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Abstract

Predictive models of nanoparticle transport can drive design of nanotherapeutic platforms to
overcome biological barriers and achieve localized delivery. In this paper, we demonstrate the
ability of artificial neural networks to predict both nanoparticle properties, such as size and protein
adsorption, and aspects of the brain microenvironment, such as cell internalization, viscosity, and
brain region by using large (>100 000) trajectory datasets collected via multiple particle tracking
in in vitro gel models of the brain and cultured organotypic brain slices. Our neural network
achieved a 0.75 recall score when predicting gel viscosity based on trajectory datasets, compared
to 0.49 using an obstruction scaling model. When predicting /n situ nanoparticle size based on
trajectory datasets, neural networks achieved a 0.90 recall score compared to 0.83 using an
optimized Stokes—Einstein predictor. To distinguish between nanoparticles of different sizes in
more complex nanoparticle mixtures, our neural network achieved up to a recall score of 0.85.
Even in cases of more nuanced output variables where mathematical models are not available,
such as protein adhesion, neural networks retained the ability to distinguish between particle
populations (recall score of 0.89). These findings demonstrate how trajectory datasets in
combination with machine learning techniques can be used to characterize the particle-
microenvironment interaction space.
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Introduction

Nanotherapeutics have shown promise in their ability to enhance the efficacy of small
molecule drugs and biologics /n vivo, either through improved targeting, reduced toxicity, or
enhanced drug stability.! Since the FDA approval of liposomal doxorubicin in 1995 as a
nanotherapeutic, 50 new nanoparticle-based drugs have entered the market, as of 2016.2 Yet,
an unrealized promise of nanotherapeutics is the ability to decouple transport properties
from their therapeutic effect. A better understanding of this relationship would allow
researchers to make precision changes to nanotherapeutic characteristics to tune delivery and
provide the most efficacious formulation for the target disease without needing to change the
therapeutic agent. In order to achieve successful delivery, a nanoparticle formulation must be
optimized to achieve localized delivery, evade immune detection, cross biological barriers,
and minimize off-target effects.3 Many studies have investigated nanoparticle transport
methods using empirical approaches to measure nanoparticle transport properties in /n vitro,
ex vivo, and in vivo models,*® while others have developed theoretical and computational
models examining local phenomena and systems-wide behavior.”:8 A fourth paradigm that
we seek to implement here is the use of machine learning methods on large (10*-10°
trajectories) experimental datasets of hanoparticle transport properties in /in vitroand ex vivo
models to build predictive models of nanoparticle behavior.

Multiple particle tracking (MPT) is a characterization technique used in many biological
domains. MPT relies upon tracking the microscopic motion of hundreds to thousands of
individual particles simultaneously in real-time using video microscopy. Investigators can
use the resulting nanoparticle trajectory datasets to obtain mean-squared displacement
(MSD) profiles and diffusion coefficients (Ds¢f) as well as geometric features such as
trajectory boundedness and asymmetry. MPT is responsible for a number of discoveries,
including the mechanical properties of living cells,? size selectivity of mucosal layers,10.11
and extracellular pore size of various tissues.6-12 Collectively, these findings give insights
into design principles that result in optimal delivery to target sites. However, these datasets
mostly take the form of heuristics rather than empirical and theoretical models that can be
optimized with computational approaches. This leaves a large unexplored design space and
opportunity for more comprehensive and adaptive models of nanoparticle property-
environment interaction systems.

