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A non-stationary integro-differential model
describing the dissolution of polydisperse ensembles
of crystals in channels filled with flowing liquid is
analysed. The particle-size distribution function, the
particle flux through an arbitrary cross-section of the
channel, the particle concentration profile, as well
as the disappearance intensity of particles are found
analytically. It is shown that a nonlinear behaviour of
solutions is completely defined by the source term of
particles introduced into the channel. In particular,
the model approximately describes the processes of
dissolution and transport of drug microcrystals to the
target sites in a living organism, taking into account
complex dissolution kinetics of drug particles.

This article is part of the theme issue ‘Patterns in soft
and biological matters’.

1. Introduction
The processes of phase transformations from the
metastable state of a system completely determine its
physico-chemical properties, particle-size distribution
and dynamics of growing structures. Here such
applications as dissolution of dispersed solids, evapo-
ration of polydispersed mists, combustion of liquid
and solid dispersed fuels, as well as nucleation and
crystallization of particulate assemblages in metastable
media may be mentioned as examples having a great
practical significance [1–13]. Mathematical models of
such processes of phase transformations represent
a system of integro-differential equations in partial
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derivatives, the general methods of solution of which do not exist. Therefore, the construction of a
solution in each case requires the development of unique mathematical methods and techniques
for finding solutions to a nonlinear model with moving boundaries of phase transformations
of evolving particles in a polydisperse ensemble. Here such approaches as the saddle-point
technique, the method of variable separation, the method of integral transforms, the small
parameter expansion method, the perturbation technique or a combination of these approaches
may be used as a powerful tool for constructing a solution to the concrete phase transformation
model (see, among others, [14–23]).

The present study is concerned with a new analytical approach developed for a nonlinear
dissolution problem of particulate assemblages in a channel in the presence of well-developed
flow. Such dissolution processes play an important role in different areas of applied science
ranging from metallurgy and chemical industry to production of food and delivery of drugs to the
target sites [24–28]. For example, different drugs are used in the form of microcrystals compressed
into tablets. When microcrystals of the drug enter the body fluid, they undergo dissolution and
transfer to the sites of their destination [29]. As this takes place, some microcrystals dissolve
earlier, not reaching the goal of their impact due to the presence of different barriers in the
organism. At the same time, other microcrystals do not have time to dissolve and are carried
away by the fluid flow from the target. This leads to insufficient drug concentrations at the sites
of destination (e.g. a receptor in the brain). Therefore, the urgent task is to control the process
of transfer and dissolution of microcrystals in a living organism, so that the maximum number
of dissolved particles of the drug would be able to achieve the final target. Another important
example is the transport mechanism of drugs from blood vessels to tumour tissue. To reach
a solid tumour, drugs are first introduced into an intravenous infusion site and then they are
transferred through a living organism (its system of veins, heart, lungs and arteries) to peripheral
microvessels [30]. Then drugs penetrate through microvessel walls and extravascular tissues to
cancer cells. Therefore, it is important to control the process of dissolution and transport of the
drug microcrystals to obtain the maximum concentration of drugs at the point of their destination.

This article is organized as follows. Section 2 is devoted to the formulation of a mathematical
model that describes the dissolution of particulate assemblages in a channel filled with fluid flow.
Analytical solutions to this model are constructed in §3. Numerical examples showing behaviour
of the analytical theory under consideration are given in §4. The concluding §5 summarizes the
main outcomes following from the present analysis.

2. Governing equations
Let us now formulate the mathematical model describing the non-stationary dissolution process
of a polydisperse assemblage of solid particles in a channel with a forced steady-state flow. We
assume that the distances at which the flow parameters of the mixture change significantly are
much larger than the sizes of the particles and the distances between them. We also assume
that the solid particles are introduced into the channel cross-section l0, and their spatio-temporal
behaviour is described by means of the size distribution function f (r, l, t), where r is the particle
radius, l is the channel axis and t is time (figure 1). Neglecting fluctuations in a particle dissolution
rate, we have the following kinetic equation in the case of well-developed turbulent flow

∂f
∂t

+ w
∂f
∂l

+ ∂

∂r

(
vf

) − D
∂2f
∂l2

= I0

L
δ (l − l0) wf0(r, t),

− ∞ < l < ∞, r > 0, t > 0, (2.1)

where w is the mean solid phase flow velocity, v is the particle dissolution rate, D is the coefficient
of longitudinal flow mixing, I0 is the intensity of particle source, L is a length scale of channel, δ is
the Dirac delta function and f0(r, t) is the size distribution function corresponding to the particle
source at the channel cross-section l0. The right-hand side of equation (2.1) describes the solid
phase input into a channel at l = l0.
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Figure 1. Schematic illustration of the dissolution of a polydisperse ensemble of particles introduced into the channel cross-
section l0 (A designates the channel cross-sectional area). (Online version in colour.)

