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Abstract

This paper presents the potential of applying physics-informed neural networks for solving

nonlinear multiphysics problems, which are essential to many fields such as biomedical

engineering, earthquake prediction, and underground energy harvesting. Specifically, we

investigate how to extend the methodology of physics-informed neural networks to solve

both the forward and inverse problems in relation to the nonlinear diffusivity and Biot’s equa-

tions. We explore the accuracy of the physics-informed neural networks with different train-

ing example sizes and choices of hyperparameters. The impacts of the stochastic variations

between various training realizations are also investigated. In the inverse case, we also

study the effects of noisy measurements. Furthermore, we address the challenge of select-

ing the hyperparameters of the inverse model and illustrate how this challenge is linked to

the hyperparameters selection performed for the forward one.

Introduction

The volumetric displacement of a porous medium caused by the changes in fluid pressure

inside the pore spaces is essential for many applications, including groundwater flow, under-

ground heat mining, fossil fuel production, earthquake mechanics, and biomedical engineer-

ing [1–5]. Such volumetric deformation may impact the hydraulic storability and permeability

of porous material, which influences the fluid flow behavior. This multiphysics problem, i.e.,

the coupling between fluid flow and solid deformation, can be captured through the applica-

tion of Biot’s equations of poroelasticity [6, 7]. The Biot’s equations can be solved by analytical

solutions for simple cases [8, 9]. In complex cases, the finite difference approximation [10, 11],

finite volume discretization [12, 13], or more commonly finite element methods such as the

mixed formulation or discontinuous/enriched Galerkin, [14–21], can be used. These numeri-

cal methods, however, require significant computational resources, and the accuracy of the

solution depends heavily on the quality of the generated mesh. Hence, these methods may not

be suitable to handle an inverse problem [22, 23] or a forward problem with complex geome-

tries [24–26].

Recent proposals have speculated that neural-network-based approaches such as deep

learning might be an appealing alternative in solving physical problems, which are governed
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by partial differential equations since they operate without a mesh and are scalable on multi-

threaded systems [25–29]. Moreover, deep learning has been successfully applied to many

applications [30–32] because of its capability to handle highly nonlinear problems [33]. As this

technique, in general, requires a significantly large data set to reach a reasonable accuracy [34],

its applicability to many scientific and industrial problems can be a challenge [35]. Use of a pri-

ori knowledge, however, can reduce the amount of examples needed. For instance, the idea of

encoding physical information into the architectures and loss functions of the deep neural net-

works has been successfully applied to computational fluid dynamics problems [24, 26–29,

36]. The published results illustrate that by incorporating the physical information in the form

of regularization terms of the loss functions, the neural networks can be trained to provide

good accuracy with a reasonably sized data set.

Since the coupled fluid and solid mechanics process is highly nonlinear and generally

involves complex geometries [19, 37, 38], it seems to fit well into the context of physics-

informed neural networks (PINN). For this reason, we propose to apply PINN for solving the

nonlinear diffusivity and Biot’s equations, both concerning forward and inverse modeling.

The rest of the paper is organized as follows. The governing equations of the coupled solid and

fluid mechanics are presented in the methodology section. Subsequently, the PINN architec-

ture and its loss functions are defined. We then present forward and inverse modeling results

for both the nonlinear diffusivity equation as well as Biot’s equations. We also study the impact

of the stochastic variations of the training procedures on the accuracy of the predicted primary

variables and estimated parameters. Finally, we conclude the findings and describe the possi-

bilities that can enhance the capability of this model, which should be addressed in future

works.

Methodology

Governing equations

We are interested in solving the nonlinear Biot’s equations on the closed domain (O) which

amounts to a time-dependent multiphysics problem coupling solid deformation with fluid

flow. Let O � Rd
be the domain of interest in d-dimensional space where d = 1, 2, or 3 and

bounded by boundary, @O. @O can be decomposed into displacement and traction boundaries,

@Ou and @Oσ, respectively, for the solid deformation problem. For the fluid flow problem, @O

is decomposed into pressure and flux boundaries, @Op and @Oq, respectively. In short, @Ou

and @Op represent the first-kind boundary condition or Dirichlet boundary condition (@OD).

The @Oσ and @Oq, on the other hand, represent the second-kind boundary condition or Neu-

mann boundary condition (@ON). The time domain is denoted by T ¼ ð0; t� with τ> 0.

As just stated, the coupling between the fluid flow and solid deformation can be captured

through the application of Biot’s equations of poroelasticity, which is composed of linear

momentum and mass balance equations [6]. The linear momentum balance equation can be

written as follows:

r � σðu; pÞ ¼ f ; ð1Þ

where u is displacement, p is fluid pressure, f is body force. The bold-face letters or symbols

denote tensors and vectors, and the normal letters or symbols denote scalar values. Here, σ is

the total stress, which is defined as:

σ≔σ0ðuÞ � apI; ð2Þ
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where I is the identity tensor and α is Biot’s coefficient defined as [39]:

a≔ 1 �
K
Ks
; ð3Þ

with the bulk modulus of a rock matrix K and the solid grains modulus Ks. In addition, σ0 is an

effective stress defined as:

σ0ðuÞ≔ 2mlεðuÞ þ lluI; ð4Þ

where λl and μl are Lamé constants, ε(u) is strain assuming infinitesimal displacements defined

as:

εðuÞ≔
1

2
ruþrTuð Þ: ð5Þ

We can write the linear momentum balance and its boundary conditions as:

r � σ0ðuÞ � ar � pI ¼ f in O� T; ð6Þ

u ¼ uD on @Ou � T; ð7Þ

σ � n ¼ σD on @Os � T; ð8Þ

u ¼ u0 in O at t ¼ 0; ð9Þ

where uD and σD are prescribed displacement and traction at boundaries, respectively, n is a

normal unit vector, and t is time.

The mass balance equation is written as [38, 40]:

�cf þ
a � �

Ks

� �
@p
@t
þ a

@r � u
@t

� r �N ½κ�ðrp � rgÞ ¼ g in O� T; ð10Þ

p ¼ pD on @Op � T; ð11Þ

� N ½κ�ðrp � rgÞ � n ¼ qD on @Oq � T; ð12Þ

p ¼ p0 in O at t ¼ 0; ð13Þ

where ρ is fluid density, ϕ is initial porosity and remains constant throughout the simulation

(the volumetric deformation is represented by @r � u/@t), cf is fluid compressibility, g is a grav-

itational vector, g is sink/source, pD and qD are specified pressure and flux, respectively, N ½��
represents a nonlinear operator, and κ is hydraulic conductivity defined as:

κ≔

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

2

6
6
6
4

3

7
7
7
5
; ð14Þ

where the tensor components characterize the transformation of the components of the gradi-

ent of fluid pressure into the components of the velocity vector. The κxx, κyy, and κzz represent

the matrix permeability in x-, y-, and z-direction, respectively. In this study, all off-diagonal

terms are zero because we assume that a porous media is isotropic and homogeneous [41, 42].
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Note that the diffusivity equation is a specific case of the Biot’s equations since Eqs (6) and

(10) decouple when α = 0. The details of this equation are presented in the results and discus-

sion section.

