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Abstract

The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1), an immediate 

early gene and synaptic regulator, is upregulated following a single cocaine exposure. However, 

there is not much known regarding Arc/Arg3.1’s potential contribution to addiction-relevant 

behaviors. Despite known learning and memory deficits in contextual fear and water-maze reversal 

learning tasks, we find that mice lacking Arc/Arg3.1 perform conditioned place preference and 

operant conditioning involving positive reinforcers (food and cocaine) with little-to-no 

impairment. However, following normal saline-extinction, wild type (WT) mice show a classic 

inverted-U dose-response function, while Arc/Arg3.1 knockout (KO) mice fail to adjust their 

intake across multiple doses. Importantly, Arc/Arg3.1 KO and WT mice behave comparably on an 

increasing cost task (FR1-FR3; acquisition dose), providing evidence that both groups find cocaine 

reinforcing. Differences in individuals that drive variations in use patterns and particularly, drug 

intake levels, are critical as they influence the likelihood of developing dependence. Our data 

suggest that Arc/Arg3.1 may contribute to addiction as a regulator of drug-taking vulnerability 

under different drug availability conditions.
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1. Introduction

Activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1) is an 

immediate early gene linked to multiple forms of glutamatergic plasticity. Arc/Arg3.1 is a 

known regulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPAR) endocytosis via its interactions with members of the endocytic machinery 

(Chowdhury et al., 2006), with roles described in long-term potentiation (LTP) (Wang et al., 

2016), long-term depression (LTD) (Park et al., 2008; Jakkamsetti et al., 2013; Waung et al., 

2008), and homeostatic scaling (Shepherd et al., 2006). Arc/Arg3.1 mRNA expression is 

induced by multiple forms of synaptic and cellular activity (Kawashima et al., 2009; Moga 

et al., 2004). Once transcribed, Arc/Arg3.1 mRNA is localized to neuronal dendrites via 

targeting sequences in its 3′ untranslated region (Ninomiya et al., 2016), and whole brain 

(Zalfa et al., 2003) and hippocampal studies (Niere et al., 2012) suggest that Arc/Arg3.1 
translation is negatively-regulated by interaction with the RNA binding protein, FMRP 

(fragile X mental retardation protein). Neuronal activity, via Group I metabotropic glutamate 

receptor (mGluR) activation, causes the activity-dependent local translation of Arc/Arg3.1 

(Waung et al., 2008).

Arc/Arg3.1 expression is induced robustly following a number of experiences involving 

learning (Montag-Sallaz and Montag, 2003), including fear learning (Gouty-Colomer et al., 

2016) and exposure to novel environments (Ons et al., 2004; Guzowski et al., 1999). Its 

expression is also induced in multiple brain regions, such as hippocampus, cortex and/or 

striatum, following exposure to psychostimulants (Fosnaugh et al., 1995) and other drugs of 

abuse, as well as following re-exposure to drug-paired contexts (Hearing et al., 2008a; 

Hearing et al., 2010a; Hearing et al., 2008b; Lv et al., 2015), drug self-administration 

training (Fumagalli et al., 2009) and reinstatement of drug seeking (Zavala et al., 2008; 

Ziolkowska et al., 2011; Kuntz et al., 2008; Fanous et al., 2012). However, while critical 

roles for Arc/Arg3.1 in fear conditioning (Ploski et al., 2008) and extinction (Onoue et al., 

2014), hippocampal-dependent long-term memory (Plath et al., 2006), and activity-

dependent LTD (Waung et al., 2008) have been demonstrated, its role in drug-induced 

behaviors is still unclear. Using knockdown techniques, a requirement for Arc/Arg3.1 in 

various striatal subregions has been suggested for drug-related learning, including extinction 

of intravenous cocaine-seeking (Hearing et al., 2011), and acquisition, expression, and 

reinstatement of morphine conditioned place preference (CPP) (Lv et al., 2011). Arc/Arg3.1 

has also previously been implicated in the negative regulation of drug sensitivity in non-

contingent drug behavior paradigms, with reports of enhanced psychostimulant-induced 

locomotion (Managò et al., 2016; Salery et al., 2016; Penrod-Martin et al., 2017), and 

reward (Salery et al., 2016) in Arc/Arg3.1 knockout (KO) mice. Despite these observations, 

and its known role in classical conditioning and other learning-related tasks, the role of Arc/

Arg3.1 in operant conditioning and drug self-administration behavior remains relatively 

unexplored.