The size distribution function f satisfies the following boundary and initial conditions at l →
±∞, r → ∞ and t = 0

f → 0, l → ±∞; f → 0, r → ∞; f = 0, t = 0. (2.2)

Note that the first boundary condition (2.2) shows that the solid particles completely dissolve far
from the channel cross-section l0.

For the sake of simplicity, we assume that the dissolution rate v is a linear function of
supersaturation �C = C∗ − C

v = −χβ(r)�C, (2.3)

where C and C∗ are the solute concentrations in the flow and on the surface of a solid particle,
β(r) is the mass transfer coefficient and χ is a constant coefficient (χ = kw/(3ρkv) [24], kw and kv

represent the surface and volume form factors of particles, ρ is the solid phase density). Note that
the driving force �C of the dissolution process generally varies along the channel, and the current
concentration C is related to the mass of the soluble substance by the conservation equation. This
makes the problem under consideration highly nonlinear. To simplify the model, we assume that
dissolution occurs in a large volume and the driving force �C remains constant.

Let us now chose the length scale rm of particles and a characteristic length scale L, which is
the distance travelled by a particle having the size rm at the beginning when moving along the
channel axis with an average velocity w until its complete dissolution

L = w
χ�C

∫ rm

0

dr
β(r)

= wrm

v0
and v0 = χ�Crm

(∫ rm

0

dr
β(r)

)−1
. (2.4)

Also, introducing the dimensionless variables and parameters

x = r
rm

, y = l
L

, y0 = l0
L

, τ = v0t
L

, R = v0L
D

, κ = L
rm

, P = wL
D

, v = −v0β0(x)

and β0(x) = β(xrm)
rm

∫ rm

0

dr
β(r)

, F(x, y, τ ) = rmALf (r, l, t), F0(x, τ ) = rmALf0(r, t),

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

we get from (2.1) to (2.4)

R
∂F
∂τ

+ P
∂F
∂y

− κR
∂

∂x
[β0(x)F] − ∂2F

∂y2 = PI0δ
(
y − y0

)
F0(x, τ ),

− ∞ < y < ∞, x > 0, τ > 0

(2.6)

and
F → 0, y → ±∞; F → 0, x → ∞; F = 0, τ = 0. (2.7)

To simplify the problem (2.6), (2.7), we use the following substitutions:

G(x, y, τ ) = β0(x)F(x, y, τ ) exp
[−αy − γ z(x)

]
, α = P

2
, z(x) =

∫ x

0

dξ

β0(ξ )
, γ = P2

4κR
. (2.8)
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Now rewriting the model (2.6), (2.7) in terms of (2.8), we arrive at

R
∂G
∂τ

− κRβ0(x)
∂G
∂x

− ∂2G
∂y2 = PI0β0(x)δ

(
y − y0

)
F0(x, τ ) exp

[−αy − γ z(x)
]

,

− ∞ < y < ∞, x > 0, τ > 0

(2.9)

and

G → 0, y → ±∞; G → 0, x → ∞; G = 0, τ = 0. (2.10)

3. Analytical solutions
Now applying the exponential Fourier transform with respect to variable y and the Laplace
transform with respect to τ , we come to

κRβ0(x)
dGFL

dx
=

(
Rs + ω2

)
GFL − ϕL(x). (3.1)

Here, subscripts F and L denote the Fourier and Laplace transforms, ω and s represent the Fourier
and Laplace variables, and

ϕ(x, τ ) = PI0√
2π

β0(x)F0(x, τ ) exp
(−iωy0 − αy0 − γ z(x)

)
,

where i is the imaginary unit.
The solution of differential equation (3.1) satisfying the boundary condition GFL → 0 at x → ∞

(z → ∞) takes the form

GFL = 1
κR

∫∞

x

ϕL(x1)
β0(x1)

exp

[
−Rs + ω2

κR
(z(x1) − z(x))

]
dx1. (3.2)

Applying the inverse Laplace and Fourier transforms to expression (3.2), we obtain

G(x, y, τ ) = PI0 exp
(−Py0/2

)
2
√

πκR

∫∞

x

exp
[
− κR(y−y0)2

4(z(x1)−z(x)) − P2z(x1)
4κR

]
√

z(x1) − z(x)
F0

(
x1, τ − z(x1) − z(x)

