Skip to main content
. 2020 May 6;15(5):e0232683. doi: 10.1371/journal.pone.0232683

Table 4. Diffusivity equation—inverse modeling: PINN performance as function of noise.

This figure shows the average percentage errors of θ1 and θ2 for different numbers of training data, Ntr, as function of the noise levels. Here, the neural network architecture is kept fixed to 6 layers and 5 neurons per layer. The results are averages over 10 realizations.

Noise (ϵ) 0% 1% 5% 10%
Ntr
θ1 100 0.17 1.82 4.40 4.67
250 0.15 0.30 1.00 1.98
500 0.12 0.17 0.77 0.84
1000 0.04 0.09 0.34 0.94
θ2 100 0.22 1.49 4.35 4.90
250 0.24 0.52 1.80 2.45
500 0.23 0.47 0.99 1.48
1000 0.13 0.28 0.41 0.79