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ABSTRACT The nuclear environment is highly crowded by biological macromolecules, including chromatin and mobile pro-
teins, which alter the kinetics and efficiency of transcriptional machinery. These alterations have been described, both theoret-
ically and experimentally, for steady-state crowding densities; however, temporal changes in crowding density (‘‘dynamic
crowding’’) have yet to be integrated with gene expression. Dynamic crowding is pertinent to nuclear biology because processes
such as chromatin translocation and protein diffusion lend to highly mobile biological crowders. Therefore, to capture such dy-
namic crowding and investigate its influence on transcription, we employ a three-pronged, systems-molecular approach. A sys-
tem of chemical reactions represents the transcription pathway, the rates of which are determined by molecular-scale
simulations; Brownian dynamics and Monte Carlo simulations quantify protein diffusion and DNA-protein binding affinity, depen-
dent on macromolecular density. Altogether, this approach shows that transcription depends critically on dynamic crowding as
the gene expression resultant from dynamic crowding can be profoundly different than that of steady-state crowding. In fact,
expression levels can display both amplification and suppression and are notably different for genes or gene populations
with different chemical and structural properties. These properties can be exploited to impose circadian expression, which is
asymmetric and varies in strength, or to explain expression in cells under biomechanical stress. Therefore, this work demon-
strates that dynamic crowding nontrivially alters transcription kinetics and presents dynamic crowding within the bulk nuclear
nanoenvironment as a novel regulatory framework for gene expression.
SIGNIFICANCE Crowding is a consequence of the confined nature of cells. Within the cell, both biological
macromolecules and chromatin, termed crowders, importantly influence reactions, including the transcription of genes with
which they do not specifically interact. However, as far as we know, crowding has only been considered at steady state;
therefore, it is unclear how crowding kinetics influence transcription. We developed a model of transcription that accounts
for time-dependent crowding (‘‘dynamic crowding’’). We show that dynamic crowding, in addition to average crowding
effects, can cause differential expression to a given gene, regulate circadian expression, and alter the expression of cells
under stress. This demonstrates an additional mechanism through which crowding may, to a great extent, regulate
transcription in vivo.
INTRODUCTION

Living cells contain a significant fraction of macromole-
cules, which not only participate directly in their target re-
actions, but also exclude volume from, and thereby
influence, adjacent reactions. These macromolecules are
termed ‘‘crowders’’ and comprise the physical cellular envi-
ronment. In the cytoplasm, this physical environment is
created by macromolecules such as the cytoskeleton and or-
ganelles, which occupy 15–25% of the volume (1). In the
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nucleus, this fraction is even higher. The �98% of chro-
matin that is noncoding, as well as mobile proteins, occupy
20–40% of the nuclear volume (1–5). In fact, this noncoding
chromatin, including the three-dimensional (3D) chromatin
packing structure, comprises a significant fraction of the
nucleus. Consequently, crowding from adjacent noncoding
DNA segments, though not directly involved in tran-
scription reactions, could still greatly impact their ki-
netics and equilibria. By occupying space and excluding
volume from the cellular interior, crowders sterically hinder
the diffusion of protein machinery (6–9) and promote bind-
ing through attractive depletion interactions of entropic
origin (5,10–13). In these ways, crowding affects the acces-
sibility, availability, and thermodynamic activity of protein
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machinery, which shifts chemical equilibria and influences
reaction rates.

Pioneering work in biological crowding was first pre-
sented by Minton in 1981, in which statistical mechanical
models were used to represent the effects of crowding
volume exclusion on reactions and macromolecular sta-
bility (8). Since then, numerous in vitro models have
confirmed both the existence and potency of the volume
exclusion theory of biological crowding. Of important
consequence to gene transcription, these studies have es-
tablished that crowding can alter the equilibria and effi-
ciency of protein folding (12,14–18), enzyme activity
(11,16,19–22), and DNA condensation (23). Some studies
have even demonstrated that differential crowding can
induce transcriptional bursting (24) and alter DNA repli-
cation (25). However, though these studies indicate that
crowding would significantly alter eukaryotic transcrip-
tion, these and other studies investigate crowding in the
cytoplasm (12,21–23) or artificial crowding environments
(12,14,15,17–20,24,25). These same effects in the nucleus
have yet to be studied in depth.

Notably, there has been some similar experimental obser-
vations of nuclear crowding. Studies have noted reduced
diffusion and binding of nuclear proteins to heterochromatin
(26), chromatin condensation (27), and RNA synthesis shut
off (28) under high nuclear crowding conditions. In addi-
tion, molecular dynamics simulations probed atomistic de-
tails of crowder motion or nuclear body formation (29,30),
Monte Carlo (MC) simulations determined probable confor-
mations of proteins or chromatin under crowded conditions
(31–33), and mathematical models investigated the effect of
crowding on network reactions (34,35). However, current
understanding of the effect of macromolecular crowding
on transcription and other biological phenomena is still
incomplete; current studies do not account for one crucial
aspect of physiologic crowding: kinetics.