Physics-informed neural networks model

Neural network architecture. The neural network architecture used in this study is pre-

sented in Fig 1 [33, 43, 44]. The number of input and output nodes in the neural networks are

determined from the problem formulation; for example, if the problem is time-dependent por-

oelasticity (as discussed in the previous section) and bounded by O = [0, 1]1, we have two

input nodes (x and t) and two output nodes (u and p) where x is coordinate in x-direction, t is

time, u is the displacement in x-direction, and p is fluid pressure. The number of hidden layers

(Nhl) and the number of neurons (Nn) act as so-called hyperparameters [45]. Each neuron

(e.g., H1,1 . . . H1;Nn
) is connected to the nodes of the previous layer with adjustable weights and

also has an adjustable bias. We denote the set of weights and biases as (W) and (b), respec-

tively. These variables are learned during a training phase [44, 45]. In this paper, we define all

hidden layers to have the same number of neurons.

Physics-informed neural networks encode the information given by the differential opera-

tors as specific regularizing terms of the loss functions used when training the networks (see

the section below). Because the training examples that are used to evaluate these extra regular-

izing terms, in general, are different from those used to train the network shown in Fig 1, one

conceptually introduces an additional neural network—denoted the physical informed neural

network [26]. This additional neural network is dependent on all the W and b of the first

Fig 1. General neural network architecture used in this study [33, 43, 44]. The input layer contains up to i input

nodes, and the output layer is composed of 1, . . ., k output nodes. Nhl refes to the number of hidden layers, and each

hidden layer is composed of Nn neurons. Each neuron (e.g., H1,1 . . . H1;Nn
) is connected to the nodes of the previous

layer with adjustable weights and also has an adjustable bias.

https://doi.org/10.1371/journal.pone.0232683.g001

PLOS ONE Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations

PLOS ONE | https://doi.org/10.1371/journal.pone.0232683 May 6, 2020 4 / 28

https://doi.org/10.1371/journal.pone.0232683.g001
https://doi.org/10.1371/journal.pone.0232683


neural network, but it introduces some extra variables to be learned for the inverse modeling

case. This is elaborated in more detail in the below section on training the PINN. Note that

while the neural network shown in Fig 1 can be seen as point-to-point learning, the physics-

informed regularization indirectly contributes to the local interactions (the stencil). The neural

networks are built on the Tensorflow platform [46]. The results produced using either the rec-

tified linear unit (ReLU) or the hyperbolic tangent (tanh) were comparable. Hence, we only

present the results using the tanh activation function in this paper.

Physics-informed function. We encode the underlying physical information to the neu-

ral networks through the so-called physics-informed function (P), acting as additional regu-

larizing terms in the loss function defined below.

For the linear momentum balance equation Eq (6), we define Pu as follows:

Pu≔r � σ0ðuÞ � ar � pI � f in O� T; ð15Þ

and with reference to Eq (8) for its @Oσ:

Puσ
≔σ � n � σD on @Os � T; ð16Þ

and for the mass balance equation Eq (10), we define the Pp as:

Pp≔ �cf þ
a � �

Ks

� �
@p
@t
þ a

@r � u
@t

� r �N ½κ�ðrp � rgÞ � g in O� T; ð17Þ

and for its @Oq according to Eq (12)

Ppq
≔ � N ½κ�ðrp � rgÞ � n � qD on @Oq � T: ð18Þ

Demanding theP terms above to be as close to zero as possible corresponds to fulfilling Eqs

(6), (8), (10) and (12).

Loss function definition. The loss function applied with the PINN scheme is composed

of two parts (here we use a mean squared error—MSE as the metric). The error on the training

data (MSEtr) and the mean square value of the regularization term given by the physics-

informed function (MSEP):

MSE ¼ MSEtr þMSEP; ð19Þ

where

MSEP ¼ MSEPO þMSEP@ON ; ð20Þ

MSEPO ¼ MSEPu
þMSEPp

; ð21Þ

and

MSEP@ON ¼ MSEPuσ
þMSEPpq

: ð22Þ

where MSEPu
, MSEPuσ

, MSEPp
, and MSEPpq

correspond to the loss function of Eqs (15), (16),

(17) and (18), respectively. The Dirichlet boundary conditions given on @OD with respect to

the linear momentum Eq (7) and mass balance Eq (11) equations are automatically incorpo-

rated into the MSEtr.
A graphical presentation of how boundary points, initial points, as well as domain data, are

used for training the neural networks is provided in Fig 2. For the forward model, the set of

points that constitutes @OD � T and O at t = 0 contributes to the MSEtr term of the loss
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function. We denote this set of training data as Nb. Besides, we have a set of collocation points

that are sampled from @ON � T and O� T. These training data are used to minimize theP

parts of the loss function, and we denote these data points as NP.

For the inverse model, we will have a set of known/measured data points that can be sam-

pled from the whole domain, i.e.,O� T. We refer to this set of training data as Ntr. All this

data will contribute to both the MSEtr and the MSEPO terms of the loss function. Also, we may

include an extra set of collocation points (i.e., data where we would have no measured values),

which would contribute only to the MSEPO
term.

Training the PINN. The structure of a PINN architecture is shown in Fig 3. We assume a

simple case of two inputs, I1 and I2, one output, O, and one hidden layer with two neurons.

Moreover, we here assume that P is a function of O, the first derivative of O with respect to

the set of inputs, and the set of physical parameters, θ. With (�)tr we represent a training set,

where the O values are known for given I1,tr and I2,tr. This set is used to evaluate the MSEtr
term of Eq (19) at each training cycle. The MSEP part of Eq (19) is obtained by calculating P

for the collocation points (�)P; see bottom part of Fig 3. Calculating P involves knowing O and

its derivatives with respect to I1 and I2. As these values are unknown for the collocation points,

they are estimated using the current approximation of O(W, b, I1, I2) and its derivatives, which

can be obtained using automatic differentiation [47, 48]. In this way, the regularization term

MSEP indirectly depends on the weights, W, and biases, b, of the neural architecture shown at

the top of Fig 3. As a result, P can be written as a function of W, b, I1,P, I2,P, and θ. If we

denote this function, γ, we have γ(W, b, I1,P, I2,P, θ) = P OðW; b; I1;P; I2;PÞ;
@O
@I1
; @O
@I2
; y

� �
. Note

that the specific mapping of I1,P and I2,P to P has been defined as the physical informed neu-

ral network in previous work [26] as opposed to the neural network shown in the top of Fig 3.

For both the forward and the inverse modeling cases, one trains the neural networks to

establish a mapping from the input space given by I1 and I2 to the output space, O, by minimiz-

ing MSEtr and MSEP. The essential differences between the two cases come down to the type

Fig 2. Illustration of the parts of input space used for training the PINN. (a) forward model and (b) inverse model. The collocation (O� T),

boundary and initial points (@OD � T andO at t = 0) are utilized in the forward model. However, only the training points (O� T) are employed in the

inverse model. X represents a set of spatial coordinates (x, y, and z), t is a set of coordinates in the time domain, and S is a set of solution values (u and p)

corresponding to X and t.

https://doi.org/10.1371/journal.pone.0232683.g002
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of training examples being available to train the networks, as discussed in Fig 2, and whether

the physical parameters (θ) are known or not. For the forward modeling, we apply (�)tr to eval-

uate the MSEtr term and (�)P to evaluate the MSEP term. The W and b are then adjusted to

minimize the sum of these terms. One should emphasize that for the forward modeling, all the

variables to be learned belong to the neural network depicted in the top of Fig 3.

For the inverse modeling, the aim is to estimate θ. We still, however, train a neural network

to predict O (similar to the forward case). That is, we are not using a loss function that involves

measuring a distance between estimated values of θ and their ground truth values. Instead, the

reasoning behind solving the inverse problem is that we expect the unknown θ to converge

towards their true values during training because we also allow θ to be adjusted along with W

and b. During a training phase, these variables are learned to minimize the combined sum of

MSEtr and MSEP. Specifically, the variables are adjusted by backpropagating the errors as cal-

culated by Eq (19) [44, 45]. Unlike the forward problem, the boundary and initial conditions

are unknown and cannot be used to generate training examples. Instead, we provide training

examples that, in real cases, would be obtained from measurements, which ideally correspond

to solution points of the forward problem inside O (see Fig 2b).