The use of trajectory datasets from MPT has primarily been limited to calculating ensemble-
level D.¢ and MSD profiles. As MPT datasets can be quite large (102-10° trajectories per
experiment), they are a clear candidate for the incorporation of data science methods to
investigate trends and make predictions. In this paper, we use neural networks to predict
both nanoparticle properties and properties of the surrounding microenvironment from input
nanoparticle trajectory datasets. From experimentally generated nanoparticle trajectories, we
demonstrate the ability to predict nanoparticle size, whether or not a nanoparticle has been
internalized by a cell, and whether or not a particle was pre-incubated with serum prior to
use. This is non-trivial, due to the heterogeneity of nanoparticle behavior and the interacting
effects of nanoparticle properties and the microenvironment on nanoparticle transport.
Further, we introduce a collection of MPT and downstream analysis tools in a Python-based
diff_classifier package for high-throughput analysis of nanoparticle diffusion datasets.
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Results and discussion

Neural network predictors of nanoparticle size using MPT datasets

First, we sought to examine whether machine learning techniques can be used to distinguish
nanoparticle properties from MPT trajectory datasets. We selected nanoparticle size, a
nanoparticle property which can directly correlate to diffusive behavior with theory. We
performed diffusion experiments in 0.4% agarose gels using three different diameters of PS-
COOH nanoparticles: 100, 200, and 500 nm (Fig. 1a). Hydrodynamic size distributions of
each particle type were obtained via DLS and are shown in Fig. 1b. An initial comparison of
geometric ensemble average mean squared displacement ((MSD)) profiles is shown in Fig.
1c. For spherical particles diffusing in a free media, particle radius ris related to diffusion
coefficient D by Stokes—Einstein:

kBT
= 6nyr

where &g is Boltzmann’s constant, 7 is the absolute temperature, and 7 is the dynamic
viscosity. In porous media such as agarose, the diffusion coefficient is referred to as an
effective diffusion coefficient, Du¢, and takes into account the gel’s tortuosity A, a parameter
describing the hindrance a particle experiences relative to diffusion in free media.13

D
Deff = —
2

For the purposes of our predictor, we initially assumed a tortuosity value of 1 (D = D), due
to the low concentration of agarose used in our studies. As expected from Stokes—Einstein,
the particles’ diffusive ability decreased with increasing particle size. The populations were
distinct enough that particle size could be predicted with some accuracy without any
additional information, using D.¢ only. By using Stokes—Einstein to calculate particle size
based on De at a time lag of 100 ms and binning trajectories into three groups (<150, 150-
350, and >350 nm), we built a predictor that achieved an average recall score (a non-binary
version of the sensitivity, the ability of the classifier to find all positive samples) of 0.636
(Table 1). In the case of larger particle sizes (200 nm and 500 nm), the predictor
overestimated Deg;. This resulted in higher recall values for 500 nm nanoparticles (0.888) at
the expense of lower recall values for 200 nm nanoparticles (0.278).

In order to improve the performance of the predictor, we altered our analysis in two ways:
first, the way the dataset was split into training and test populations was changed. Second,
the assumption of no tortuosity (A = 1) was re-examined. When selecting a training-test
split, we chose to split the test dataset spatially based on the coordinates of the input
trajectories in a checkerboard pattern rather than a random train-test split for two reasons:
first, later predictors rely on locally averaged features. Using random train-test splits would
cause contamination of the training dataset with information from the test dataset due to the
use of local feature averages as inputs. Second, the spatial train-test split reflects more
accurately sample-to-sample variability. Due to inherent batch-to-batch variability in gel
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samples,14 the predictor can be over-trained if not enough independent samples are included
in the training dataset. While each square region isn’t an independent sample, there are
regional differences that are better accounted for by a spatial split rather than a random split.
For a more accurate estimate of tortuosity, we selected A values for the predictor by
minimizing the difference between median log(D.¢) in each particle strata in the training
dataset and the log(D.) predicted by Stokes—Einstein. This resulted in a A value of 1.33 and
a predictor that achieved an average recall score of 0.703 in the test dataset, with recall
scores of 0.457 for 200 nm nanoparticles and 0.744 for 500 nm nanoparticles (Table 1). By
accounting for tortuosity, the Stokes—Einstein predictor improved overall predictive power
by increasing the number of correctly identified 100 nm and 200 nm nanoparticles (22% and
64% increase, respectively) at the expense of mislabeling a small percentage of 500 nm
nanoparticles (16% decrease).