Crowding kinetics are present on many scales because
of the movement of almost every nuclear constituent.
Globally, crowding density can be altered because of
changes in cell volume (5,36,37) or nuclear shape, which
has been shown to fluctuate on the order of seconds (38).
Within this fluctuating volume, proper nuclear function
necessitates constant movement. Transcription and repli-
cation require proteins to diffuse through the nuclear
space to sample the genome (39–41), whereas chromatin
reorganizes to facilitate access to genes of interest and,
in doing so, compacts adjacent nucleosomal regions
(42,43). In fact, a recently burgeoning amount of experi-
mental evidence has demonstrated that chromatin is highly
dynamic. Topologically associated domains, largely medi-
ated by DNA loops, consistently form and dissolve (44),
whereas chromatin coherently migrates throughout the nu-
clear space (45,46). On a larger scale, there is a wealth of
evidence that demonstrates that dynamic crowding im-
pacts cell function and cell fate. To name a few, changes
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in macromolecular density as a consequence of altered
cell volume has been shown to alter stem cell differentia-
tion (47). Additionally, one of the hallmarks of cancer and
its progression is a change in nuclear volume and density
(48). However, despite the abundance of evidence that
proper cell function, as well as many disease states, alters
crowding continuously in time, kinetic crowding has not
been conceptually considered in the nucleus or otherwise.
Instead, experimental studies report the average (in time
or space) gene expression based on average crowding
levels. Likewise, theoretical studies of crowding are
conducted under equilibrium conditions and at steady
state, meaning for fixed crowder density. Theoretical
models predict that even small changes in the local crowd-
ing density will influence reaction rates (34). Therefore,
these dynamics within the nuclear environment, 3D chro-
matin packing structure and otherwise, will additionally
alter local crowding densities and, in turn, influence
expression. Consequently, within the dynamic nucleus,
we expect that fluctuations in crowding will additionally
affect both the steric and thermodynamic properties of
the local environment and thereby further regulate
transcription.

Therefore, we will investigate the functional effects
of the dynamic, crowded nucleus. Building upon our
previous model, which studies gene expression under
steady-state crowding, we will construct a three-pronged,
time-evolving model of transcription to fully capture the
dynamic crowding environment. Notably, to our knowl-
edge, this is the first study to investigate non-steady-state
crowding regarding gene expression. To do so, molecular-
level detail will be provided by two simulation methodol-
ogies. As a function of crowding, BD simulations will
provide the diffusion constants of proteins, and MC simu-
lations will provide the change in free energy due to pro-
tein-DNA association or dissociation. In addition,
network-level detail will be provided by a series of chem-
ical reactions that represents the transcription pathway.
The rates of the transcription reactions will be determined
by the interplay of the theoretically determined diffusion
constants and free energy changes, which are sensitive
to crowding. We will conduct this investigation at physio-
logically relevant crowding levels and kinetic conditions,
specifically for cells under normal growth conditions,
genes that display circadian expression, and cells undergo-
ing extravasation. Notably, we investigate the average ef-
fect of dynamic crowding on individual genes as well as
for groups of genes and entire gene populations. Because
crowding is a general, physical effect that likely affects
many genes simultaneously, dynamic crowding could
have a nontrivial effect on the long-term behavior and
fate of a cell (49). Therefore, altogether, we probe a range
of genetic and kinetic changes within crowded environ-
ments and determine the effect of these changes on gene
expression.
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METHODS

Three-pronged, systems-molecular approach

Although crowding interactions occur on the molecular-level, gene expres-

sion and regulation require network-level interactions. Therefore, we

leverage three computational approaches simultaneously to bridge the

gap between molecular crowding interactions and network gene expression

(Fig. 1 A). All three approaches are detailed in the following sections, but in

short, we explicitly consider molecular-level crowding interactions with

Brownian dynamics (BD) simulations of diffusion and MC simulations of

binding. These simulations were originally developed by Matsuda et al.

(34) to describe crowding effects under steady-state conditions. Novel to

our approach is that dynamic crowding is the driver of the changes in diffu-

sion and free energy. The BD and MC simulations determine the degree to

which changing crowding affects the physical properties and efficiencies of

molecular species and integrate to affect every step of the transcription

pathway. Notably, we consider transcription as 1) a continuous process in

time and 2) insensitive to other regulatory elements, such as signaling.

We do so to elucidate, and not obscure, the effect of dynamic crowding

on gene expression. Although other regulatory elements undoubtedly affect

gene expression, we aim to uncover the specific contribution of dynamic

crowding, relative to what is expected from steady-state crowding predic-

tions. Therefore, we report gene expression relative to steady-state

predictions.
Representation of dynamic crowding

Central to our approach is the robust and accurate representation of dy-

namic crowding. This is nontrivial because direct experimental measure-

ments of dynamic crowding is currently lacking. However, indirect

experimental observations suggest a highly dynamic crowding environ-

ment. Continuous motion has been demonstrated within the nuclei of cells

at homeostasis due, for example, to protein exchange between nuclear

bodies and the nucleoplasm (39), local and large chromatin translocations

(50), and alterations in chromatin structure (44). Additionally, nuclear

size has been shown both to fluctuate and to be altered in disease (48).

With no apparent loss of mass, altering nuclear size would therefore affect

the volume fraction of crowders within.

These and other observations allow us to determine parameters that are

relevant for nuclear crowding. First, we consider a range of genes with

different copy numbers and concentrations of transcriptional proteins that

are specifically suited for that gene (Concentration of genes [C] ¼ concen-

tration of gene promotors [O] ¼ concentration of transcription factors

[TF] ¼ concentration of RNA polymerases [RNAp]). We consider both in-

dividual genes with a range of copy number variants as well as population

average expression of groups of genes. Therefore, we consider genes with

[C] less than 1 nM as well as groups of genes with [C] of up to 51 nM. The

estimation of these gene concentrations can be found in the Supporting Ma-

terials and Methods. Next, as chromatin is the most abundant crowder in the

nucleus, the volume fraction of crowding ðfÞ must be within the range of

chromatin volume concentrations (CVCs) observed in vitro (51). Chro-

mEMT observes that CVCs in vitro are within the range of 0–0.6 (51).

We consider f within the range of 0–0.5 as there is a glass-like transition

at fz0.5 (52), and our past modeling has revealed that steady-state gene

expression halts above fz0.5 (34). Additionally, the amplitudes of Df

that we consider preserve the probabilities of these CVCs. Finally, we

consider dynamic crowding on the timescale of coordinated chromatin or

nuclear matrix movement (seconds) (38,46) and DNA looping dynamics

(minutes) (44).

