sulfidic spring in Monte Conca Cave. (A) Profile view

of the Monte Conca Cave. Hydrogen sulfide is produced in deeper parts of the gypsum karst and is discharged into the

spring pool (circled), which generates a small stream that flows northward towards the sump (see Fig 1). After heavy

rains, surface water enters the cave and reaches the lower gallery flowing northward towards the sump. (B-D) The

hydrological settings at the sulfidic spring during different periods. The relative microbial abundance is shown in bar

graphs for each of the three seasons to demonstrate community changes over time with the abundances from Table 3.

https://doi.org/10.1371/journal.pone.0232742.g004
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microbial communities (Fig 2). A chemolithoautotrophic community is present during the

dry season months until it is replaced by anthropogenic microbes likely derived from surface-

runoff during the wet season. The transition period between the seasons had the greatest

microbial diversity (Table 3). According to the BEST analysis, rainfall (ps = 0.578) accounted

for the greatest variance within the microbial community, demonstrating the seasonal impact

of surficial inputs into the cave system. The flooding events prior to the transition period and

wet season could explain the diversity during these respective intervals (Table 3).

Hydrogen sulfide (Table 1) is likely produced underneath the Monte Conca Cave by gyp-

sum reduction and is discharged into the spring pool (Fig 4). Although hydrogen sulfide is

present within the cave year-round (Table 1), its highest concentration occurs in the dry sea-

son (10–14 ppm). Dry season microbial communities are dominated by sulfur-oxidizing bacte-

ria (Table 3) due to the sulfidic spring conditions and from access to oxygen in the cave.

Surface runoff into the cave disrupts these communities and may dilute the hydrogen sulfide

(Table 1) in the spring pool.

Surface runoff can affect cave microbial communities such as those found in the Monte

Conca spring pool. Anthropogenic microbial contaminants originating from outside of the

cave environment can replace endemic cave communities. We identified one sampling date

that appears to show a transition between the dry and wet seasons, which was corroborated by

an increase in bacterial diversity. The microbial community during this transition period was

the most diverse and consisted of potential anthropogenic contaminants from the surface in

addition to the sulfur oxidizers that were identified in the dry season. This study demonstrates

the impact of surface runoff on the microbial community structure and function of endemic

cave communities.
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