The Stokes—Einstein based predictor was further improved by calculating D¢ based on local
averages over 9 um x 9 pm windows rather than Dg of individual trajectories. Each video
was split spatially into 256 9 um x 9 um regions and the average features in each region
were calculated. Each trajectory was then characterized by a locally averaged De¢ within its
corresponding region. This minimized some of the noise inherent in MPT datasets. Using
the updated local averaging/anomalous diffusion configuration, we performed a regional
training-test split like the one performed previously and found a A value of 1.26 for the
training dataset. The new predictor achieved an average recall score of 0.829 in the test
dataset (Table 1). While this exceeds the performance of a random guess (recall score of
0.333), such accurate results would not carry over to experiments with a wider range of
particle sizes. For example, samples with intermediate particles sizes (such as the 200 nm
particles with a recall score of 0.726) are difficult to distinguish due to high variances in De
distributions. Additionally, the ability to resolve trajectories will also be limited at the large
nanoparticle limit as the distance travelled by the nanoparticle approaches the image
resolution (0.07 um per pixel for all videos in this paper). We aimed to improve performance
by accounting for factors other than the raw Dg¢ and incorporating a machine learning
model.

In addition to generating (MSD) profiles and raw D.¢ distributions, 17 distinct features were
calculated for each individual trajectory (Table S1t). A principle component analysis (PCA)
was then run on the composite dataset of individual features and locally averaged features.
The sampling adequacy was verified viathe Kaiser-Meyer-Olkin (KMO) criterion (KMO =
0.919). PCA vyielded 11 primary components to achieve 81.3% explained variance. Average
component scores and component distributions from the PCA are shown in Fig. 1e, f, and
the primary contributing features to each component as well as the explained variance are
shown in Table 2. This breakdown of the principle components gives a semi-quantitative
analysis of the overall contribution of each component to the model. For instance, the first
component accounting for 30.6% of the total variance captures contributions from the mean
efficiency, the mean straightness, and the mean D.f. The second component, accounting for
15.3% of the total variance, captures contributions from the three mean asymmetry measures

TElectronic supplementary information (ESI) available. See DOI: 10.1039/c9nr06327g
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and the mean elongation. And the third component, accounting for 7.9% of the total
variance, captures contributions from the asymmetry measures prior to averaging. Using the
first three components, each particle type forms distinct clusters (Fig. 1g). There is very little
overlap between the three populations, with a distinct boundary between the 100 nm
population and the 200 and 500 nm populations.

Using all 51 components as inputs (17 individual trajectory features and 34 locally averaged
features), we built a neural network classifier using the checkerboard train-test split
described above. The neural network classifier was able to predict particle size with a 0.902
average recall score in the test dataset, with recall scores of 1.000, 0.856 and 0.852 for the
100 nm, 200 nm and 500 nm nanoparticles, respectively (Table 1). By implementing a neural
network using trajectory feature datasets, we were able to achieve high predictive ability in
determining nanoparticle size. The ability to resolve particle sizes at the micron level in an
in vitro model of the brain microenvironment demonstrates one aspect of the utility of
nanoparticles as probes. We were able to directly compare neural network performance with
expected results from theory. However, these predictors will have little practical value unless
they can be used in more complex environments. For example, one test case would be
mixtures of particles of different sizes. We investigated the case of 40 nm/100 nm and 40
nm/200 nm mixtures to determine whether we could distinguish between the two particle
sizes when the particles were mixed together. Without performing any local averaging, the
neural network predictor achieved an average recall value of 0.846 (40 nm: 0.858, 200 nm:
0.834) for the 40/200 mixture and 0.714 (40 nm: 0.773, 100 nm: 0.655) for the 40/100
mixture (Fig. S1 and Tables S2, S3t). Similar neural network predictors could be used to
predict particle size of polydisperse samples in more complex media environments without
access to the “true” value. For example, users could track changes in particle size
distributions during an aggregation event. Neural network predictors could prove useful in
cases where size measurements are required, but nanoparticle samples cannot be extracted
for measurement by standard techniques, such as dynamic light scattering. Additionally, size
could be quantified in environments not suitable for size measurements, such as gels or ex
vivotissue slices, as demonstrated in this study.