Within the confines of the above parameters, we consider that f is able to

change in time. To decouple the effects of an overall change in the average

crowding density and dynamic crowding itself, we represent homeostasis as

an oscillating function. Note that the timescale of crowding movement is

much smaller than the timescale of gene expression relaxation; therefore,
all oscillatory functions give the same results. We consider a sinusoidal

fluctuation in f, as follows:

fðtÞ ¼ f0 þ A � sin

�
2p

b
t

�
; (1)

where b is the period of one cycle in seconds, and A is the amplitude of the

fluctuation or the variation in crowding (Fig. 2 A). f0 is the initial crowding

volume fraction used to determine the initial conditions of the model.

The majority of our analysis is conducted on this oscillating crowding for

cells at homeostasis. However, we also consider two additional applications

of dynamic crowding for gene regulation and disease. First, we consider

that motion due to active cellular processes exists in conjunction with a

slow, underlying secondary frequency. In this case, transcription would

be influenced both by the above dynamic crowding, and additionally, by

another sinusoidal component that could, for example, impose a circadian

rhythm (Fig. 3 A), as follows:

fðtÞ ¼ f0 þ A1 � sin

�
2p

b1
t

�
þ A2 � sin

�
2p

24 � 3600
t

�
:

(2)

Finally, we consider that cells can experience acute changes in crowding,

which are imposed through biomechanical stresses that may not necessarily

exist during normal cell function. We consider transient changes, such as

those applied during the extravasation of tumor or immune cells through

the endothelial vascular layer (Fig. 3 B), by the following:

fðtÞ ¼
8<
:

f0 þ A � sin2
�p
b
t
�
; t0%t%b

f0; t > t0 þ b
: (3)

Although there are undoubtedly many additional ways in which dynamic

crowding may manifest in the nucleus, we present these examples to show

that 1) dynamic crowding does in fact effect expression and 2) that different

types of dynamic crowding affect expression in different ways.
Kinetic model of transcription

We represent gene transcription as a series of chemical reactions adapted

from Matsuda et al. (34). This model was developed to describe gene

expression under steady-state conditions (i.e., fixed crowder concentra-

tions). Under steady-state conditions, this transcription model matched

with independently obtained computational data and with experiments of

transcription in cell-free systems of varied synthetic crowding densities

(53). Now, we extend the model by incorporating the effect of time-depen-

dent crowding kinetics, as outlined above.

We represent gene expression by a series of chemical reactions that

describe the transcription and exportation of messenger RNA (mRNA) to

the cytoplasm (Fig. 1 B). As represented in Eqs. 4, 5, 6, 7, 8, 9, 10, 11,

and 12, transcription factors (TF) and RNA polymerases (RNAp) engage

in 3D searching for specific promotors by nonspecifically associating and

dissociating with DNA (D) to form complexes TF$D and RNAp$D, respec-

tively (Eqs. 4 and 5). In addition to 3D searching, TF$D one-dimensionally

diffuses along DNA and binds to a promotor (O), forming complex CI

(Eq. 6). Likewise, RNAp$D one-dimensionally diffuses to CI, forming a

second complex, CII (Eq. 7). Once CII is formed, transcription commences,

and subsequent products are created irreversibly. Pre-mRNA is formed (Eq.

8), which reacts with a small nuclear ribonucleic particle (snRNP) to form a

complex (CIII) and splice out an intron (Eq. 9). CIII then forms mRNA

(Eq. 10), which travels to the cytoplasm (Eq. 11) and degrades (Eq. 12).

We define gene expression as cytoplasmic mRNA concentration. In our

model, cytoplasmic mRNA is degraded as we are interested in gene
Biophysical Journal 118, 2117–2129, May 5, 2020 2119
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expression, not protein formation (34). The original transcription scheme

considered by Matsuda et al. (34) only considered crowding effects in the

reversible reactions (Eqs. 4, 5, 6, and 7) as they state that the other reactions

do not influence the final, steady-state mRNA level, just the time necessary

to reach steady state. However, because we now consider the time depen-

dence of the whole reaction scheme, we introduce crowding effects into

the nuclear irreversible reactions, as follows (Eqs. 8, 9, 10, and 11):

TFþD #
knst ðfÞ

knso ðfÞ
TF ,D; (4)

kns
f
ðfÞ
RNAp þD #
kns
b
ðfÞ

RNAp ,D; (5)

ktðfÞ

TF , Dþ O #

koðfÞ
CI þ D; (6)

kf ðfÞ

RNAp , Dþ CI #

kbðfÞ
CII þ D; (7)

kmðfÞ

CII!OþRNAp þ pmþ TF; (8)

kMðfÞ

snRNPþ pm!CIII þ intron; (9)

kM0 ðfÞ

CIII!mRNAnuc þ snRNP; (10)

gðfÞ

mRNAnuc ���!mRNAcyto; (11)

mRNAcyto�!n B: (12)
This transcription scheme is solved in conjunction with three conserva-

tion equations, as follows:

½O�tot ¼ ½O� þ ½CI� þ ½CII �; (13)

½TF� ¼ ½TF� þ ½TF , D� þ ½CI� þ ½CII�; (14)
tot

�
RNAp

� ¼ �
RNAp

�þ �
RNAp , D

�þ ½CII �: (15)

tot

Simulation methodologies

The dependence of the transcription pathway on dynamic crowding is

enacted through the reaction rate coefficients, which depend on the volume

fraction of crowders, f. A representative example of one of the reaction rate

coefficients is the rate of nonspecific association of TF with DNA, the for-

ward reaction rate of Eq. 1, as follows:

knst ðfÞ ¼ knst;0 � DTFðfÞ
DTFð0Þ � exp½ � bFbarrier;TFðfÞ�: (16)

All nuclear reaction rates are affected by at least one, and up to three,

crowding-dependent variables. These variables are determined by simula-
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tions and are as follows: 1) increased crowding slows diffusion, which we

quantify with BD simulations of protein diffusion (Fig. S1). The BD simu-

lations determine the size-dependent diffusion constant of protein species.