Given that Arc/Arg3.1 expression is induced in key mesocorticolimbic brain regions by 

cocaine exposure, we sought to test its role in volitional cocaine-taking in the intravenous 

self-administration (IVSA) assay. Because previous reports have demonstrated impaired 

memory consolidation and long-term memory in Arc/Arg3.1 KO mice, we assessed Arc/

Penrod et al. Page 2

Pharmacol Biochem Behav. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Arg3.1 KO performance on aversive (fear conditioning) and appetitive (cocaine CPP) 

Pavlovian conditioning tasks. We then examined Arc/Arg3.1 KO mouse performance on an 

appetitive instrumental conditioning task, food-reinforced operant responding. Finally, 

experimentally naïve Arc/Arg3.1 KO mice were examined for their behavior in cocaine 

IVSA, including acquisition, extinction, dose-response, and increasing cost conditions.

2. Methods and materials

2.1. Animals and drugs

Arc-green fluorescent protein (GFP) knock-in mice (The Jackson Laboratory; stock no. 

007662) (Wang et al., 2006), in which a destabilized form of GFP (d2EGFP) replaced the 

Arc locus, were backcrossed to congenicity on the C57BL/6N strain. Lack of detectible Arc 
mRNA and protein in this mouse line has been confirmed in brain (Wang et al., 2006); also 

see Fig. 2A); thus they are referred to here as Arc/Arg3.1 KO mice. Homozygous mutants 

and wild type (WT) littermates were generated from Arc-GFP heterozygous x heterozygous 

crosses, and adult (10- to 20-week-old) male littermates were used for all testing. Ages of 

tested mice were within 6 weeks of one another in each assay. All experimental procedures 

were approved by the Institutional Animal Care and Use Committee at McLean Hospital 

and/or at Texas A&M University.

2.2. Tissue collection and processing

To confirm absence of Arc expression in Arc-GFP mice, brains from homozygous mutant 

(KO) and WT mice were removed following rapid decapitation, and coronal slices (1 mm) 

were prepared in ice-cold phosphate buffered saline, as previously described (Taniguchi et 

al., 2012). Bilateral tissue punches were taken from 1 to 2 (1 mm) slices containing the 

nucleus accumbens (NAc; 16 gauge for rostral, starting Bregma ~1.94 mm, and either 14 or 

16 gauge for caudal, starting Bregma ~1.10 mm) using the anterior commissure as a guide. 

Samples were then snap frozen in a dry ice/ethanol bath and stored at −80 °C for subsequent 

analysis by western blotting. Tissues were sonicated (30% amplitude) in a small amount of 

sucrose lysis buffer containing inhibitors (11% sucrose, 0.005 M HEPES, 1% SDS, 1 mM 

NaF, 1 mM Na3VO4, 0.1 μM cyclosporin A, 0.1 μM okadaic acid, 1 mM PMSF, 1 mM 

EDTA, 1× Roche or Pierce EDTA-free protease inhibitor tablet), boiled at 98 °C for 10 min, 

centrifuged briefly and frozen at −80 °C until protein quantification and SDS-PAGE.

2.3. Western blotting

Protein quantification was assessed by modified-Lowry using the DC Protein Assay Kit 

(Biorad, Hercules, CA). SDS-PAGE gels (4–15%) were loaded with equal amounts of total 

protein/well (20–30 μg/well). Proteins were transferred to PVDF membrane using the mixed 

molecular weight setting (7 min; 2.5 A) on BioRad Trans-Blot Turbo system. Membranes 

were blocked in Odyssey Blocking Buffer (PBS: 1:1 in 1× PBS), rinsed in 1× TBS-T, and 

incubated overnight at 4 °C or ~2 h at room temperature in primary antibodies diluted in 

Odyssey Blocking Buffer (diluted 1:1 in 1× PBS; LI-COR) plus 0.02% NaN3. Primary 

antibodies: Arc 1:1000 (156–002, Synaptic Systems) and beta tubulin 1:10,000 (05–661, 

Millipore; 8226, Abcam). Following primary antibody exposure, membranes were rinsed in 

1× TBS-T and exposed to secondary antibodies for 40–60 min at room temperature. 
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Secondary antibodies: IRDye 800CW goat anti-rabbit and IRDye 680RD goat antimouse 

IgG; 1:20,000 in LI-COR Blocking Buffer with 0.01% Tween-20 and 0.1% SDS. After final 

rinses, membranes were scanned and analyzed using Odyssey CLX and ImageStudio (LI-

COR).