As discussed above, the solution of the inverse problem is based on training the neural net-

work to establish a mapping from I1 and I2 to O as we do in the forward case. This means that

the hyperparameters estimated from the forward modeling may act as qualified estimates for

the hyperparameters in the inverse case, assuming the number of training examples in both

cases are similar. By definition of the inverse problem, we do not know the true values of θ, so

we would have to assume that the exact values of θ have a limited influence on the hyperpara-

meters. A more direct way of estimating the hyperparameters in the inverse case would be to

divide the data into training and validation sets and then select the hyperparameters that

Fig 3. Graphical illustration of how a traditional neural network is linked to a physics-informed neural network. The set of θ represents

unknown physical parameters that we want to estimate.

https://doi.org/10.1371/journal.pone.0232683.g003
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minimize MSE with respect to learning the mapping from I1 and I2 to O. The downside of this

is that we could then not spend all the measurement data on training the neural networks.

Results and discussion

We first consider the results of forward and inverse models of the nonlinear diffusivity equa-

tion. Subsequently, we present the results of the nonlinear Biot’s equations for both the for-

ward and inverse models.

Nonlinear diffusivity equation

We assume α = 0 to decouple the momentum and mass balance equations and focus on Eq

(10), which is reduced to

�ct
@p
@t
� r �N ½κ�ðrp � rgÞ ¼ g in O� T; ð23Þ

where ct is a total compressibility. The same boundary and initial conditions, Eqs (11) to (13),

are still valid.

We take O = [0, 1]1, T ¼ ½0; 1�, and choose the exact solution in O as:

pðx; tÞ≔ sinðxþ tÞ; ð24Þ

and N ½κ� as:

N ½κ�≔ κ0p2; ð25Þ

where x and t represent points in x-direction and time domain, respectively. The κ0 is assumed

to be a scalar in this case, i.e., κ0 = κ0. All the physical constants are set to 1.0; and subse-

quently, g is chosen as:

gðx; tÞ≔ cosðxþ tÞ þ sinðxþ tÞ3 � 2cosðxþ tÞ2sinðxþ tÞ; ð26Þ

to satisfy the exact solution. Furthermore, the homogeneous boundary conditions are applied

to all boundaries and initial conditions using Eq (24). Combining Eqs (23) to (26), the physics-

informed function (P) for the nonlinear diffusivity equation is defined:

Pðx; tÞ≔�ct
@p
@t
� k0

@

@x
p2

@

@x
p

� �

� g: ð27Þ

We generate the solution based on an interval mesh having 2559 equidistant spatial inter-

vals and 99 temporal ones; hence, in total, we have 256000 solution points, including the points

on boundaries. Subsequently, we randomly draw n training examples. Half of the remaining

points are randomly selected as a validation set, and the remaining ones are used for testing.

As an illustration, if we have 256000 solution points and use 100 examples to train the model.

We then use 127950 examples for the validation and 127950 examples for the test set.

For the nonlinear diffusivity equation, the forward modeling with a neural network should

calculate the p at any given x and t from provided values of ϕ, ct, and κ0. For the inverse case,

the aim is to infer ϕ, ct, and κ0 from observed values of x, t, and p. The architecture of the neu-

ral network corresponding to the top of Fig 3 is illustrated in Fig 4. We have two input

nodes and one output node for this case. We use L-BFGS [49]; a quasi-Newton, fullbatch gra-

dient-based optimization algorithm to minimize the loss function with stop criteria as
jMSEk � MSEkþ1j

maxðjMSEkj;jMSEkþ1 j;1:0Þ
<¼ 10� 16 where (�)k and (�)k+1 are previous and current iteration, respec-

tively. The L-BFGS algorithm has several advantages that are suitable for this study; for
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example, it is more stable compared to stochastic gradient descent (SGD) and can handle large

batch sizes well [49, 50]. This setting is used for all the simulations presented in this paper

unless stated otherwise.

To reiterate, the sampling strategies of the forward and inverse modelings are illustrated in

Fig 2. To be specific, in the forward case, we must determine the solution of the partial differ-

ential equation based on known boundary values for the time interval of T ¼ ð0; t� combined

with the initial values at t = 0. These boundary and initial points are used to calculate the

MSEtr term of Eq 19. The inner points act as collocation points and are used to calculate the

MSEP term of Eq 19. Note that for the forward case, we can pick as many points as we wish to

calculate for both terms of the loss function. For the inverse model, we know a set of x and t
and their corresponding values of p in advance. These examples are used to calculate the MSEtr
and MSEP terms of Eq 19. In a real setting, the amount of training examples is limited by the

available measurements.

Verification of the forward model. Following Eq (19) we obtain:

MSE ¼ MSEb þMSEP; ð28Þ

where

MSEb ¼
1

Nb

XNb

i¼1

jp xib; t
i
b

� �
� pij

2
ð29Þ

and

MSEP ¼
1

NP

XNP

i¼1

jP xi
P
; ti
P

� �
j
2
; ð30Þ

where fxi
b; t

i
b; p

ig
Nb
i¼1

refer to the initial and boundary training data on p(x, t) while fxi
P
; ti
P
g
NP
i¼1

denote the collocation points for P, which are sampled using the Latin Hypercube method

Fig 4. Neural network architecture used for nonlinear diffusivity equation. This network corresponds to the top

part of Fig 3. There are two input nodes, x and t, and one output node, p. The number of hidden layers, Nhl, and the

number of neurons for each hidden layer, Nn, denote the hyperparameters.

https://doi.org/10.1371/journal.pone.0232683.g004
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provided within the pyDOE package [51]. The Nb is the combined number of initial and

boundary training data, and NP is the number of collocation points.

In Table 1, we explore the accuracy of the PINN as a function of the number of training

examples, i.e., different numbers of Nb and NP for a given size of the network; Nhl and Nn are

fixed to four and ten, respectively. Due to the stochastic behavior of the training procedure of

the neural networks, we calculate the results as an average over many realizations as it other-

wise might be difficult to observe a clear trend of the relative L2
error as a function of the num-

ber of training examples (see Panel A of Table 1). From Panels B and C of Table 1, we observe

Table 1. Diffusivity equation—forward modeling: PINN performance as function of training set size. Relative L2
errors between the exact and predicted values of p for

the validation set. The table shows the dependency on the number of the initial and boundary training data, Nb, and on the number of collocation points, NP. Here, the net-

work architecture is fixed to 4 layers with 10 neurons per hidden layer.