These diffusion constants are solved with respect to f, relative to diffusion

in an uncrowded medium. The reaction rate above is affected by the diffusion

constant of the TF, DTF fð Þ=DTF 0ð Þ. 2) Crowding creates a kinetic barrier

that must be overcome for association or dissociation. We quantify this

kinetic barrier with MC simulations of protein-DNA interactions (Figs.

S2–S4), yielding the crowder-mediated potential of mean force between

the two reactants. For this example, the rate of TF nonspecific association

with DNA is affected by the nonequilibrium, entropic barrier of association

between TF and DNA, bFbarrier,TF. This same barrier must be overcome for

dissociation, for example, for the reverse reaction of Eq. 1. 3) Crowding

changes the equilibrium free energy of binding, which can be quantified

by the potential of mean force determined earlier (Figs. S2–S4). However,

unlike bFbarrier,TF, this contribution, bFcrowd,TF, is the change in free energy

at equilibrium due to the volume fraction of crowders. Both the BD and MC

simulations depend on the geometries of the molecules involved as does the

initial reaction rates at f ¼ 0. The initial reaction rate of the above reaction,

knst;0, describes the chemical affinity between TF and DNA (34).

Note that the simulations of diffusion and free energy are performed un-

der steady-state conditions; the diffusion constant and change in free energy

are determined for each f independently. However, although this may sug-

gest that the results of these simulations are not applicable to the dynamic

system—which is not at equilibrium—an intrinsic assumption of the dy-

namic model is that there is a separation of timescales that allows diffusion

and free energy to reach pseudoequilibrium at each time step. Based on our

simulations, the time needed to reach a stable diffusion constant in the BD

simulations is on the timescale of tens of nanoseconds. However, we only

consider changes in crowding density that are much slower, on the order

of seconds to hours (b ¼ 30–3600 s). Furthermore, we find that a dynamic

crowding imposed by a step function can reproduce the same results as the

steady-state model (Fig. 1 D). Therefore, diffusion and free energy have

sufficient time to reach pseudoequilibrium at each time step, and the results

of the steady-state simulations are applicable to the dynamic system.

The derivation of each of the crowding-dependent reaction rate coeffi-

cients for Eqs. 4, 5, 6, and 7, as well as the results of their accompanying

BD andMC simulations, were previously published (34). However, because

we now introduce crowding effects into the irreversible reactions (Eqs. 8, 9,

10, 11, and 12), we have to compute the f-dependent diffusion constant and

free energy of these previously unconsidered reactants (e.g., snRNP, CIII).

The results of the BD and MC simulations for these reactions, as well as

further explanation of the simulation methodology, and a derivation of

each of the crowding-dependent reaction rate coefficients are outlined in

the Supporting Materials and Methods.
The initial conditions for the dynamic crowding
model

We now have a full description of each of the crowding-dependent reactions

necessary to calculate transcription. Before solving these reactions with

time dependence, we solve the reaction scheme at steady state to determine

the initial conditions of the dynamical model (Fig. 1 C). Initially, gene

expression changes when increasing the volume fraction of crowders pri-

marily by increasing the binding affinities of the transcriptional proteins

as a bound complex has lower excluded volume than free reactants. How-

ever, after reaching a maximum around physiological nuclear crowding

levels (54), the change in gene expression is dominated by the slowing of

diffusion, and both the reaction rates and expression levels decrease. Above

fz0.5, steady-state gene expression halts and is equal to 0 because the

diffusion constant approaches 0.

We consider both the response in the crowding of individual genes ([C]

z 5 nM and below) as well as population-averaged expression for groups

of genes (5 nM % [C] % 26 nM) and for the entire population of genes

(26 nM < [C] % 51 nM). The [C] of populations of genes depends on
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FIGURE 1 Transitioning from a steady-state crowding model to a dynamic crowding model. The workflow developed for the steady-state model is largely

continued for the dynamic crowding model (blue, (A)). However, now the primary input for both the simulations, and therefore the kinetic model, is dynamic

crowding (red, (A)). Additionally, the kinetic model was modified so that all nuclear reaction rates are f dependent (purple, (A)). The kinetic model describes

the physical steps of transcription, including the search and binding of transcriptional proteins to gene promotors (blue, (B)), transcription of processing of

pre-mRNA (green, (B)), and transportation of mRNA to the cytoplasm (red, (B)). When solved at steady state (without dynamic crowding), gene expression is

nonmonotonic, with less sensitivity to crowding as gene concentration ([C]) increases (C). Steady-state gene expression (crosses, C) can be recovered by

solving the dynamical model to steady state (D). To see this figure in color, go online.
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both the copy number of the gene(s) and the volume of the nucleus, both of

which vary substantially both between genes and between cells (55). There-

fore, we consider a wide range of gene concentrations (see Supporting Ma-

terials and Methods for the derivation of gene concentration). Note that

[C] ¼ [O] ¼ [TF] ¼ [RNAp], as changing gene concentration also changes

the number of promotors and transcriptional proteins specifically suited

for that gene’s transcription. Increasing [C] causes the expression to be

less sensitive to crowding (Fig. 1 C). This is in part because high [C] has

more overall expression than low [C]; therefore, relative changes in expres-

sion are less pronounced as [C] increases (Fig. S5).

The steady-state expression level of mRNA in the cytoplasm at each f, as

well as the concentration of all components at each f, are input as the initial

conditions of the dynamical model. All intrinsic chemical reaction rates and

crowding volume fractions are within physiologically appropriate ranges.