Neural network predictors of nanoparticle surface functionality and protein corona in an in
vitro agarose gel model

Next, we wanted to predict a more nuanced nanoparticle property using MPT datasets. It is
known that in biological environments, the properties of the nanoparticle surface affect its
ability to diffuse.8:12.15 However, to our knowledge, there are no theoretical or empirical
models relating the diffusive properties of a nanoparticle to its surface functionality or
material properties. As surface properties are a more multi-dimensional feature space (e.g.
surface charge, hydrophobicity, ligand density) and oftentimes depend on the surrounding
environment, it is difficult to create a model accounting for all possible permutations.3 We
chose to examine the effect of two nanoparticle properties on their diffusive ability: surface
PEGylation and adhered surface proteins. Nanoparticle PEGylation is a common method
used to evade the immune system,6 as well as to improve colloidal stability.1” PEGylation
has also been shown to improve the ability of nanoparticles to penetrate complex systems,
including mucus,® vitreous,12 tumors,18 and the brain parenchyma.1® In biological
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environments, nanoparticles accumulate a layer of proteins known as the protein corona.29-21
This can alter aggregation rates, cell internalization, and transport properties.?2 For instance,
protein coatings have been demonstrated to increase the time scale over which nanoparticles
interact with cells23 and strongly reduce nanoparticle adhesion to cellular surfaces.24 We
incubated PS-COOH and PS-PEG nanoparticles in horse serum to create a protein corona on
the particle surface. DLS measurements quantified a change in particle size and zeta
potential. PS-COOH nanoparticles increased in size from 142.0 + 4.2 to 2583 + 441 nm and
C-potential increased from —40.4 + 2.8 to -12.3 = 1.2 mV; PS-PEG nanoparticles increased
in size from 163.2 = 1.5 to 408.2 + 87.7 nm and G-potential decreased from -6.2 + 2.5 to
-9.4 + 0.9 mV (Fig. 2b and c). We further confirmed protein adhesion via bicinchoninic acid
(BCA) assay. An average of 47.0 + 2.5 x 1011 g protein was found on the surface of each
PS-COOH nanoparticle compared to 10.0 0.3 x 1071 g per particle for PS-PEG
nanoparticles (Fig. 2d).

We hypothesized that the protein corona would change how nanoparticles behaved in an
agarose matrix, exhibiting higher D¢ than non-coated particles due to reduced interactions
with agarose chains. MPT experiments resulted in (MSD) profiles of similar magnitudes
(Fig. S2at), with geometric ensemble-averaged Dus at =1 s of 0.74 and 1.07 um? s~1 for
serum-free and serum-incubated PS-COQOH nanoparticles, respectively, and 0.93 and 1.78
um?2 s71 for serum-free and serum-incubated PS-PEG nanoparticles, respectively. The
serum-incubated particles had higher diffusivities when compared with particles not
incubated in serum, especially in the case of PS-PEG nanoparticles. The higher diffusivities
of serum-incubated particles in agarose gels align with previous /n vitro cell experiments
performed by Lesniak er a/2* In non-aggregating conditions, PS-PEG and PS-COOH have
been shown to have diffusive behavior of similar magnitudes,1” and our findings match these
previous results.