Panel A: Average over 1 realization

NP 2 5 10 20 40 80 160 320 640

Nb

2 0.1010 0.1150 0.4060 0.2570 0.1530 0.0108 0.1930 0.0236 0.0216

3 0.0339 0.0665 0.1050 0.0122 0.0020 0.0973 0.0025 0.0314 0.0074

6 0.0248 0.0401 0.1110 0.0807 0.0012 0.0057 0.0014 0.0116 0.0046

12 0.0072 0.1230 0.0126 0.0296 0.0012 0.0119 0.0010 0.0015 0.0076

24 0.0152 0.0018 0.0008 0.0008 0.0006 0.0016 0.0008 0.0006 0.0009

48 0.0124 0.0127 0.0015 0.0037 0.0044 0.0013 0.0035 0.0002 0.0026

96 0.0076 0.0010 0.0023 0.0015 0.0026 0.0017 0.0009 0.0007 0.0010

192 0.0036 0.0006 0.0205 0.0025 0.0010 0.0051 0.0005 0.0008 0.0002

384 0.0020 0.0019 0.0009 0.0004 0.0008 0.0001 0.0005 0.0005 0.0003

Panel B: Average over 3 realizations

NP 2 5 10 20 40 80 160 320 640

Nb

2 0.0972 0.0596 0.0417 0.0859 0.0380 0.0086 0.0041 0.0105 0.0050

3 0.0744 0.0652 0.0969 0.0415 0.0173 0.0268 0.0261 0.0084 0.0077

6 0.1020 0.1160 0.0841 0.0133 0.0071 0.0756 0.0217 0.0078 0.0064

12 0.0853 0.0099 0.0751 0.0088 0.0061 0.0456 0.0036 0.0059 0.0033

24 0.0447 0.0272 0.0104 0.0214 0.0290 0.0015 0.0041 0.0017 0.0060

48 0.0201 0.0037 0.0012 0.0230 0.0040 0.0072 0.0042 0.0060 0.0025

96 0.0104 0.0020 0.0013 0.0024 0.0048 0.0011 0.0009 0.0019 0.0020

192 0.0186 0.0014 0.0022 0.0006 0.0007 0.0011 0.0006 0.0004 0.0008

384 0.0015 0.0011 0.0010 0.0009 0.0005 0.0007 0.0010 0.0005 0.0005

Panel C: Average over 24 realizations

NP 2 5 10 20 40 80 160 320 640

Nb

2 0.1002 0.0965 0.0904 0.0732 0.0849 0.0514 0.0139 0.0194 0.0188

3 0.0879 0.0775 0.0861 0.0513 0.0352 0.0354 0.0260 0.0111 0.0117

6 0.0710 0.0537 0.0529 0.0241 0.0144 0.0265 0.0153 0.0056 0.0107

12 0.0541 0.0351 0.0376 0.0302 0.0104 0.0235 0.0111 0.0135 0.0058

24 0.0320 0.0233 0.0141 0.0311 0.0160 0.0052 0.0061 0.0043 0.0039

48 0.0178 0.0050 0.0162 0.0111 0.0040 0.0024 0.0044 0.0041 0.0026

96 0.0087 0.0037 0.0031 0.0034 0.0022 0.0015 0.0021 0.0010 0.0012

192 0.0064 0.0049 0.0017 0.0010 0.0010 0.0011 0.0012 0.0009 0.0009

384 0.0046 0.0026 0.0011 0.0011 0.0010 0.0007 0.0008 0.0007 0.0006

https://doi.org/10.1371/journal.pone.0232683.t001
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that the average accuracy of the PINN is improved as Nb and NP are increased. Moreover, the

combined number of Nb and NP to obtain an average value of the L2
error below 1.0 × 10−2 is

in the order of 100s. To illustrate the impact of P terms, we consider the case where we simply

train a neural network to interpolate a feed-forward solution based on a known set of solution

points. Without P regularization we obtain an average relative L2
error of 5.6 × 10−2 based

on 96 training examples while the average L2
error becomes less than 1.0 × 10−2 when includ-

ing P.

Next, we perform a sensitivity analysis to explore how the PINN performance depends on

the hyperparameters, Nhl and Nn. We do this using a fixed size of the training set with Nb and

NP equal to 96 and 160, respectively. Ideally, the explored space of the hyperparameters should

reveal a parameter set that produces a minimum of the loss function on a validation set. To

deal with the stochastic nature of the training procedure, again, we calculate average values

obtained over many realizations. The results are presented in Table 2. From panel C, we

observe that selecting Nhl = 6 and Nn = 5 corresponds to the best accuracy in the explored

space. For a smaller and larger size of the architecture, the accuracy decreases, corresponding

to underfitting and overfitting, respectively [52]. We now apply the trained PINN model using

Table 2. Diffusivity equation—forward modeling: PINN performance as function of hyperparameters. Relative L2
errors between the exact and predicted values of p

for the validation set. The table shows the dependency on the different number of hidden layers Nhl and different number of neurons per layer Nn. Here, the total number

of training and collocation points is fixed to Nb = 96 and NP = 160, respectively.

Panel A: Average over 1 realization

Nn 2 5 10 20 40 80

Nhl

2 0.0009 0.0015 0.0062 0.0003 0.0003 0.0088

4 0.0033 0.0036 0.0098 0.0009 0.0144 0.0007

6 0.0003 0.0038 0.0017 0.0175 0.0268 0.0009

8 0.0021 0.0010 0.0005 0.0005 0.0006 0.0058

16 0.0411 0.0003 0.0105 0.0007 0.0175 0.0019

32 0.0735 0.0019 0.0073 0.1970 0.0024 0.0081

Panel B: Average over 3 realizations

Nn 2 5 10 20 40 80

Nhl

2 0.0027 0.0015 0.0021 0.0042 0.0025 0.0026

4 0.0004 0.0025 0.0013 0.0024 0.0014 0.0025

6 0.0023 0.0021 0.0020 0.0028 0.0026 0.0025

8 0.0049 0.0010 0.0023 0.0017 0.0016 0.0020

16 0.5580 0.0029 0.0012 0.0030 0.0019 0.0027

32 0.1150 0.0328 0.0036 0.0034 0.0107 0.0022

Panel C: Average over 24 realizations

Nn 2 5 10 20 40 80

Nhl

2 0.1660 0.0022 0.0032 0.0025 0.0025 0.0020

4 0.0171 0.0024 0.0018 0.0021 0.0018 0.0022

6 0.0032 0.0014 0.0018 0.0024 0.0020 0.0023

8 0.0253 0.0016 0.0019 0.0020 0.0021 0.0025

16 0.0912 0.0019 0.0019 0.0019 0.0025 0.0033

32 0.0462 0.0090 0.0037 0.0027 0.0036 0.0031

https://doi.org/10.1371/journal.pone.0232683.t002
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Nb = 96, NP = 160, Nhl = 6, and Nn = 5 to the test set. The relative L2
error is 1.43 × 10−3,

which is comparable to that of the validation set (see Table 2—Panel C).

For the selected model (Nhl = 6, Nn = 5, Nb = 96, and NP = 160), we illustrate the behavior

of the mean square training error of this model as function of the training iterations in Fig 5.

One can observe that MSEb is higher than MSEP in the beginning, but later it approaches zero

faster than MSEP. The MSE converges steadily without any oscillations.

Inverse model of diffusivity equation. We rewrite Eq (27) in the parametrized form [23]

as presented below:

Pðx; tÞ≔ y1

@p
@t
� y2

@

@x
p2 @

@x
p

� �

� g; ð31Þ

Fig 5. Diffusivity equation—forward modeling: mean square training error plot. This model uses Nhl = 6, Nn = 5, Nb =

96, and NP = 160. MSE, MSEb, and MSEP are calculated using Eqs 28, 29 and 30, respectively.

https://doi.org/10.1371/journal.pone.0232683.g005
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where

y1 ¼ �ct and y2 ¼ k0: ð32Þ

Unlike the forward mode, where the weights and biases are the unknown parameters to be

learned, we now have two more unknowns, θ1 and θ2. Using Eq (19) we have:

MSEtr ¼
1

Ntr

XNtr

i¼1

jp xitrt
i
tr

� �
� pij

2
ð33Þ

and

MSEP ¼
1

Ntr

XNtr

i¼1

jP xitr; t
i
tr

� �
j
2
; ð34Þ

where fxi
tr; t

i
tr; p

ig
Ntr
i¼1

refers to the set of training data and Ntr is the number of training data. In

contrast to the forward model, we do not need to specify specific collocation points to activate

theP dependent loss term; here we can just use the training examples used to calculate MSEtr.
All physical constants are set to one; hence, θ1 = 1.0 and θ2 = 1.0. Note that θ1 and θ2 are con-

sidered constant throughout the domain.