2.4. Contextual fear conditioning

The procedure for fear conditioning was performed as previously described (Ramamoorthi 

et al., 2011). Prior to contextual fear conditioning (Day 1) and testing (Day 2), mice were 

allowed to acclimate to the behavior room in their home cages for a minimum of 1 h. On 

Day 1, mice were placed in conditioning chambers (Med Associates; metal bar flooring, 

house light) housed inside noise-attenuated boxes for 4 min. At 58 s, 1 min 58 s, and 2 min 

58 s, mice received a 2-s footshock (0.55 mA); there were no tone presentations. On Day 2, 

mice were returned to the same chambers (same contextual details) and allowed to explore 

for 4 min. Freezing behavior, defined as the absence of movement aside from that required 

for respiration, was measured throughout all trials. Percent time spent freezing during the 

context test was compared to percent time spent freezing during the first 58 s of the training 

session (baseline). Fear conditioned animals were previously tested for sucrose preference, 

the results of which we have reported (Penrod et al., 2019).

2.5. Conditioned place preference

CPP was conducted essentially as described (Smith et al., 2016). Mice were acclimated in 

home cages each day to the behavioral anteroom for ≥1 h. Three-chambered CPP 

apparatuses (Med-Associates, St. Albans, VT) were used under dim white lighting. Two 

large conditioning chambers (black with bar flooring vs. white with wire grid flooring) were 

connected by a smaller chamber (gray with plexiglass flooring). At pretest (Day 1), mice 

were placed into the center and allowed to explore all three chambers for 20 min. Groups 

were balanced so that they had a similar pre-existing preference score for the cocaine-paired 

chamber and so that cocaine was paired with each chamber similarly across groups. On all 4 

conditioning days, mice were given an injection (i.p.) before confinement in one of the large 

chambers for 30 min. Cocaine (10 mg/kg) conditioning occurred on Days 2 and 4, and saline 

was paired with the opposite chamber on Days 3 and 5. On Day 6 (posttest), the pretest 

protocol was repeated. Data are expressed as time spent in the cocaine-paired chamber 

during the posttest minus time spent in the cocaine-paired chamber during the pretest (CPP 

or preference score).

2.6. Operant conditioning and cocaine IVSA

Operant conditioning chambers and methodological details of food training, jugular vein 

catheter implantation and cocaine IVSA in mice were performed essentially as previously 

described (Thomsen and Caine, 2005; Thomsen et al., 2005). In brief, food and drug self-

administration were performed in separate, naïve groups of animals (i.e., animals were not 

food-deprived and cocaine IVSA mice did not receive food training). Indwelling back-

mounted catheters were inserted under oxygen/sevoflurane vapor anesthesia. Anchored 

catheters extended 1.2 cm into the jugular vein and ran subcutaneously to the base seated 

above the midscapular region, where the cannula guide was kept capped outside of self-

administration sessions. Following surgery, mice were given one day off before daily 
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administration of anti-clotting/antibiotic solution (0.02 mL of 0.9% saline containing 30 

USP units/mL heparin and 67 mg/mL cefazolin) during their 7-day recovery period. 

Thereafter, catheter patency was verified periodically and at the end of the experiment by 

complete loss of righting reflex within 3 s of flushing 0.03 mL ketamine-midazolam solution 

(15 mg/mL /0.75 mg/mL).