With the resulting trajectory feature datasets, PCAwas performed as described above for the
size-dependent study. The sampling adequacy was verified viathe KMO criterion (KMO =
0.864). The PCA yielded 13 primary components to achieve 81.2% explained variance.
Average component scores and component distributions from the PCA are shown in Fig. S2b
and c.t Using the first three components, each particle type formed distinct clusters as
shown in Fig. S2d.T Using a trained neural network, we predicted particle type (PS-COOH,
PS-COOH in serum, PS-PEG, and PS-PEG in serum) with an average recall score of 0.885
in the test dataset (Table 3). This demonstrates the predictive power that can be leveraged
when using trajectory features other than just D¢, as implemented in the Stokes—Einstein
size predictors in the previous study. A predictor based on log median Dg¢ using locally
averaged trajectory features is not able to parse out these differences, with an average recall
score of 0.427 (Table 3). As the (MSD) profiles are of similar magnitude for all four particle
types (Fig. 2a), one wouldn’t expect that such a predictor would perform very well.

The fact that such nuanced nanoparticle properties such as surface functionality and protein
adsorption can be resolved using an indirect measurement technique such as MPT is very
promising. This leaves room to probe additional nanoparticle properties, such as the effect of
nanoparticle composition, shape, density, and porosity on nanoparticle transport behavior.
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Additionally, this method can be extended to provide systems-wide predictive models that
account for a host of particle parameters.

Neural network predictors of nanoparticle surface functionality and protein corona in an ex
vivo brain tissue slice model

While we have demonstrated the ability to differentiate between nanoparticle properties
using MPT datasets and neural network, we wanted to test to what extent such predictive
ability was preserved in a more physiologically relevant model. Agarose gels can capture
some aspects of the tissue microenvironment, such as ionic composition and viscoelastic
properties, but they are not dynamic and neglect interactions with cells and proteins. We
hypothesized that MPT could also be used to detect the extent of these interactions, given
that protein adsorption has been shown to decrease nanoparticle interactions with cell
membranes.24 Both a computational and experimental approach were used to test this
hypothesis. Computationally, we used a random walker model where nanoparticles were
capable of adhering to cells, modeled as squares, to demonstrate the impact that adhesion
interactions of varying strength have on (MSD) profiles (Fig. 3b). Adhesion interactions are
represented as the probability a random walker will “stick” when encountering a surface
while diffusing. When this sticking probability increased (10%, 20%, 30%, 50%, 75%, 90%,
99%), the D, decreased by a factor of 0.00, 0.01, 0.02, 0.02, 0.05, 0.27, and 5.56,
respectively, when compared to particles with a sticking probability of 1%. We repeated this
experiment with a 2-fold narrower spacing between “cells”, and it resulted in an even
stronger effect. In this scenario, D.¢ decreased by a factor of 0.00, 0.00, 0.04, 0.05, 0.18,
0.47, and 14.07, respectively, when compared to particles with a sticking probability of 1%.

To capture some of the biological effects ignored by the agarose gel model, an ex vivorat
brain slice model was used. Unlike in the gel experiment, we saw a bifurcation between PS-
COOH and PS-PEG particles. We calculated geometric ensemble-averaged D.ssat =1 s of
0.0093 and 0.018 pm? s1 for serum-coated PS-COOH and serum-free PS-COOH,
respectively, and D.¢ of 0.61 and 0.22 um? s™1 for serum-coated PS-PEG and serum-free
PS-PEG, respectively (Fig. 3d). In tissue, the PS-COOH particle types with and without
serum were more immobile compared to gel studies. Here, we calculated D¢ of 0.0093 and
0.018 um? s~ for serum-coated PS-COOH and serum-free PS-COOH, respectively, in
tissue, and 1.07 and 0.74 um? s~ for serum-coated PS-COOH and serum-free PS-COOH,
respectively, in gels. This has been shown in previous experiments, as PS-COOH
nanoparticles are subject to both electrostatic and hydrophobic interactions with various
components of the brain microenvironment, hindering their diffusive ability.1” Contrary to
experiments run in gel, the protein corona did not uniformly increase ensemble nanoparticle
diffusive behavior. On average, serum-incubated PS-COOH nanoparticles had lower MSD
profiles than their serum-free counterparts, while incubation with serum increased the
diffusivities of PS-PEG nanoparticles (Fig. S3at). It has previously been shown that altering
PEG grafting density on a nanoparticle surface can influence both total protein adsorption
and protein corona composition, and subsequently affect cellular uptake.2> To explain the
diverging behavior in nanoparticle diffusion in greater detail, fluorescence activated cell
sorting (FACS) was used to evaluate the cellular uptake profiles of each type of nanoparticle
(Fig. 3c; example raw FACS data found in Fig. S4t). It was determined that 8.7 + 0.8% of
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Cd11b+ macrophages took up PS-PEG nanoparticles, compared to 2.0 + 0.3% for serum-
incubated PS-PEG nanoparticles. The opposite effect was observed for PS-COOH
nanoparticles, where 12.2 + 1.7% of macrophages took up the serum-free PS-COOH
nanoparticles compared to 21.3 £ 1.0% uptake for serum-incubated PS-COOH particles.
Particles confined in cells and internal cellular compartments have restricted trajectories and
reduced Def, suggesting that any differences we observed in ex vivo particle behavior could
in turn be caused by cellular internalization.26:27