We use the hyperparameters obtained from the sensitivity analysis of the forward model

(see Panel C of Table 2), i.e., Nhl = 6 and Nn = 5. In Table 3, we illustrate that this choice also

yields the least L2
error of p and percentage errors of θ1 and θ2 for the inverse problem, sup-

porting the heuristic arguments presented above in the section “Training the PINN”. More-

over, we find that the L2
error of p and percentage error of θ1 and θ2 are not much different

with different combinations of the hyperparameters. Note that the L2
error of p and percent-

age errors of θ1 and θ2 presented in Table 3 represent average values over 24 realizations.

We depict the performance of the PINN model for solving the inverse problem as a func-

tion of Ntr in Fig 6. The reported error values of θ1 and θ2 are percentage errors, while the rela-

tive L2
error is shown for p. The error bars show the standard derivation (±1 SD) based on 24

realizations. We observe that a minimum of Ntr = 200 is required by the PINN model to avoid

substantial stochastic fluctuations in the estimated values of θ1 and θ2. Moreover, we observe

that the PINN model with Ntr> 200 provides average percentage errors of θ1 and θ2 less than

Table 3. Diffusivity equation—inverse modeling: PINN performance as function of hyperparameters. Relative L2

error of p and percentage error of θ1 and θ2 for different number of hidden layers, Nhl, and different number of neurons

per layer, Nn. The Ntr is fixed at 250. Note that we pick the optimal hyperparameters, i.e., Nhl = 6 and Nn = 5 from the

sensitivity analysis of the forward model. Results shown in this table are an average over 24 realizations.

Nn 2 5 10

Nhl

p 4 0.0004 0.0003 0.0003

6 0.0007 0.0002 0.0004

8 0.0010 0.0002 0.0003

θ1 4 0.1888 0.1357 0.1969

6 0.3200 0.1065 0.3261

8 0.5195 0.1272 0.1125

θ2 4 0.3443 0.3562 0.3289

6 0.7121 0.1912 0.6946

8 0.7949 0.3088 0.2504

https://doi.org/10.1371/journal.pone.0232683.t003
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1%, but with a large standard deviation. Over 24 realizations of the trained PINN with Ntr =

200, the minimum percentage errors are 2.31 × 10−2 and 7.33 × 10−2 and the maximum are

1.93 × 10−1 and 4.92 × 10−1, for θ1 and θ2, respectively. To obtain 200 training examples in a

real setting, i.e., lab experiments or field observations, is realistic; hence, the results illustrate

the feasibility of PINN to solve the inverse problem based on a reasonably sized data set.

Next, we perform a systematic study of the effect of additive noise in data, which is created

from the true data as follows [26]:

Xnoise ¼ Xtrue þ �SðXtrueÞGð0; 1Þ; ð35Þ

Fig 6. Diffusivity equation—inverse modeling: PINN performance as function of training set size. This figure shows the estimated error

dependency on the amount of training data, Ntr. The error bars show mean and standard derivation (± 1 SD) based on 24 realizations. Note that there is

no noise added in this investigation, and all physical constants are set to one, i.e., θ1 = θ2 = 1.0. The reported error values of θ1 and θ2 are percentage

errors while the relative L2
error is shown for p.

https://doi.org/10.1371/journal.pone.0232683.g006
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where Xnoise and Xtrue is the vector of the data with and without noise, respectively. The � deter-

mines the noise level, Sð�Þ represents a standard deviation operator, Gð0; 1Þ is a random value,

which is sampled from the Gaussian distribution with mean and standard deviation of zero

and one, respectively. The noise generated from this procedure is fully random and uncorre-

lated. The results are presented in Table 4 as average values over 10 training realizations. We

can observe that the error increases with the noise level (�) while the error decreases as the Ntr

is increased. As expected, the PINN model requires more data to accurately approximate the

unknown physical parameters when the noise level is high.

Nonlinear Biot’s equations

From the nonlinear diffusivity equation section, we have shown that the PINN model can

solve forward and inverse problems. We then progress to the multiphysics problem repre-

sented by the nonlinear Biot’s equations. We take O = [0, 1]2, T ¼ ½0; 1�, and choose the exact

solution in O as:

uðx; y; tÞ≔
u

v

" #

¼
sinðxþ yþ tÞ

cosðxþ yþ tÞ

" #

; ð36Þ

for the displacement variable where u and v are displacements in x- and y-direction, respec-

tively. Note that as we focus on the 2-Dimensional domain; therefore, u(x, y, t) is composed of

two spatial components. For the pressure variable, we choose

pðx; y; tÞ≔ eðxþyþtÞ: ð37Þ

Here x, y, and t represent points in x-, y-direction, and time domain, respectively. The N ½κ� is
chosen as:

N ½κ�≔ κ0eεv ; ð38Þ

where κ0 represent initial rock matrix conductivity. Again, we assume κ0 to be a scalar in this

case, i.e., κ0 = κ0. The εv is the total volumetric strain defined as:

εv≔ trðεÞ ¼
X2

i¼1

εii: ð39Þ

The choice of N ½κ� function is selected to represent the change in a volumetric strain that

Table 4. Diffusivity equation—inverse modeling: PINN performance as function of noise. This figure shows the

average percentage errors of θ1 and θ2 for different numbers of training data, Ntr, as function of the noise levels. Here,

the neural network architecture is kept fixed to 6 layers and 5 neurons per layer. The results are averages over 10

realizations.

Noise (�) 0% 1% 5% 10%

Ntr

θ1 100 0.17 1.82 4.40 4.67

250 0.15 0.30 1.00 1.98

500 0.12 0.17 0.77 0.84

1000 0.04 0.09 0.34 0.94

θ2 100 0.22 1.49 4.35 4.90

250 0.24 0.52 1.80 2.45

500 0.23 0.47 0.99 1.48

1000 0.13 0.28 0.41 0.79

https://doi.org/10.1371/journal.pone.0232683.t004
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affects the porous media conductivity, and it is adapted from [53–55]. All the physical con-

stants are set to 1.0; and subsequently, f is chosen as:

f ðx; y; tÞ≔
fuðx; y; tÞ

fvðx; y; tÞ

" #

; ð40Þ

where

fuðx; y; tÞ ≔ � 4:0 sinðxþ yþ tÞ � 2:0 cosðxþ yþ tÞ � eðxþyþtÞ; ð41Þ

and

fvðx; y; tÞ ≔ � 4:0 cosðxþ yþ tÞ � 2:0 sinðx þ yþ tÞ � eðxþyþtÞ; ð42Þ

for the momentum balance equation, Eq (6). The source term of the mass balance equation,

Eq (10), g is chosen as:

gðx; y; tÞ ≔ ðcosðxþ yþ tÞ þ sinðx þ yþ tÞ � 1ÞecosðxþyþtÞ� sinðxþyþtÞþxþyþt

� cosðxþ yþ tÞ þ exþyþt � sinðxþ yþ tÞ;
ð43Þ

to satisfy the exact solution. Furthermore, the boundary conditions and initial conditions are

applied using Eqs (36) and (37). ThePu(x, y, t) and Pp(x, y, t), Eqs (15) and (17), here act as

the physics-informed function.