Food and cocaine self-administration (Fig. 1A) took place in operant conditioning chambers 

equipped with two nose-poke ports on either side of a fixed receptacle for liquid food 

delivery. A beam break of the active port resulted in delivery of a reinforcer and presentation 

of a cue light. Beam breaks in the inactive port were counted but had no scheduled 

consequence. Sessions lasted either two (food reinforcer) or three (cocaine IVSA) hours per 

day, five to six days per week. In food-reinforced sessions, active nose-pokes were 

reinforced with liquid food (25 μL; Ensure® nutritional drink, vanilla flavor, 100%; Abbott 

Laboratories, Abbott Park, IL) delivered to the receptacle via syringe pump under a fixed-

ratio 1 (FR1) schedule of reinforcement for 12 days. Criteria for acquisition in the food-

reinforced operant experiment included receiving at least 20 reinforcers per session for two 

consecutive days, with ≤20% variation in responding between the two sessions and ≥70% 

active/(active + inactive) response ratio.

During cocaine IVSA acquisition, active nose-pokes were reinforced with intravenous 

delivery of cocaine (1.0 mg/kg/infusion in sterile 0.9% (w/v) NaCl) via a syringe pump 

under an FR1 schedule and copresentation of a cue light. Infusion volume was 0.56 mL/kg, 

and drug concentration was adjusted according to desired dose (e.g., for a 32 g mouse, each 

infusion equaled 18 μL, and to achieve a dose of 1.0 mg/kg/infusion, a concentration of 1.8 

mg/mL was used). The length of each infusion was calculated as weight (kg)/0.01 s (i.e., a 

32 g mouse receives 3.2 s infusions). Acquisition criteria for the cocaine self-administration 

experiment were a minimum number of reinforcers (15/day), a ≥ 70% preference for the 

active over the inactive port, and stable taking (≤20% variation) for two consecutive 

sessions. During extinction, saline was substituted for cocaine, and all other parameters 

remained the same (including cue light presentation). Extinction criteria were met when 

responding dropped to 50% or less of acquisition criteria levels. Extinction was followed by 

reacquisition (1.0 mg/kg/infusion cocaine; 1–2 days) and dose-response determinations 

(0.00, 0.01, 0.032, 0.1, 0.32, 1.0, 3.2 mg/kg/infusion cocaine; 1 day each). For the latter, 

doses were presented in sequential order, with the starting dose counterbalanced by Latin 

Square design. For increased cost, cocaine (1.0 mg/kg/infusion) was available under FR1 for 

one day, followed by FR2 and FR3 schedules of reinforcement for 2–3 consecutive sessions 

each until stable (i.e., < 20% variation over two sessions).

2.7. Statistics

Statistical analyses, variables, and results are listed in Table S1. Fear conditioning was 

analyzed by Two-Way ANOVAs with genotype as a between-subjects factor and time/

session as a repeated measures factor. All operant tasks were initially analyzed by Three-

Way ANOVAs (genotype x port x session, with session as a repeated-measure factor). CPP, 

days to criteria and first/last single session group comparisons, were analyzed by unpaired t-
tests. Significant interactions were followed by additional ANOVAS (i.e., one- and/or two-
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way), paired t-tests, and/or Bonferroni or Tukey post hoc analyses, as appropriate, to 

determine simple main effects (SMEs). When Mauchley’s test of sphericity was significant, 

either Greenhouse-Geisser (G-G; when Epsilon ≤ 0.75) or Huynh-Feldt (H-F; when Epsilon 

> 0.75) corrections were used (see Table S1). Comparisons of group survival distributions to 

reaching criteria (see Methods) were performed for food operant acquisition, IVSA 

acquisition, and IVSA extinction using Kaplan-Meier log rank tests (Mantel-Cox); mice that 

failed to reach criteria were included in log rank analyses only, and are not shown in any 

graphs. All statistics were performed using GraphPad Prism, except SPSS software was used 

to handle complex data sets/analyses (e.g., three-way and MV ANOVAs, missing values). 

Significance was set at alpha = 0.05.

3. Results

3.1. Arc/Arg3.1 KO mice show deficits in fear conditioning, but normal cocaine 
conditioned place preference and operant food reward conditioning

Given the importance of striatal function in reward-related behaviors, which are the focus of 

this manuscript, we confirmed lack of Arc protein in striatal tissue (nucleus accumbens) of 

our Arc/Arg3.1 KO mice (Fig. 2A; unpaired t-test, t4 = 11.83, p < .001). As reported 

previously, Arc/Arg3.1 KO mice displayed significant long-term memory deficits in the 