κ

)
dx1. (3.3)

Combining now expressions (2.8) and (3.3), we find the dimensionless size distribution
function as

F(x, y, τ ) = PI0 exp
[
P(y − y0)/2

]
2β0(x)

√
πκR

∫∞

x

exp
[
− κR(y−y0)2

4(z(x1)−z(x)) − P2(z(x1)−z(x))
4κR

]
√

z(x1) − z(x)

× F0

(
x1, τ − z(x1) − z(x)

κ

)
dx1. (3.4)

One of the important characteristics of the particle dissolution process in a channel with flow
is the particle flux J through an arbitrary section of the channel, which is determined as

J(r, l, t) = f (r, l, t) − D
w

∂f
∂l

= 1
rmAL

(
F(x, y, τ ) − 1

P
∂F
∂y

)
. (3.5)

Introducing the relative particle flux Jr = 4
√

πκRrmALJ/I0 and substituting (3.4) into (3.5),
we get

Jr(x, y, τ ) = P exp
[
P(y − y0)/2

]
β0(x)

∫∞

x

exp

[
− κR(y − y0)2

4(z(x1) − z(x))
− P2 (z(x1) − z(x))

4κR

]
√

z(x1) − z(x)

× F0

(
x1, τ − z(x1) − z(x)

κ

) [
1 + κR(y − y0)

P (z(x1) − z(x))

]
dx1. (3.6)
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The initial moment μ0(l, t) of the zero order of the particle-size distribution function describes
the particle concentration profile along the channel length

μ0(l, t) =
∫Rm

0
f (r, l, t) dr = 1

AL

∫Rm/rm

0
F(x, y, τ ) dx, (3.7)

where Rm stands for the maximum particle size.
The particle disappearance intensity f |v| at r → 0 determines the dissolution rate of a

polydisperse ensemble of crystals

f (r, l, t)|v| = v0β0(x)F(x, y, τ )
rmAL

, x → 0. (3.8)

Expressions (3.4)–(3.8) represent exact analytical solutions of the problem under consideration.
Below we analyse their behaviour when changing different variables and parameters.

4. Behaviour of solutions
Let us now analyse the main features of the analytical solution constructed in §3. For the sake of
definiteness, we choose the size distribution function f0 at the channel cross-section l0 as

f0(r, t) = F0(x, τ )
rmAL

= N0δ (r − rm) F̄(τ )
rmAL

, F̄(τ ) = τ exp (−τ) , (4.1)

where N0 is the normalization factor, and function F̄(τ ) takes into account an increase in the influx
of particles at short times and its weakening at long times (for example, short-term drug input).
We also consider a simple case when β0(x) = 1. Keeping this in mind and substituting (4.1) into
(3.4), we arrive at the following dimensionless distribution function:

Φ(x, y, τ ) = 2
√

πκRF(x, y, τ )
I0N0

=
P exp

[
− κR(y−y0)2

4(1−x) − P2(1−x)
4κR + P(y−y0)

2

]
√

1 − x
F̄

(
τ − 1 − x

κ

)
. (4.2)

The evolutionary behaviour of this rescaled distribution function is shown in figure 2. It is
seen that the distribution function first increases and then decreases with increasing time. Such
a behaviour completely corresponds to the dynamics of particle influx at the channel cross-
section y0 (or l0). In addition, the distribution function of fixed particle size at different channel
cross-sections (figure 2b) represents a bell-shaped curve that is shifted to the right relative to
the particle entry point y0. This effect is caused by the presence of flow velocity directed to
the right. The influence of Péclet number P = wL/D on the particle-size distribution function is
illustrated in figure 3. As is easily seen, the number of smaller particles decreases and the number
of larger particles increases with increasing Péclet number (figure 3a). This is due to the fact that
larger particles are transported faster by the fluid flow, and smaller particles dissolve faster with
increasing Péclet number. What is more, an increase in the Péclet number symmetrically shifts the
distribution function to the right, towards larger values of the channel coordinate y (figure 3b).