We generate the exact solution points, Eqs (36) and (37), based on a rectangular mesh (O =

[0, 1]2) with 99 equidistant intervals in both x- and y-direction, i.e. Δx = Δy. Using 49 equidis-

tant temporal intervals, in total, we have 500000 examples. Similar to the diffusivity equation

case, we draw n training examples randomly. Subsequently, we split the remaining examples

equally for validation and test sets. Again, assuming we have 500000 solution points for the

sake of illustration, we use 100 examples to train the model; we then have 249950 examples for

both the validation and the test sets.

To recap, the forward modeling of Biot’s system aims to predict the displacement (u) and

pressure (p) by specifying the initial and boundary conditions, collocation points, and as well

as the physical parameters (μl, λl, α, ϕ, cf, Ks, and κ0). The inverse modeling, however, aims to

estimate the physical parameters from observed values of u and p with their corresponding val-

ues of x, y, and t.
In the case of the nonlinear Biot’s equations, the architecture of the neural network corre-

sponding to the top of Fig 3 is presented in Fig 7. We have three input nodes and three output

nodes for this case. For the forward modeling, the hyperparameters Nhl and Nn are found

using a sensitivity analysis, and as argued in the above section, “Training the PINN,” we apply

the same hyperparameters for the inverse model. Again, we use L-BFGS; a quasi-Newton, full-

batch gradient-based optimization algorithm to minimize the loss function [49] for the for-

ward model. For the inverse problem, we find that combining ADAM, stochastic gradient

descent, and L-BFGS might provide faster convergence when training the neural network. Spe-

cifically, we use ADAM for the first 10000 iterations and then continue using L-BFGS until the

stop criterion is met. Note that we apply the same stop criterion as described above for the dif-

fusivity case. Since the ADAM is a first-order method compared to L-BFGS, which is a sec-

ond-order model, ADAM is less computationally demanding. Initially, where the weights of

the neural network are far from convergence, we speculate that the less computational effort of

ADAM is an advantage. However, as we approach the minimum, L-BFGS is likely to provide a

better estimate of the steepest descent. Whether these observations could be made when deal-

ing with other types of partial differential equations is an open question, but the use of a similar
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combined optimization scheme has been reported in the literature for the case of the Navier-

Stokes equations [26].

Verification of the forward model. Again, we apply Eq (19) and obtain:

MSE ¼ MSEb þMSEPu
þMSEPp ð44Þ

where

MSEb ¼
1

Nb

XNb

i¼1

ðju xi
b; y

i
b; t

i
b

� �
� uij

2
þ jv xi

b; y
i
b; t

i
b

� �
� vij2

þjpðxi
b; y

i
b; t

i
bÞ � pij

2
Þ;

ð45Þ

MSEPu
¼

1

NPu

XNPu

i¼1

jPu xi
Pu
; yi

Pu
; ti
Pu

� �
j
2
; ð46Þ

and

MSEPp
¼

1

NPp

X
NPp

i¼1

jPp xi
Pp
; yi

Pp
; ti
Pp

� �
j
2
; ð47Þ

where fxi
b; y

i
b; t

i
b; u

i; vi; pig
Nb
i¼1

refer to the initial and boundary training data. fxi
Pu
; yi

Pu
; ti
Pu
g
NPu
i¼1

and fxi
Pp
; yi

Pp
; ti
Pp
g
NPp

i¼1
specify the collocation points for Pu(x, y, t) and Pp(x, y, t), as defined in

Eqs (15) and (17). Similar to the diffusivity equation case, these collocation points are sampled

using the Latin Hypercube method [51]. Nb denotes the number of initial and boundary

training data, and NPu
and NPp

are the number of collocation points for Pu and Pp, respec-

tively. For the sake of simplification, in this investigation, we assume NPu
= NPp

= NP and

fxi
Pu
; yi

Pu
; ti
Pu
g
NPu
i¼1

= fxi
Pp
; yi

Pp
; ti
Pp
g
NPp

i¼1
= fxi

P
; yi

P
; ti
P
g
NP
i¼1

.

Fig 7. Neural networks architecture used for nonlinear Biot’s equations. This figure corresponds to the top part of

Fig 3. There are three inputs, x, y, and t, and three outputs, u, v, and p. The number of hidden layers, Nhl, and the

number of neurons for each hidden layer, Nn, denote the hyperparameters.

https://doi.org/10.1371/journal.pone.0232683.g007
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In Fig 8, we illustrate an example of exact solutions of u, v, and p, and compare them to

the prediction values obtained from our test set using the PINN trained with Nb = 24, NP = 20,

Nhl = 6, and Nn = 5. This figure demonstrates that the PINN provides good approximations of

the exact solutions. The dependency of the prediction accuracy on Nb and NP with the Nhl and

Nn fixed to four and ten, respectively is illustrated in Table 5. Again, to deal with the stochastic

Fig 8. Biot’s equations—forward modeling: exact solutions (shown by surface plot) and 100 PINN predictions per time step using the test set

(shown by black points). The PINN was trained using Nb = 24, NP = 20, Nhl = 6, and Nn = 5. The top row illustrates the displacement in the x-

direction, u, at (a) t = 0.0, (b) t = 0.5, and (c) t = 1.0. The middle row illustrates the displacement in the y-direction, v, at (d) t = 0.0, (e) t = 0.5, and (f)

t = 1.0. The bottom row illustrates the pressure, p, at (g) t = 0.0, (h) t = 0.5, and (i) t = 1.0.

https://doi.org/10.1371/journal.pone.0232683.g008
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behavior of the neural networks, we calculate an average of the relative L2
error over many

realizations to obtain a clear pattern; see Panels B and C of Table 5. Similar to the diffusivity

equation case, we observe the accuracy of the PINN is improved when Nb and NP are

increased. We also note that the total amount of training examples required to achieve high

accuracy, i.e., an average L2
error less than 1.0 × 10−3, is in the order of 100s. Again, we can

illustrate the impact of theP terms by considering the case where we train a neural network to

interpolate a feed-forward solution based on a known set of solution points with and without

making use of the regularization terms. Without using P we obtain an average relative L2

error of 1.1 × 10−1 based on 96 solution points while the average L2
error becomes less than

1.0 × 10−3 when including P.

In Table 6, we present a sensitivity analysis of Nhl and Nn with a fixed size of the training

set; Nb = 96 and NP = 160. Once again, the observed trend becomes more apparent by averag-

ing over many training realizations. We can now identify an extremum in the explored space

of the hyperparameters corresponding to have Nhl = 6 and Nn = 20; see Panel C of Table 6. We

Table 5. Biot’s equations—forward modeling: PINN performance as function of training set size. Sum of relative L2
errors between the exact and predicted values of u,

v, and p for the validation set. The table shows the dependency on the number of the initial and boundary training data, Nb, and on the number of collocation points, NP.

The hyperparemeters are fixed to 4 layers with 10 neurons per hidden layer.