The sampling adequacy was verified viathe KMO criterion (KMO = 0.907). The PCA
yielded 12 primary components to achieve 80.9% explained variance. Average component
scores and component distributions from the PCA are shown in Fig. S3b and c.t We plotted
the first three components against each other in Fig. S3d,T where we saw significant overlap
between the four populations, and the serum-incubated PS-PEG population was difficult to
distinguish. Using all 51 components as inputs, we built a neural network classifier that was
able to predict particle type with a 0.591 average recall score in the test dataset (Table 4).
Our ability to predict particle type accurately was significantly reduced in comparison to the
results in gels. This is partly due to the more significant inter-sample variation in particle
behavior. A major contributor to the poor performance of the neural network classifier was
the inability to distinguish the PS-PEG population, which had a recall score of 0.283.
However, this method still outperforms a classification based on binning by median D¢
(Fig. 3d) with an average recall score of 0.110 in the test dataset. While it is reassuring that
the predictor can still make accurate predictions despite intra-sample variability, it also raises
concerns whether this prediction would be reproducible across slices outside of the training
dataset.

In order to test the ability of our neural network to predict particle type in slices not included
in the training dataset, we selected a new training/test configuration. We trained our neural
network on 3 of 4 slices for each particle type and reserved one slice as a test dataset. This
was repeated four times, such that each slice was used once as a test dataset. In this case, we
were able to retain some of our predictive ability. We generated a range of average recall
scores of 0.402-0.513 in the test dataset, but we had a complete loss of predictive ability of
serum-free PS-PEG nanoparticles, with a range of recall scores of 0.039-0.105 (Table S4t).
If we limit our predictions to incubation status (serum-free or serum-incubated), this
configuration provides predictive ability for the test datasets with 0.480-0.706 average recall
scores for PS-COOH nanoparticles (Table S5t), and 0.479-0.690 average recall scores for
PS-PEG nanoparticles (Table S61). When predicting serum status in the PS-PEG particle
population, our neural network configuration still could not resolve serum-free particles,
with recall scores of 0.071-0.535. Our results indicate that while there are measurable
differences between particle populations, the amount of inter-sample variability hinders the
utility of such predictors. We could resolve this further with very large training datasets, but
this is not likely to be a cure-all, as serum-free PS-PEG particles had low recall scores even
without accounting for intra-sample variability. As we have demonstrated that there are
significant differences in cell uptake between serum-free and serum-incubated nanoparticles,
neural network predictors could be improved by incorporating information relating to
nanoparticle—cell interactions. For instance, complementary histology can be included in
input datasets to improve predictive ability.
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Neural network predictors of gel stiffness using MPT datasets