Pavlovian fear conditioning assay. Following normal training performance (Fig. 2B; time 

main effect only, F3,60 = 53.91, p < .0001), mice were reintroduced to the training context 24 

h after conditioning, and the Arc/Arg3.1 KO group showed significantly less freezing 

behavior than the WT group (Fig. 2C: Two-Way RM ANOVA, genotype x session 

interaction, F1,20 = 8.566, p < .01; SMEs of genotype at the context test session, p < .001 

and of session at WT, p < .0001, and KO, p < .001 levels; Fig. S1A; Two-Way RM ANOVA, 

main effect of genotype, F1,20 = 8.5, p < .01). Interestingly, a deficit was not observed in 

memory for a cocaine-paired context. Specifically, in the CPP test (an appetitive Pavlovian 

conditioning assay), Arc/Arg3.1 KO mice exposed to cocaine (10 mg/kg; i.p. ×2 pairings) 

showed a preference for the drug-paired chamber similar to WT littermates on the drug-free 

posttest (Fig. 2D), suggesting intact contextual reward learning and memory. For food 

operant conditioning, we observed an overall group difference when nose-pokes from both 

ports were included in the analysis (Three-Way RM ANOVA, main effect of genotype, F1,15 

= 4.829, p < .05; port x session interaction, F3.7,55.8 = 10.705, p < .00001); however, it is 

notable that 1) the Arc/Arg3.1 KO mice showed slightly greater nose-pokes than WT, and 2) 

when we did follow-up analyses on each port to interpret this finding, there were no 

significant effects involving genotype for either. Importantly, both genotypes showed a 

significant discrimination for the active over inactive port at Session 3 (WT: One-Way RM 

ANOVA, main effect of port, F1,8 = 14.581, p < .01; KO: One-Way RM ANOVA, main 

effect of port, F1,8 = 12.094, p < .01), which was not significant at Session 1 or 2. In 

addition, a similar number of WT (1) and KO (2)() mice failed to meet acquisition criteria 

for food operant conditioning within 12 days, and a log rank analysis comparing survival 

distributions of groups to meeting criteria did not show any significant difference (Fig. 2F). 

Thus, it appears that Arc/Arg3.1 KO mice display normal acquisition of an operant task 

reinforced by palatable food (Fig. 2E). Together, these findings suggest that, at least for 
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appetitive tasks, contextual and operant reward-related learning and memory are not 

impacted by the loss of Arc expression.

3.2. Arc/Arg3.1 influences cocaine self-administration behavior

We next examined Arc/Arg3.1 KO and WT mice in the cocaine IVSA assay for acquisition, 

extinction, and dose-response, followed by performance under increased response 

requirement (cost). To limit contributions of overtraining to group differences, acquisition 

and extinction phases were ran to a set of criteria selected to indicate learning (see 

Methods); thus individual animals differed in the number of sessions during each phase (Fig. 

S2A, B & S2D, E). For the acquisition phase (Fig. 3A–C), a log rank test showed that the 

survival distributions of Arc/Arg3.1 KO and WT mice for reaching criteria were not 

different over sessions (Fig. 3B). Arc/Arg3.1 KO mice did earn significantly fewer 

reinforcers compared to WT mice on the first session (Session 1: Two-Way RM ANOVA, 

genotype x port interaction, F1,16 = 6.323, p < .05; active port, SME of genotype, t16 = 

2.851,p < .05). Also, while the genotypes did not differ in responses on the inactive port 

during the first session, and both groups showed high responding in both ports, WT, in 

contrast to KO, mice already demonstrated preference for the active port at completion of 

Session 1 (WT, One-Way RM ANOVA, SME of port, F1,7 = 6.806, p < .05). However, by 

the last training session, Arc/Arg3.1 KO and WT mice earned a similar number of 

reinforcers (Fig. 3C; Last Session: Two-Way RM ANOVA, main effect of port only, F1,16 = 

109.955, p < .0000001), and each group individually showed an active port preference 

during the last acquisition session (WT, One-Way RM ANOVA, SME of port, F1,7 = 

134.141, p < .00001; KO, One-Way RM ANOVA, SME of port, F1,9 = 31.091, p < .001). 