Panel A: Average over 1 realization

NP 2 5 10 20 40 80 160

Nb

2 0.4475 0.4257 0.5010 0.2865 0.2826 0.1438 0.1982

3 0.1770 0.1508 0.2464 0.2009 0.2059 0.1410 0.1751

6 0.4056 0.4615 0.0824 0.0042 0.1236 0.1327 0.1662

12 0.0412 0.0860 0.0722 0.0035 0.0005 0.0013 0.0267

24 0.0148 0.0824 0.0037 0.0019 0.0015 0.0007 0.0003

48 0.0532 0.0045 0.0027 0.0008 0.0019 0.0002 0.0099

96 0.0007 0.0005 0.0003 0.0006 0.0004 0.0001 0.0003

Panel B: Average over 3 realizations

NP 2 5 10 20 40 80 160

Nb

2 0.4738 0.5502 0.5458 0.1493 0.1310 0.2138 0.1804

3 0.3415 0.1240 0.3578 0.3044 0.1573 0.1192 0.1562

6 0.5052 0.1423 0.0733 0.1688 0.2066 0.1158 0.0005

12 0.0551 0.0566 0.0044 0.0087 0.0472 0.0037 0.1108

24 0.0498 0.0135 0.0045 0.0005 0.0009 0.0016 0.0013

48 0.0034 0.0016 0.0246 0.0012 0.0027 0.0002 0.0015

96 0.0004 0.0002 0.0006 0.0005 0.0006 0.0001 0.0014

Panel C: Average over 27 realizations

NP 2 5 10 20 40 80 160

Nb

2 0.5320 0.4828 0.4473 0.2458 0.2253 0.2660 0.3100

3 0.4660 0.4211 0.3503 0.1781 0.1644 0.1661 0.1870

6 0.4031 0.1765 0.1380 0.0583 0.0871 0.0852 0.1340

12 0.1086 0.0641 0.0471 0.0059 0.0169 0.0164 0.0195

24 0.0525 0.0220 0.0101 0.0142 0.0052 0.0016 0.0012

48 0.0061 0.0030 0.0013 0.0013 0.0012 0.0003 0.0009

96 0.0022 0.0005 0.0008 0.0006 0.0004 0.0007 0.0005

https://doi.org/10.1371/journal.pone.0232683.t005
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then apply all of the 27 PINN networks trained with that choice of hyperparameters to the test

set. We obtain the average L2
error of the test set to be 9.05 × 10−5, which is comparable to that

of the validation set, 9.08 × 10−5.

In Fig 9, we show the behavior of the different loss terms as function of the training itera-

tions, when using Nhl = 6, Nn = 20, Nb = 96, and NP = 160. Similar to the diffusivity equation,

we observe that MSEb is generally higher than MSEPu
and MSEPp

. Furthermore, MSEPu
and

MSEPp
are comparable. Unlike the diffusivity equation case (see Fig 5), we observe minor

oscillations of MSE, MSEb, MSEPu
, and MSEPp

during convergence.

Inverse model of Biot’s equations. We rewrite Eq (15) to the parametrized form as:

Pu ¼ r � ½2y1εðuÞ þ y2uI� � y3r � pI � f in O� T; ð48Þ

and Eq (17) as:

Pp ¼ y4

@p
@t
þ y3

@r � u
@t

� y5r � e
εvðrp � rgÞ � g in O� T; ð49Þ

Table 6. Biot’s equations—forward modeling: PINN performance as function of hyperparameters. Sum of relative L2
errors between the exact and predicted values of

u, v, and p for the validation set. The table shows the dependency on the different number of hidden layers, Nhl, and different number of neurons per layer, Nn. Here, the

total number of training and collocation points is fixed to Nb = 96 and NP = 160, respectively.

Panel A: Average over 1 realization

Nn 2 5 10 20 40 80

Nhl

2 0.56506 0.01617 0.00782 0.00045 0.00021 0.00115

4 0.12080 0.00316 0.00013 0.00019 0.00020 0.00016

6 0.45949 0.02069 0.00052 0.00060 0.00010 0.00020

8 0.14333 0.00971 0.93757 0.00048 0.00034 0.00015

16 0.14052 0.14110 0.00041 0.00020 0.00020 0.00019

32 0.60485 0.03188 0.00866 0.00972 0.00028 0.00039

Panel B: Average over 3 realizations

Nn 2 5 10 20 40 80

Nhl

2 0.30761 0.01074 0.00346 0.00019 0.00026 0.00020

4 0.13684 0.01101 0.00032 0.00006 0.00007 0.00008

6 0.14338 0.04415 0.00018 0.00012 0.00009 0.00007

8 0.47702 0.01634 0.00020 0.00010 0.00008 0.00007

16 0.33020 0.13525 0.00081 0.00041 0.00013 0.00013

32 0.46854 0.61381 0.38437 0.07503 0.00087 0.00010

Panel C: Average over 27 realizations

Nn 2 5 10 20 40 80

Nhl

2 0.24203 0.02952 0.00180 0.00062 0.00021 0.00023

4 0.39596 0.06005 0.00368 0.00039 0.00010 0.00014

6 0.32610 0.07829 0.00018 0.00009 0.00010 0.00014

8 0.42070 0.12314 0.00037 0.00013 0.00010 0.00012

16 0.46364 0.12222 0.09613 0.05190 0.00012 0.00011

32 0.41372 0.38439 0.38473 0.03998 0.05080 0.01052

https://doi.org/10.1371/journal.pone.0232683.t006
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where

y1 ¼ ml; y2 ¼ ll; y3 ¼ a; y4 ¼ �cf þ
a � �

Ks
; and y5 ¼ k0: ð50Þ

TheP terms now have five additional unknown parameters, θ1, θ2, θ3, θ4, and θ5 that along

with the weights and biases of the neural network are adjusted during the training of the net-

work. Once again we apply Eq (19) and obtain:

MSE ¼ MSEtr þMSEPu
þMSEPp ð51Þ

Fig 9. Biot’s equations—forward modeling: mean square training error plot. This model uses Nhl = 6, Nn = 20, Nb = 96,

and NP = 160. MSE, MSEb, MSEPu
, and MSEPp

are calculated using Eqs 44, 45, 46, and 47, respectively.

https://doi.org/10.1371/journal.pone.0232683.g009
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where

MSEtr ¼
1

Ntr

XNtr

i¼1

ðju xi
tr; y

i
tr; t

i
tr

� �
� uij

2
þ jv xi

tr; y
i
tr; t

i
tr

� �
� vij2

þjpðxi
tr; y

i
tr; t

i
trÞ � pij

2
Þ;

ð52Þ

MSEPu
¼

1

NPu

XNPu

i¼1

jPu xi
Pu
; yi

Pu
; ti
Pu

� �
j
2
; ð53Þ

and

MSEPp
¼

1

NPp

X
NPp

i¼1

jPp xi
Pp
; yi

Pp
; ti
Pp

� �
j
2
; ð54Þ

where fxi
tr; y

i
tr; t

i
tr; u

i; vi; pig
Ntr
i¼1

refer to the set of training data. In contrast to the forward model,

we can apply the training points as collocation points when calculating the terms given by Eqs

(48) and (49). To recap, the Ntr denotes the number of training data. Similar to the forward

Table 7. Biot’s equations—inverse modeling: PINN performance as function of hyperparameters. Relative L2
error

of p, u, and v and percentage error of θ1, θ2, θ3, θ4, and θ5 for different number of hidden layers, Nhl, and different num-

ber of neurons per layer, Nn. The Ntr is fixed at 250. Note that we pick the optimal hyperparameters, i.e., Nhl = 6 and Nn
= 20 from the sensitivity analysis of the forward model. Results shown in this table are an average over 27 realizations.