Next, we sought to demonstrate that nanoparticle probes can also be used to predict aspects
of their surrounding environment. If we could demonstrate that subtle differences in the
surrounding tissue microenvironment could be differentiated solely with MPT trajectory
datasets, this could potentially be used as a powerful preclinical diagnostic tool. We first
chose a simple and controllable model with a tunable parameter: agarose gels with varying
agarose concentrations to adjust gel stiffness and porosity. Low concentration agarose gels
have been used as a model of brain tissue because they have similar infusion properties?®
and pore sizes?? to the brain microenvironment. By varying agarose concentration, we can
mimic changes in the brain microenvironment that may occur in disease states3 or aging
processes.3! To model this computationally, we used a random walker model with
increasingly densely packed “sticky” particulates to demonstrate the impact of varyingly
dense microenvironments on diffusive ability (Fig. 4b). Particulate concentrations were
increased 4-, 8-, 12-, 16-, 20-, 24-, 28-, 32-, and 36-fold in each simulation resulting in
0.09-, 0.20-, 0.32-, 0.71-, 1.15-, 2.01-, 3.45-, 5.81-, and 6.82- fold decreases, respectively, in
ensemble-averaged Du¢. This general trend is likely to hold in /n vitro experiments.

We chose a range of agarose concentrations from 0.4 to 1.2 weight % agarose that
encompass concentrations found to mimic infusion properties of the brain.28 We use 0.2%
agarose intervals to test the resolution limits of our neural network predictors. An oscillatory
rheological analysis was performed on each weight % agarose gel to verify the storage
moduli increased with increasing agarose concentration (Fig. 4d and Fig. S51). An initial
comparison of {(MSD) profiles generated from MPT experiments performed in each gel is
shown in Fig. S6a.t As expected, the nanoparticles’ diffusive ability decreased with
increasing agarose concentration, with calculated geometric ensemble-averaged Dggrat =1
sof 0.51, 0.43,0.23, 0.22, and 0.17 um? s™1 for 0.4%, 0.6%, 0.8%, 1.0%, and 1.2% agarose
gels, respectively (Fig. 4d). However, these differences are much smaller in magnitude
compared to the differences caused by particle size. Similar to the particle size experiment,
we built a baseline predictor using theory with which we could compare the neural network
predictive ability. The Dg of nanoparticles diffusing in porous media is related to the
volume fraction of polymer gel by the following obstruction scaling model:

rg+rf 2

D,
T
(ksaab‘o'”cm“)’”(l -2

g

Dy~

-0.25

+2rf

where Dy is the diffusion coefficient in the gel, Dy is the diffusion coefficient in water, 7 is
the nanoparticle radius, 7 is the radius of the polymer chain, 4; is a constant of
proportionality, ais the equivalent bond length of the monomer, ¢ is the volume fraction of
polymer in the gel, Cwo is the characteristic ratio of the polymer, and y is the Flory—-Huggins
interaction parameter.32

Using the percent agarose values and the calculated D.¢ of the nanoparticle trajectories at =
=100 ms, we fit the model using a nonlinear curve fit. We calculated percent agarose
concentrations for each trajectory in the whole dataset and binned trajectories into five
groups: <0.5%, 0.5-0.7%, 0.7-0.9%, 0.9-1.1%, and >1.1%. This predictor achieved an
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average recall score of 0.218 (Table 5). If we reduce the resolution and only look at the 0.4,
0.8, and 1.2% samples, we get an average recall score of 0.367, which is not competitive
with a random guess, which has an average recall score of 0.333. If, in addition to reduced
resolution, we use locally averaged D¢, we obtain an average recall score of 0.488. The
predictor had the most difficulty predicting intermediate agarose concentrations (e.g. 0.228
for trajectories in 0.8% agarose). Predicting viscoelastic properties of the surrounding media
proves to be a more difficult problem than predicting particle size and leaves room for
ongoing exploration using a neural network classifier on input trajectory datasets.