Importantly, all mice met acquisition criteria, and total cocaine intake over the entire 

acquisition phase did not differ by group (Fig. S2C). In the extinction phase (Fig. 3D–F), a 

log rank test showed no difference in the distribution of survival for Arc/Arg3.1 KO and WT 

mice as they met extinction criteria over sessions (Fig. 3E) and the groups did not differ 

from one another in active or inactive port nose-pokes, as measured on their first and last 

days (Fig. 3F). One mouse with verified catheter patency from each genotype failed to meet 

extinction criteria within 35 sessions.

During the dose-response phase, the expected inverted U-shaped curve was observed for WT 

mice, with peak average responding at the 0.1 mg/kg/infusion dose; however, this “curve” 

was distinctly flattened in Arc/Arg3.1 KO mice. Arc/Arg3.1 KO mice continued to self-

administer cocaine at all doses, with active port responses significantly above those in the 

inactive port, but earned significantly fewer reinforcers than WT mice at 0.1, 0.32 and 1.0 

mg/kg/infusion doses (Fig. 4A; genotype x port x dose interaction, F2.3,34.9 = 6.55, p < .01; 

genotype x dose interaction for active port responses, F2.2,30.3 = 4.92, p < .01, but not 

inactive port responses; SME of genotype at the 0.1 dose, F1,15 = 21.87, p < .001; 0.32 dose, 

F1,15 = 6.68, p < .05; 1.0 dose, F1,15 = 10.20, p < .01). When actual cocaine intake was 

calculated for the dose-response phase, Arc/Arg3.1 KO mice consistently took less cocaine 

at each dose than their WT littermates, which reached significance at the 0.1, 0.32, and 1.0 

mg/kg/infusion doses (Fig. 4B; genotype x dose interaction, F(2.6,38.6) = 4.27, p < .05; SME 

of genotype: 0.1, p < .001; 0.32, p < .05; 1.0 dose, p < .01; additional results listed in Table 

S1). When the acquisition dose (1.0 mg/kg/infusion) was again made available, with 
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increasing response requirements between sessions (FR1, FR2, then FR3), Arc/Arg3.1 KO 

and WT mice responded identically (Fig. 4C; main effect of port only, F1,9 = 62.9, p 
< .0001).

4. Discussion

Arc/Arg3.1 is an immediate early gene rapidly induced by drug exposure in multiple brain 

regions and capable of regulating multiple forms of glutamatergic plasticity known to be 

important to reward-related behaviors. In this study, we demonstrate that despite having 

contextual fear conditioning deficits, mice lacking Arc/Arg3.1 expression show normal 

acquisition of food operant conditioning and cocaine conditioned place preference 

behaviors. Arc/Arg3.1 KO mice do show mild delays in their acquisition of the cocaine self-

administration task, but ultimately perform comparably to WT mice and demonstrate normal 

extinction of the task. Subsequent dose-response testing, however, reveals a flattened curve 

in Arc/Arg3.1 KO mice, with significantly reduced responding and less cocaine intake than 

WT mice on the descending limb of the dose curve. The temporal patterns of responses in 

the KO mice are not typical of extinction conditions (extinction burst early in the session 

followed by no to very low responding). When mice are returned to the acquisition dose and 

given the opportunity to self-administer on increased (FR2, FR3) cost schedules, Arc/Arg3.1 
KO mice perform comparably to WT mice, and indeed maintain their cocaine intake at the 

same level in spite of increasing cost. Together, those observations suggest that cocaine, at 

least at higher doses, functions as a positive reinforcer in Arc/Arg3.1 KO mice. This 

interpretation is also supported by the fact that the Arc/Arg3.1 KO mice showed cocaine-

conditioned CPP, indicating cocaine reward.

Our findings with regard to operant behavior in Arc/Arg3.1 KO mice are intriguing for 

several reasons. First, Arc/Arg3.1 KO mouse performance in food and cocaine operant self-

administration largely suggest normal cognitive abilities pertaining to these tasks, despite a 

widely reported role for Arc/Arg3.1 in memory consolidation (Lv et al., 2015; Ploski et al., 

2008; Maddox and Schafe, 2011; Guzowski et al., 2000), as well as deficits in reversal 

learning when Arc/Arg3.1 is either knocked out (Plath et al., 2006) or prevented from 

normal degradation (i.e., overexpressed) (Wall and Correa, 2018). Interestingly, these 

memory deficits do not appear to strongly influence appetitive Pavlovian or operant 

conditioning. Whether this differential performance is related to divergent roles for Arc/

Arg3.1 in the neurobiological substrates for reward and aversion is unclear. It is possible in 

our current study that the continued exposure to the operant conditioning chamber and 

continued training (be it under reinforcement conditions or under extinction conditions) 

helps to maintain performance and obscures any deficits in consolidation/reconsolidation. 