Nn 2 5 10

Nhl

p 4 0.00006 0.00004 0.00008

6 0.00009 0.00004 0.00006

8 0.00008 0.00006 0.00005

u 4 0.00019 0.00016 0.00047

6 0.00051 0.00013 0.00036

8 0.00027 0.00036 0.00034

v 4 0.00042 0.00045 0.00098

6 0.00114 0.00038 0.00074

8 0.00060 0.00079 0.00071

θ1 4 0.20180 0.28665 1.06223

6 0.72512 0.16844 0.97916

8 0.30534 0.70613 0.99229

θ2 4 0.65507 0.66560 3.56789

6 2.23747 0.23053 2.80360

8 1.21152 1.47513 2.45137

θ3 4 0.02968 0.05016 0.23851

6 0.33292 0.02935 0.10100

8 0.22593 0.11796 0.07371

θ4 4 0.04834 0.06162 0.19135

6 0.18104 0.04666 0.13785

8 0.10711 0.16124 0.12127

θ5 4 0.19710 0.21622 1.10700

6 1.24043 0.17633 0.60595

8 0.81199 0.50331 0.39558

https://doi.org/10.1371/journal.pone.0232683.t007
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model, all physical constants are set to one, i.e., θ1, θ2, θ3, θ4, and θ5 are equal to one. Note that

these θ are constant throughout the domain.

We use the optimal hyperparameters, i.e., Nhl = 6 and Nn = 20 from the sensitivity analysis

of the forward model (see Panel C of Table 6). In Table 7, we can observe that this choice also

yields the least L2
error with respect to both p, u, and v and the lowest percentage error for the

unknown physical parameters (θ1, θ2, θ3, θ4, and θ5). Moreover, we observe that the L2
error of

the output space and percentage error of the unknown physical parameters are not much dif-

ferent with different combinations of the hyperparameters.

The performance of the PINN model as a function of the number of training examples Ntr

is depicted in Fig 10. We can observe that the stochastic variations in the estimated values of

θ1, θ2, θ3, θ4 and θ5, in general, are reduced the more training examples we apply. Moreover,

the relative L2
errors of u, v, and p are always less than 0.01%. Using in the order of 1000 exam-

ples, the average estimation error of the physical parameters is in the order of 1%, but as with

the diffusivity case, there is a large variation between the trained PINN models. Within the 27

realizations of the trained PINN models with Ntr = 1000 the percentage errors of θ1, θ2, θ3, θ4

and θ5 varied between 0.05, 0.02, 0.03, 0.04, and 0.03 and 2.51, 6.14, 4.75, 8.12, and 3.60,

respectively. Having 1000 training examples in actual cases, i.e., lab experiments or field obser-

vations, is realistic. Hence, also for the Biot’s equations, we observe the feasibility of the PINN

model to handle the inverse problem by estimating the unknown physical parameters using a

reasonably sized data set.

Next, we perform a systematic study of the effect of noise in data, which is created utilizing

Eq (35). The results are presented in Table 8 for θ1, θ2, θ3, θ4, and θ5. Note that these results are

an average over ten realizations. We can observe that the percentage error of θ1, θ2, θ3, θ4, and

θ5 increase along with the noise level (�), but as Ntr is increased, the impact of the noise is

reduced.

Fig 10. Biot’s equations—inverse modeling: PINN performance as function of training set size. This figure shows the estimated error dependency

on the amount of training data, Ntr. (a) θ1, θ2, θ3, θ4, and θ5 and (b) u, v, and p. The error bars show mean and standard derivation (± 1 SD) based on 27

realizations. The reported error values of θ1, θ2, θ3, θ4, and θ5 are percentage errors while the relative L2
error is shown for u, v, and p. Note that there is

no noise in this investigation.

https://doi.org/10.1371/journal.pone.0232683.g010
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All calculations were carried out using a XeonE5_2660v3 processor with a single thread. As

an example of the Biot’s equations, the CPU time for training the neural networks using Ntr =

10000 and 15000 with no noise are 128037 seconds and 186154 seconds, respectively. Note

that the reported values are obtained from the model trained using the combined ADAM and

L-BFGS. Using L-BFGS alone, the CPU times of model with Ntr = 10000 and 15000 are 222681

and 294768 seconds, respectively.

Conclusion

This paper studies the application of physics-informed neural networks (PINN) for solving the

nonlinear diffusivity and Biot’s equations in the context of forward and inverse modelings.

The following conclusions are drawn:

• PINN can be used to solve the forward modeling problem for the nonlinear diffusivity and

Biot’s equations, at least for the type of geometries considered in this paper. The displace-

ment and pressure variables of our test sets could be predicted with an average L2
error of

9.05 × 10−5 ± 3.1 × 10−4 based on 27 realizations.

Table 8. Biot’s equations—inverse modeling: PINN performance as function of noise. This figure shows the average

percentage errors of θ1, θ2, θ3, θ4, and θ5 for different numbers of training data Ntr corrupted by different noise levels

(�). Here, the neural network architecture is kept fixed to 6 layers and 20 neurons per layer. These results are an average

over 10 realizations.

Noise (�) 0% 1% 5% 10%

Ntr

θ1 1000 0.91 6.40 7.15 29.55

1500 0.98 4.64 5.70 14.86

2000 0.67 2.17 5.26 15.95

2500 0.52 3.87 5.33 12.24

5000 0.30 1.39 3.32 7.60

θ2 1000 1.48 10.26 12.30 17.50

1500 0.84 6.95 5.44 14.53

2000 1.37 4.38 6.73 13.48

2500 0.80 3.95 2.91 6.31

5000 0.51 1.97 2.90 3.14

θ3 1000 1.19 2.85 5.06 8.10

1500 0.87 1.32 2.52 4.80

2000 0.58 1.35 2.49 4.11

2500 0.11 0.38 1.54 4.12

5000 0.10 0.24 1.72 2.36

θ4 1000 0.46 4.70 8.35 13.75

1500 0.43 3.01 5.22 8.53

2000 0.23 2.99 4.12 10.08

2500 0.24 0.64 5.88 9.34

5000 0.20 0.45 1.62 6.53

θ5 1000 3.46 9.22 16.15 24.52

1500 2.70 5.64 14.16 19.75

2000 0.44 3.76 11.56 17.55

2500 0.66 2.23 6.82 7.09

5000 0.24 1.28 4.26 5.91

As the noise (�) is increased, the error increases as expected.

https://doi.org/10.1371/journal.pone.0232683.t008
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• For the inverse modeling cases, PINN can predict all of the unknown physical parameters

with an average percentage error of around 1%; however, the stochastic variations from one

PINN implementation to the next is quite large. Using, for instance, 1000 training examples

in the Biot’s equation case, the percentage error of the estimated physical parameters over 27

PINN models could vary from 0.02 to 8.12. Increasing the number of training examples

reduces this problem. Still, our results indicate it would be essential to do an average over

PINN models with different random initialization of the weights and biases. This process

may lead to the requirement of more processing power. This challenge might be even higher

when applying PINN to more complex geometries and heterogeneous materials.

• For the inverse modeling, PINN is tolerant to a noise level up to 5% (the estimation error of

physical parameters is approximately less than 15%.). Again, this requires that one does an

average over several PINN realizations. As expected, the result improves when the number

of training examples is increased.

• We have presented arguments on why the hyperparameters selection process for the forward

case is likely to be applicable to the inverse case. For the cases considered here, this was con-

firmed experimentally. However, this should be explored in more detail by investigating the

use of PINN for other types of nonlinear partial differential equations.

Finally, in terms of future work, the capability of the physics-informed neural networks

should be tested in the case where the input data is incomplete, i.e., u and p are not available at

the same spatial and temporal coordinates. Besides, one could investigate the potential benefits

of training networks using mini-batches. Moreover, smarter initialization of the weights and

biases (based on transfer learning principles) could potentially be employed to increase the

speed and accuracy of the training procedure [56].
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