The first 10,000 s of each calculation is steady state ðf ¼ f0Þ, after which
dynamic crowding is imposed by Eqs. 1, 2, or 3. See the Supporting Mate-

rials and Methods for justification of the reaction rates.
RESULTS AND DISCUSSION

Transitioning from steady state to dynamic
crowding

Before determining the effects of dynamic crowding, we test
that the dynamic crowding model can reproduce the results
of the steady-state model. By imposing a step function for
f, we allow the dynamical model to start at steady state (first
10,000 s) and then reach a new steady state at a fixed crowder
level. In doing so, we obtain the same value of gene expres-
sion with the dynamical model as determined by the steady-
state model (Fig. 1, C and D, crosses). Therefore, we can
conclude that the dynamical model is accurate and can be
used with more complicated changes in dynamic crowding.
The time course of dynamic crowding-induced
gene expression

An oscillating crowding profile, imposed by Eq. 1 (Fig. 2 A),
causes gene expression to follow one of three time courses.
Each time course begins at steady state because of the fixed
crowder level for the first 10,000 s (Fig. 2 C). However, once
dynamic crowding is imposed, expression enters a several-
hour-long transition state. The transition state is character-
ized by a nonmonotonic change in expression. In Fig. 2 C,
this lasts for several hours, though the exact time is depen-
dent on the parameters of dynamic crowding. Finally,
expression reaches a stable average value about which it os-
cillates on the timescale of dynamic crowding. This we refer
to as ‘‘oscillating stability’’ (Fig. 2 C, insets). For example,
Biophysical Journal 118, 2117–2129, May 5, 2020 2121
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FIGURE 2 We approximate homeostasis by nonequilibrium, oscillatory

dynamic crowding (A). After a transition state, oscillatory dynamic crowd-

ing causes suppression of genes that have a high expression at steady state,

amplification of genes that have a low expression at steady state, and rela-

tively unchanged expression of genes with midrange expression (here,

[C] ¼ 1 nM) (B). Both the steady-state and dynamic expression of each

of these genes depends on the initial condition of the dynamic crowding

profile. When normalized by expression at this initial condition, these genes

display different sensitivities to dynamic crowding at oscillating stability

(C). To see this figure in color, go online.
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all conditions in Fig. 2 C reach oscillating stability after 6 h.
The qualitative expression level during the transition state
and at oscillating stability depends on the initial, steady-
state expression level. To illustrate the three time courses
followed by dynamic crowding, we examine a gene for
which [C] ¼ 1 nM with a 9% change in crowding over
1 min. For three different initial crowding levels, f0 ¼
0.2, 0.3, or 0.4, either 1) expression begins high, is tempo-
rarily amplified during the transition state, and then be-
comes suppressed compared to its initial, steady-state
level (Fig. 2 B, blue); 2) begins in the midrange of steady-
state expression and remains approximately neutral
throughout the entire time course (Fig. 2 B, red); or 3) be-
gins with low expression, is temporarily suppressed during
the transition state, and is ultimately amplified compared
to the initial, steady-state level (Fig. 2 B, black).
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The transition state between steady-state crowding and
oscillating stability is due to the slow relaxation of the spe-
cies involved in the irreversible reactions (Eqs. 8, 9, 10, 11,
and 12). Many classic studies in systems biology have
shown that transcriptional protein search and binding is on
a much faster timescale than transcription as a whole (56).
In our model, TF, RNAp, and their associated complexes
equilibrate almost immediately to dynamic crowding
(Fig. 3). Whether dynamic crowding on average shifts
these reactions toward the reactants or toward the products
determines whether expression on average will be shifted
toward amplification or suppression at oscillating stability.
However, until oscillating stability is reached, the species
involved in the irreversible reactions relax slowly, causing
a transition state that is not necessarily correlated qualita-
tively with oscillating stability. Therefore, we find that
expression at early time points after dynamic crowding is
dominated by the slow mRNA processing reactions,
whereas expression at oscillating stability is dominated by
protein search and binding.

Although the step function of f corresponded both
qualitatively and quantitatively with the steady-state model,
an oscillating, dynamic f does not correspond with
the steady-state model ððmRNA½fðtÞ� =mRNAðf0ÞÞs1Þ.
Instead, the qualitative change in expression can be esti-
mated by the concavity of the steady-state solution. f0 ¼
0.2 and 0.3 are within the concave down regions of the
steady-state solution, whereas f0 ¼ 0.4 is within the
concave up region of the steady-state solution. These param-
eters are simply examples that illustrate that dynamic
expression is not fully captured by calculating the expres-
sion with the average f of the dynamic profile. As, to our
knowledge, expression has only ever been quantified in
comparison to average f; we further examine this dichot-
omy, both theoretically and parametrically below.
Expression at oscillating stability is not
dependent on all reaction rates

Under steady-state conditions, there is an analytical rela-
tionship between [mRNAcyto] and the other products and re-
action rates (Fig. S6). This analytical relationship reveals
that steady-state [mRNAcyto] does not depend on the concen-
trations of the intermediate, irreversibly produced products
and their reaction rates, kM, kM0, and g. However, because
the dynamic system is not at steady state, dynamic [mRNA-

cyto] depends on all products and reaction rates. Interest-
ingly, although oscillating stability is not the same as
steady state and has no analytical relationship between
[mRNAcyto] and the other products and reaction rates, oscil-
lating stability is also insensitive to kM, kM0, and g (for
example, Fig. S6). Instead, these reaction rates determine
the amount of short-term expression during the transition
state. Short-term expression can additionally be affected
marginally by the other reaction rates of the transcription



FIGURE 3 Once dynamic crowding begins

([C] ¼ 1 nM, f0 ¼ 0.3, A ¼ 0.09, b ¼ 300 s),

the species involved in the reversible reactions

(TF, RNAp, C1, and C2) reach equilibrium almost

immediately. This dynamic crowding shifts the

reversible reactions toward the reactants; therefore,

once all species reach oscillating stability, expres-

sion will be downregulated on average. Until

that point, pre-mRNA monotonically decreases.