Indeed, previous work has similarly suggested deficits are restricted to long-term, but not 

shortterm, memory (Thomsen and Caine, 2005). Likewise, our data do not support the 

possibility that differences in exploratory behavior at session one influenced rate of 

acquisition. While relatively little work has been done concerning the role of Arc/Arg3.1 in 

the IVSA assay, knockdown of Arc/Arg3.1 levels in adult rat dorsolateral striatum delayed 

extinction of cocaine seeking (Hearing et al., 2010b), a deficit that we do not observe in our 

global Arc/Arg3.1 KO mice (Fig. 3D–F). In any case, it appears that memory and 

Penrod et al. Page 8

Pharmacol Biochem Behav. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performance deficits in Arc/Arg3.1 KO mice are task- and, possibly, circuit-dependent, and 

that Arc/Arg3.1 likely affects such behaviors via roles in different brain regions.

Secondly, despite relatively minor impairments in acquisition and normal extinction, Arc/
Arg3.1 KO mice have markedly reduced responding for multiple cocaine doses in the dose-

response test. These results are in sharp contrast to the exaggerated behavioral responses 

(e.g., locomotor activation) to cocaine that we (Penrod-Martin et al., 2017) and others 

(Managò et al., 2016; Salery et al., 2016) have reported for Arc/Arg3.1 KO mice elsewhere. 

Importantly, loss of Arc did not impede increased nose-poke frequency, since multiple Arc/
Arg3.1 KO mice produced rapid or “burst” responding at other times in the dose-response 

test, particularly at the 0.01 and 0.032 mg/kg/infusion doses (Fig. S3). One interpretation of 

the observed dose-response patterns of the KO mice, alongside their willingness to meet 

increased cost requirements for a higher dose, could be reduced sensitivity to cocaine’s 

reinforcing effects. Assuming that the rate-limiting effects of cocaine were similarly 

affected, we would expect to observe a rightward shift in the dose-response curve. Instead, 

average KO intake remained at or significantly below WT levels across doses, up to and 

including a relatively high dose (3.2 mg/kg/infusion), suggesting instead a vertical shift.

The interpretation of vertical dose-response shifts has been much debated (Zernig et al., 

2004; Piazza et al., 2000; Katz and Higgins, 2004; Schenk and Partridge, 1997), reflecting 

the complexity of dosedependent responses to reinforcing substances (Calabrese, 2008). 

Down-shifted or flattened cocaine IVSA dose-response curves have been interpreted as a 

decrease in hedonic set point and/or decreased reinforcing effects of the drug (Piazza et al., 

2000; Ahmed and Koob, 1998; Graham et al., 2007a; Graham et al., 2007b). Piazza et al. 

(2000) reported that an animal’s locomotor response to a novel environment predicts a 

vertically shifted dose-response function; high responders show upward shifted IVSA dose-

response curves and appear more vulnerable to acquisition of drug taking at lower doses. 

While a relationship between response to novelty and cocaine IVSA behavior has not always 

been supported (Thomsen and Caine, 2011), it is notable that we have previously reported 

hyperactivity in three novel behavior tasks in Arc/Arg3.1 KO compared to WT mice, 

whereas activity in a context similar to their home cage was normal (Penrod et al., 2019). 

Together, these findings suggest the possibility that mice lacking Arc/Arg3.1 may be “low 

responders” to cocaine, a phenotype associated with impaired dopamine release in the 

nucleus accumbens. While the effect of cocaine exposure on Arc/Arg3.1 KO dopamine 

efflux is unknown, Managò et al. (2016) did find basal striatal dopamine levels in these mice 

to be normal, while NAc shell surface dopamine D2-type receptors (drd2s) were increased 

significantly compared to WT mice. Studies of natural variation in drd2 expression levels in 

non-human primates, and genetic manipulations (e.g., overexpression, KO) in mice, have 

shown higher levels of striatal drd2 to be associated with lower cocaine intake (Morgan et 

al., 2002; Caine et al., 2002; Nader et al., 2006; however, see Jupp et al., 2016), a possibility 

to be further explored.