Figure 4 demonstrates the influence of various source cross-sections y0 (where particles come
into the channel) on the distribution function. First, the closer y0 to y, the narrower and steeper the
distribution function, and its maximum lies higher (figure 4a). Secondly, the distribution function
of particles of a fixed size uniformly shifts toward larger values of the channel coordinate y with
increasing y0 (figure 4b). Note that the shift of a maximum point to the right for y0 is explained
by the presence of fluid flow in the same direction. Figure 5 illustrates the three-dimensional
behaviour of the distribution function. This function moves along the time variable τ , changing
its shape and amplitude (figure 5a). Strongly nonlinear behaviour of the distribution function in
the plane of spatial variables x and y at a fixed point in time is shown in figure 5b.
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Figure 2. The dimensionless size distribution functionΦ versus radius x of crystals (a, y = 0.3) and coordinate y of the channel
(b, x = 0.5) at different times τ (y0 = 0.1 and P = 10). (Online version in colour.)
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Figure 3. The dimensionless size distribution functionΦ versus radius x of crystals (a, y = 0.3) and coordinate y of the channel
(b, x = 0.5) at different Péclet numbers P (y0 = 0.1 and τ = 1). (Online version in colour.)
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in colour.)
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and P = 10. (Online version in colour.)
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Now combining expressions (3.6) and (4.1), we simplify the dimensionless particle flux going
through an arbitrary section of the channel as

I(x, y, τ ) = Jr(x, y, τ )
N0

=
P exp

[
−κR(y − y0)2

4(1 − x)
− P2(1 − x)

4κR
+ P(y − y0)

2

]
√

1 − x

× F̄
(

τ − 1 − x
κ

) [
1 + κR(y − y0)

P(1 − x)

]
. (4.3)

An important point is that the particle flux at a fixed channel cross-section y attains its
maximum at a certain time due to an increase in the introduced particles at short times and a
decrease in their number at long times in the source cross-section y0 (figure 6a). Another important
feature is that the particles are capable to dissolve with increasing y and their flux decreases
(figure 6b).
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Now rewriting expressions (3.7) and (3.8) in dimensionless form, choosing Rm = rm, and taking
into account (4.1), we have

ν(y, τ ) = 2
√

πκRALμ0(l, t)
I0N0

= P exp
[

P(y − y0)
2

]

×
∫ 1

0

exp

[
−κR(y − y0)2

4(1 − x)
− P2(1 − x)

4κR

]
√

1 − x
F̄

(
τ − 1 − x

κ

)
dx (4.4)

and

σ (y, τ ) = 2
√

πκRrmALf (0, l, t)|v|
v0I0N0

= P exp

[
P(y − y0)

2
− κR(y − y0)2

4
− P2

4κR

]
F̄

(
τ − 1

κ

)
. (4.5)

Here, ν(y, τ ) and σ (y, τ ) represent the dimensionless initial moment of the zero order and the
particle disappearance intensity.
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Figure 7 illustrates the particle concentration profile along the channel length at different times.
It is easy to note that the profile of this function increases at short times, reaches a maximum and
then decreases at long times. What is more, the fluid flow spreads this profile to the right in the
direction of flow. Note that the particle source is located at y0 = 0.1.

The particle disappearance intensity shown in figure 8 has a maximum point, which is
dependent on time τ , Péclet number P and the channel cross-section y0 where the particle source
is located. In other words, these parameters determine the maximum point of dissolution of a
particulate assemblage in a channel. So, for example, if we are dealing with the dissolution and
transport processes of drugs in a living organism, we can find the target site where the soluble
dose of the drug attains its maximum.

5. Concluding remarks
In summary, a new theoretical description of the dissolution process of a polydisperse ensemble of
particles in the presence of a forced flow is presented. The model is based on the kinetic equation
for the particle-size distribution function and on the assumption that the phase transition occurs
in a sufficiently large volume, where the driving force is constant. An exact analytical solution
of the problem under consideration is constructed by means of the Laplace and Fourier integral
transforms. It is demonstrated that a nonlinear behaviour of solutions is completely determined
by the source term of particles introduced into the channel cross-section y0 (or l0). So, for example,
the distribution function first increases and then decreases, inheriting the dynamic behaviour of
the particle influx into the source cross-section y0 of the channel. The intensity of fluid flow (Péclet
number P) has a decisive role in the dissolution process. Namely, an increase in the Péclet number
shifts the distribution function to the right in the direction of fluid flow. It is shown that the
particle flux at an arbitrary channel cross-section, the particle concentration profile, as well as the
disappearance intensity of particles, are substantially dependent on time, the channel coordinate,
Péclet number, and the source cross-section.

The theory under consideration can be generalized to the more general case when the driving
force �C is determined from the integral equation of mass balance. It can be done in the spirit of
works [31–34], where some special approaches to the integro-differential model of nucleation and
growth of particulate assemblages were detailed.
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