This initially decreases the free snRNP as more

snRNP is driven to bind to C3. C3 and snRNP

are anticorrelated throughout the entire time

course. With an increase in C3, mRNA is created

more quickly, which in turn increases mRNA in

the cytoplasm. All of these species relax slowly;

therefore, the irreversible reactions are responsible

for the long transition time between steady-state

crowding and oscillating stability. The slow relax-

ation is due to the slow reaction rate coefficients of

irreversible reactions, kM, kM0, and g. All reaction

rate coefficients have different average values

ðkðfÞÞ than would be expected for kðfÞ: Running
average is defined as the average over every 100 s.
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pathway; however, short-term expression is primarily and
critically dependent on kM, kM0, and g. In contrast, the other
reaction rates determine long-term expression during oscil-
lating stability (for example, Fig. S6). Importantly, for all of
these reaction rates, k fð Þ—the average reaction rate resul-
tant from dynamic crowding—is not always the same as
k f
	 


—the reaction rate of the average crowding density
(Fig. 3). It is the parameters of dynamic crowding that deter-
mine whether or not k fð Þ and k f

	 

will be sufficiently

similar to produce the same expression level. Therefore,
we now perform a parametric study to determine when
k f
	 


may be sufficient to predict k fð Þ.
All parameters of dynamic crowding and gene
property affect expression at oscillating stability

It is perhaps most useful to examine the expression as it re-
lates to observable genetic and structural properties. There-
fore, we systematically vary the parameters of the system
and find that gene expression is both qualitatively and
quantitatively dependent upon four parameters. As with
the steady-state solution, dynamic expression at oscillating
stability is highly dependent upon [C] and f0. However,
[C] and f0 alone are not sufficient to determine dynamic
expression levels as it is the combination of these parame-
ters, together with the amplitude of dynamic crowding (A)
and the period of dynamic crowding (b), that determines
dynamic expression levels at oscillating stability. Notably,
A and b are temporal variables that are impossible to ac-
count for with steady-state investigation. Therefore, it is
necessary to investigate transcription temporally to accu-
rately predict the expression of genes that exist in a dy-
namic, nonequilibrium environment, which, to our
knowledge, has not been done.

For each combination of the above parameters, we
examine both the average expression level at oscillating sta-
bility as well as the variance about that average expression
level. It is important to note that the majority of conditions
have a variance less than 5% (Fig. 4, B, D, and F). In these
cases, once oscillating stability is reached, the time at which
[mRNA] is measured is trivial. However, variance can be
significantly increased by slowing the b or increasing the
A. It is notable that it is the purely temporal variables that
most significantly impact variance. This can have great
weight experimentally because in the cases of dynamic
crowding, which changes slowly (bhigh) and/or with a large
amplitude, [mRNA] can vary by up to 25%, depending on
the time that it is measured. In these cases, the estimation
of gene expression based on a single point in time is quite
difficult.

Two trends that are predicted by the steady-state solution
are also true for dynamic crowding. First, for the same [C]
and b ([C] ¼ 1 nM and b ¼ 300 s in Fig. 4 C), expression
behaves nonmonotonically with f. However, the transition
between downregulation and upregulation does not occur
at the same f as maximum steady-state expression. Second,
as the majority of each of the steady-state solutions are
concave down, the majority of dynamic crowding leads to
at least slight downregulation (Fig. 4 A). This is not the
case for both low f0 and low A, which cause dynamic
expression to remain approximately neutral or within 5%
of the steady-state prediction. This is also not the case for
highly crowded environments with rapid dynamic crowding.
These conditions, regardless of [C] or A, amplify expression
Biophysical Journal 118, 2117–2129, May 5, 2020 2123
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FIGURE 4 Once expression reaches an oscillating stability, both the average expression (A, C, and E) and the variance of oscillation (B, D, and F) vary

with respect to the concentration of genes ([C]), the average crowding level ðf0Þ, the period of oscillation (b), and the amplitude of oscillation (A). The

combination of these parameters determine the gene expression level. The majority of conditions have a variance less than 5%; however, variance is increased

by increasing A or b (B, D, and F). Increasing A also universally amplifies the impact of dynamic crowding on the average expression (A, B, and E). As

predicted by steady state, expression behaves nonmonotonically with f for the same [C] and b ([C] ¼ 1 nM and b ¼ 300 s in C and D). The majority of

dynamic crowding parameters cause at least slight downregulation (A). This is not the case for 1) low f0 and low A, which cause dynamic expression to

remain approximately neutral; 2) highly crowded environments with rapid dynamic crowding, which amplify expression (A, top right corners); or 3) highly

crowded environments that contain low [C], which is universally amplified by dynamic crowding (E, [C] ¼ 1 nM, A ¼ 0.09). To see this figure in color, go

online.
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(Fig. 4 A, top right corners). Although amplification is more
difficult to achieve, highly crowded environments with low
[C] universally amplify expression (Fig. 4 E). Moreover,
there is a smooth transition between [C], which universally
results in upregulation to [C], which can be either amplified
or suppressed, depending on the b (Fig. 4 E, note the scale of
the x axis is nonlinear to more clearly show this transition).
The reverse is true as well. One dynamic crowding environ-
ment smoothly transitions from amplifying genes at low
concentrations to suppressing genes at high concentrations
for both midrange and slow periods. Because low [C] corre-
sponds with single genes and high [C] corresponds with
groups of genes, this means that the same dynamic environ-
ment may amplify single genes while suppressing the
expression of a group of genes as a whole. Therefore,
gene expression is nonadditive and may be more complex
than suggested analytically.