Our findings here indicate that Arc/Arg3.1 may be dispensable for proper learning under 

certain conditions, and we find it to play a critical role in regulating self-administration of a 

strong reinforcer, cocaine. Like work concerning other neuropsychiatric disorders, our 

findings suggest that Arc/Arg3.1 variants (Chuang et al., 2016; Huentelman et al., 2015; 
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Landgren et al., 2012), and other mutations in pathways regulating Arc/Arg3.1 expression 

and function, should be examined as potential contributing factors in addiction susceptibility. 

While interesting observations regarding the role of Arc/Arg3.1 in cocaine self-

administration have been made by examining global Arc/Arg3.1 KO mice, future studies 

examining brain region-specific roles for Arc/Arg3.1 will be critical to elucidate its role in 

cocaine reinforcement, motivation, satiety, and craving.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
IVSA timeline.

(A) Diagram showing progression of phases in intravenous self-administration.
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Fig. 2. 
Arc/Arg 3.1 KO mice show expected fear-related memory deficits, but normal appetitive 

classical and operant conditioning behavior.

(A) Homozygous Arc/Arg3.1 KO mice (Arc-GFP knock-in mice) produce no detectible Arc/

Arg3.1 protein in NAc. (B) During fear conditioning, KO and WT mice spend a comparable 

amount of time freezing over the 4 min training session (n = 10–12 per group). (C) Despite 

spending significantly more time freezing during the contextual fear conditioning test 

compared to their own baseline (0–58 s of training session), KO mice showed significant 

impairment in context-cued freezing compared to WT mice. (D) Arc/Arg3.1 KO mice 

appeared normal during low-moderate dose cocaine conditioned place preference (10 mg/kg; 

n = 15–16 per group). (E) They also showed normal food operant conditioning (active = 

reinforcers earned, large boxes; inactive, small boxes) under an FR1 schedule in 2 h sessions 
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over 12 days and (F) showed similar survival distributions when meeting acquisition criteria 

(n = 9 animals per group). Time out responses are excluded. Animals meeting criteria 

remained in the test through Session 12. *** p < .001; data shown are mean ± S.E.M.
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Fig. 3. 
Arc/Arg 3.1 KO mice show early impairments in cocaine IVSA acquisition but normal 

extinction.

Average nose-pokes (active, large boxes; inactive, small boxes) for WT versus Arc/Arg3.1 
KO mice, during the first 7 days of (A) acquisition (1.0 mg/kg/inf, cocaine) and (D) 

extinction (saline with cue light) (n = 8 WT, 10 KO). Time out responses are excluded. For 

acquisition, active nose-pokes equal reinforcers earned. As animals met criteria, they were 

moved to the next phase. Percent of animals remaining in each group over (B) acquisition 

and (E) extinction sessions were not different. Statistical comparisons of active and inactive 

nose-pokes were made between groups using each animal’s first and last sessions for (C) 

acquisition and (F) extinction. *p < .05; except for (B,E), data shown are mean ± S.E.M.
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Fig. 4. 
Arc/Arg3.1 KO mice show reduced dose-response behavior and cocaine intake but sustained 

responding for cocaine at higher cost schedules.

(A) Average nose-pokes (active, large boxes = reinforcers earned) and inactive (small boxes) 

per 3 h session for WT and KO animals during dose-response testing. KO mice earned 

significantly fewer reinforcers at the 0.1, 0.32, and 1.0 mg/kg/infusion doses than WT mice 

(n = 8 WT, 9–10 KO). (B) Lower cocaine taking amongst KO mice translated to lower drug 

intake compared to WT mice at these same unit doses. (C) Average nose-pokes for WT and 

Arc/Arg3.1 KO mice per 3 h session under schedules of increasing response requirement 

(cost) (1.0 mg/kg/infusion; n = 7 WT, 6 KO). Time out responses are excluded. For (A & C), 

active nose-pokes equal reinforcers earned. *p < .05, **p < .01, *** p < .001; data shown are 

mean ± S.E.M.
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