Skip to main content
. 2020 May 6;15(5):e0232683. doi: 10.1371/journal.pone.0232683

Table 6. Biot’s equations—forward modeling: PINN performance as function of hyperparameters.

Sum of relative L2 errors between the exact and predicted values of u, v, and p for the validation set. The table shows the dependency on the different number of hidden layers, Nhl, and different number of neurons per layer, Nn. Here, the total number of training and collocation points is fixed to Nb = 96 and NΠ = 160, respectively.

Panel A: Average over 1 realization
Nn 2 5 10 20 40 80
Nhl
2 0.56506 0.01617 0.00782 0.00045 0.00021 0.00115
4 0.12080 0.00316 0.00013 0.00019 0.00020 0.00016
6 0.45949 0.02069 0.00052 0.00060 0.00010 0.00020
8 0.14333 0.00971 0.93757 0.00048 0.00034 0.00015
16 0.14052 0.14110 0.00041 0.00020 0.00020 0.00019
32 0.60485 0.03188 0.00866 0.00972 0.00028 0.00039
Panel B: Average over 3 realizations
Nn 2 5 10 20 40 80
Nhl
2 0.30761 0.01074 0.00346 0.00019 0.00026 0.00020
4 0.13684 0.01101 0.00032 0.00006 0.00007 0.00008
6 0.14338 0.04415 0.00018 0.00012 0.00009 0.00007
8 0.47702 0.01634 0.00020 0.00010 0.00008 0.00007
16 0.33020 0.13525 0.00081 0.00041 0.00013 0.00013
32 0.46854 0.61381 0.38437 0.07503 0.00087 0.00010
Panel C: Average over 27 realizations
Nn 2 5 10 20 40 80
Nhl
2 0.24203 0.02952 0.00180 0.00062 0.00021 0.00023
4 0.39596 0.06005 0.00368 0.00039 0.00010 0.00014
6 0.32610 0.07829 0.00018 0.00009 0.00010 0.00014
8 0.42070 0.12314 0.00037 0.00013 0.00010 0.00012
16 0.46364 0.12222 0.09613 0.05190 0.00012 0.00011
32 0.41372 0.38439 0.38473 0.03998 0.05080 0.01052