It is important to note that altering A and b has no effect on
f; however, both significantly alter dynamic expression.
Expression can be sensitive to even small fluctuations in
crowding; therefore, dynamic crowding cannot be ignored.
2124 Biophysical Journal 118, 2117–2129, May 5, 2020
Likewise, there is no single frequency of dynamic crowding
that causes all concentrations of genes to remain neutral
(Fig. 4 E). Therefore, these purely temporal variables demon-
strate that, independent from the average crowding effects, dy-
namic crowding itself can differentially regulate expression.
Applications of dynamic crowding for gene
regulation and disease

Circadian gene regulation

All prior analysis is based on the assumption that dynamic
crowding manifests itself as fluctuations about an average
crowding level. Now, we consider that, in addition to these
fluctuations, there exists a slow secondary frequency.
Without discounting the existence of an oscillatory dynamic
crowding due to the processes of normal cell function, a sec-
ondary frequency could correspond with, for example, a
circadian rhythm. A secondary frequency with a period of
24 h could contribute to the regulation of circadian genes,
of which there are between 642 and 3186 in every human
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tissue (57). Circadian crowding could be imposed by tran-
scriptional or structural regulators, such as TF like
MYOD1, genes like Bmal1, light signaling, or histone acet-
ylation. All of these regulators have been linked to circadian
regulation (58–61) and could, in addition to their specific
targets and effects, regulate expression through a secondary
mechanism—imposing a 24-h crowding cycle.

We consider a 24-h circadian cycle underlying physio-
logic dynamic crowding by the following: fðtÞ ¼ 0:3þ
0:05� sinðð2p =ð15 � 60ÞÞtÞþ 0:1� sinðð2p =ð24 �
3600ÞÞtÞ. Here, dynamic crowding is only altered by 10%
over the full 24-h cycle (Fig. 5 A). Even so, genes are differ-
entially expressed every 12 h. The timescale of differential
expression does not depend on average crowding density,
but rather, only on the b, which is the same for all genes un-
dergoing circadian regulation. In addition, as would be pre-
dicted from the oscillating dynamic crowding above, genes
with lower concentrations exhibit a greater sensitivity to
circadian dynamic crowding. Whereas genes with higher
concentrations do fluctuate with a circadian rhythm, genes
with lower concentrations experience both more amplifica-
tion and more suppression throughout the 24-h cycle
(Fig. 5 A). In vivo, this would suggest that housekeeping
genes may be more consistently expressed, whereas more
rare genes may operate more circadianly. This is an attrac-
A

B

FIGURE 5 Dynamic crowding can be used to model processes of gene regula

ations studied at homeostasis displays circadian regulation (fðtÞ ¼ 0:3þ 0:05 �
ondary frequency causes the expression to switch from amplification to suppr

forces, such as those experienced during extravasation, have a qualitatively diff

crowding (B). The force of extravasation (A ¼ 0.2, f0 ¼ 0:3Þ causes universal d
extravasation. To see this figure in color, go online.
tive application as dynamic crowding could concurrently
regulate the hundreds to thousands of circadian genes that
exist in the human genome, without necessitating specific
regulatory factors.

Extravasation

Finally, the dynamical model can investigate how gene
expression is sensitive to dynamic crowding, not only under
normal growth conditions but also when cells undergo acute
mechanical stress. Here, we consider the effect of compres-
sion during extravasation of cells from the blood stream to
a distal tissue. This phenomenon is a critical event during tu-
mor metastasis and is a common function of immune cells
(62). Cells that undergo extravasation begin in the blood-
stream, presumably with consistent volume (and therefore
crowding volume fraction) as cells under normal growth
conditions. As they pass through the endothelial membrane,
both the total and nuclear volume decrease, and therefore
nuclear crowding volume fraction increases. The crowding
density returns to initial levels as cells exit the endothelial
membrane and populate a distal tissue. Therefore, we model
extravasation as a single cycle of compression to reflect nu-
clear compression during passage through the endothelial
cell boundary and nuclear relaxation after passage is com-
plete (Fig. 5 B). After extravasation, we consider the return
tion and disease. The addition of a 24-h secondary frequency to the fluctu-

sinððð2p =ð15 �60ÞÞtÞÞþ 0:1 � sinðð2p =ð24 �3600ÞÞtÞ) (A). The 24-h sec-

ession every 12 h, sensitive to gene concentration. Alternatively, transient

erent gene expression profile than that of continuous, sinusoidal dynamical

ownregulation of gene expression for all gene concentrations and lengths of
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of cells to constant crowding, not dynamic crowding, as we
are only interested in the effect of the compression on gene
expression.

We represent extravasation with Eq. 3 and compare
different durations of compression. Experimentally, extrava-
sation has been shown to last between 15 min and 4 h and
decrease nuclear volume up to 50% (63,64). Within this
range of extravasation times, the force of compression uni-
versally decreases gene expression, with longer compres-
sions causing greater downregulation. Notably, unlike the
sinusoidal compressions investigated above, this trend is
consistent across all gene concentrations and initial condi-
tions (Fig. S7). In fact, for each duration of compression,
all genes, regardless of concentration, display similar
changes in mRNA production (Fig. S7). As the duration of
compression increases, the percentage of change in mRNA
production increases, leveling off after several hours.
Importantly, there is never a complete loss of mRNA
production; therefore, transcription does not completely
halt during these slow, sustained compressions.

Interestingly, the peak-to-peak distance betweenmaximum
compression and maximum effect on expression is also
similar for all three genes (Fig. S7). As the duration of
compression increases, peak-to-peak distance increases until
reaching a plateau. However, the time it takes for expression
to recover to within 99% of initial expression is nonmono-
tonic. Short compressionshave disproportionately long recov-
ery times (Fig. S7) and is dependent upon gene concentration.
Notably, these properties may explain why cells that undergo
similar obstacles have different outcomes. For example, tu-
mor cells that extravasate over several hours become more
aggressive postmetastasis. However, leukocytes, which are
more suited to undergo this phenomenon, extravasate in under
an hour (65) and therefore may not experience as drastic a
change in expression as tumor cells. Conversely, the alter-
ations in expression that do result from extravasation may
result in differential expression in genes that are primed to
be altered by dynamic crowding and aid in the transition
from monocyte to macrophage at a distal tissue. Therefore,
the stress imposed on a cell by events such as extravasation
can be translated into alterations in local crowding densities.
Although regulation through dynamic crowding might be
imposed by the cell during proper function, these results indi-
cate that thismechanismcan be co-opted in disease or stress to
significantly impact expression.
CONCLUSIONS

The model presented here predicts that transcription is
dependent both on crowding and on time. With this model,
we determine that transcription is altered as a result of a
time-evolving, crowded nanoenvironment and cannot be ex-
plained simply by the average volume fraction of dynamic
crowding. As the nucleus is an organelle that exists at
nonequilibrium, it could be questioned whether the volume
2126 Biophysical Journal 118, 2117–2129, May 5, 2020
fraction of crowding density is ever truly at steady state.
Therefore, dynamic crowding becomes even more pertinent
to study in regards to nuclear function. As would be ex-
pected for regulation, not all genes are significantly altered
because of dynamic crowding. However, other genes are
primed to respond rapidly to changes in dynamic crowding.
Therefore, we present temporal fluctuations in the crowded
environment as a novel regulatory phenomenon.

Through this potent, nonspecific regulation, we can cap-
ture experimentally observed expression patterns of cells
under normal growth conditions, circadian genes, and cells
under biomechanical stress. Notably, this regulation could
be imposed by the 3D chromatin packing structure. The
idea that 3D packing affects expression is not new. Noncod-
ing chromatin has long been hypothesized to be involved in
gene selection and regulation (66). In fact, the 3D interac-
tions between noncoding and coding chromatin that have
recently been demonstrated to effect gene expression (67).
The kinetics that we model on the order of minutes corre-
spond with such events as chromatin translocation (50),
chromatin remodeling (68), or loop formation (44). We
further propose that each of these processes additionally ex-
poses the underlying genome to a nanoenvironment with
optimal crowding kinetics for gene regulation, including
those that do not alter the average crowding density. As
dynamic crowding has yet to be measured in conjunction
with experimental data, this could aid in explaining the tran-
scriptional variability and noise that is observed in live cells.
Here, we emphasize that time-dependent crowding is so
far conceptually unconsidered and requires experimental
attention to verify the wealth of experimental evidence
that lends toward the idea that dynamic crowding would
be an influential part of both normal gene regulation and dis-
ease dysregulation.

Our model additionally indicates that genes will have
different responses to dynamic crowding in different loca-
tions throughout the nucleus. Consider that throughout the
nucleus, crowding density is heterogeneous but that each
density is altered homogeneously in response to changes
in cell volume. Genes in less crowded areas of the nucleus
would therefore not respond dramatically to changes in
cell volume, whereas genes in more crowded areas of the
nucleus would be significantly altered. Moreover, the
same gene can either respond negligibly or dramatically to
dynamic crowding just by relocating to an area with a
different average crowding density. Although it may seem
more pertinent to study the dramatic changes in expression,
it is also interesting to note the lack of response of genes to
some dynamic crowding environments, which is still an
important hallmark of regulation.

Likewise, we alter the gene copy number and compare the
expression of single genes with the expression of groups and
the population of genes. This is important for two reasons:
1) we find that if the entire nucleus is affected by changing
volume, as discussed above, the entire population of genes
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will be suppressed on average, though individual genes may
be amplified. This is echoed in our studies of extravasation
in which amplification is never achieved, even for the con-
ditions in which oscillating crowding causes significant
amplification. Therefore, it is much easier for the cell to
silence genes than it is to increase their expression. 2)
Copy number variation is extremely important in the pro-
gression of human disease. Among others, altered copy
numbers of particular genes have been linked to many can-
cers (69) and a variety of childhood psychological disorders
(70). For these diseases, the altered change in expression
due to the interplay of gene concentration with the dynamic
crowding environment could be influential in disease pheno-
type. To that end, it is important that we recognize that the
total number of transcripts of a particular gene may not be
indicative of disease prognosis. We report expression rela-
tive to steady-state predictions, not only to compare with
steady state but also because the percentage of change in
expression is much more likely to predict a change in pheno-
type than the total amount of expression.

The phenomena studied herein are just the first ofmany that
could be probed by changing the assumptions and complexity
of the dynamical model. For example, we do not consider
transcriptional bursting, which indicates that expression is
not a continuous process, but occurs in short bursts followed
by a latency period (71). Likewise, we presently do not
explore the effect of gene networks because it would obscure
the biophysical effect of dynamic crowding studied here.

The dynamical model presented here has the potential to
study many different physiological phenomena. The power
of our approach is that the large amount of molecular detail,
which allows us to study these phenomena, are coupled to
crowding, a general, biophysical effect that underlies
much of biology. Whereas crowding is often viewed as an
environmental complexity, crowding in fact underlies nu-
clear kinetics, aids in gene selection, allows the cell to
reduce its inventory of components, and influences structure
and function in vivo. A recently burgeoning understanding
of nuclear and chromatin mobility (50) reveals that there
are large changes in the physical nuclear environment. As
these processes consume ATP, the nucleus as a whole may
not be at equilibrium and must be considered as a dynamic
environment. Therefore, there is a significant need for
models, such as the one presented here, that incorporate a
time-dependent, crowded nuclear environment.
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