A PCA yielded 14 primary components to achieve 81.7% explained variance. Average
component scores and component distributions from the PCA are shown in Fig. S6b and c.t
Using the first three components plotted against each other, distinct regions can be observed
(Fig. S6dt), but the intermediate gel viscosities, particularly the 0.6% and 0.8%, are difficult
to distinguish visually. Using all 51 components as inputs, we built a neural network
classifier that was able to predict agarose concentration with a 0.521 average recall score in
the test dataset (Table 5). The predictor was able to resolve trajectories in both high and
lower agarose concentrations, with recall scores of 0.695 and 0.702 in 0.4% and 1.2%
agarose, respectively. However, the neural network predictor lost power at intermediate
agarose concentrations, with recall scores of 0.486, 0.329, and 0.395 for 0.6, 0.8, and 1.0%
agarose concentrations, respectively. If we reduce the resolution and only include 0.4, 0.8,
and 1.2% samples, we achieved an average recall score of 0.747 in the test dataset. This
predictor still suffers at intermediate concentrations with a 0.569 recall score for 0.8%
agarose, but the neural network is still able to outperform the obstruction model predictor.
This demonstrates the potential power of using trajectory datasets to predict aspects of the
surrounding environment. Additional factors that could be probed are changes in surface
charge and hydrophaobicity of gel components, heterogeneity of gels, and the composition of
the surrounding media.

Neural network predictors of nanoparticle surface functionality and cell uptake status
using MPT datasets

Next, we wanted to build a predictor that would be able to distinguish both nanoparticle
properties and aspects of the surrounding environment. Nanoparticle behavior is a function
of the surrounding environment, and if we hope to build predictive models that are useful in
more complex environments, it is important that we can capture these interactive effects. We
sought to demonstrate the ability to predict particle internalization into a cell by using
trajectory feature datasets using two different particle types, PS-COOH and PS-PEG. Even
without accounting for the complex biology involved, we can predict distinct diffusive
behavior due solely to geometric constraints. For example, Brownian motion confined to a
circle of radius 7.2 can be modeled by:

2
(2m) = r 21 = Aje=4A2DnAL ] ¢

where Dis the diffusion coefficient, n7is the frame, Atthe shutter speed, and A; and A, are
shape constants.26 Nanoparticles in cells will likely not only be confined within the cell
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membrane but will also be internalized into organelles, resulting in hindered diffusive
behavior.33 As observed previously, surface charge impacts both interactions with cells and
cell uptake profiles. We sought to build a predictor that would be able to determine whether
a particle has been internalized based on its trajectory features.

In this experiment, BV-2 cells were exposed to PS-COOH or PS-PEG nanopatrticles for 1 h
prior to imaging. Using binary images generated from brightfield images of cells taken
directly after tracking experiments (Fig. 5b and c), trajectories were labelled as either “in
cells” or “out of cells”. Ensemble-averaged MSDs of PS-COOH and PS-PEG nanoparticles
stratified by cell internalization are shown in Fig. S7a.t Nanoparticles in cells consistently
had lower De than their uninternalized counterparts. We calculated 0.00088 and 69 pm? s™1
geometric ensemble-averaged D.¢ for PS-COOH nanoparticles “in cells” and “out of cells”,
respectively, and 0.0025 and 1.08 pm?2 s~1 for PS-PEG nanoparticles “in cells” and “out of
cells”, respectively. (MSD) profiles of non-internalized PS-COOH and PS-PEG cells are of
similar magnitude.

We performed a PCA on the composite dataset of individual features and locally averaged
features. The sampling adequacy was verified viathe KMO criterion (KMO = 0.948). The
PCA yielded 13 primary components to achieve 80.7% explained variance. Average
component scores and component distributions from the PCA are shown Fig. S7b and c.t
Using the first three components, each particle type forms distinct clusters (Fig. S7dt),
where there is overlap between the four populations, but each population can be resolved
visually. Using all 51 components as inputs we built a neural network classifier that was able
to predict particle type/cell internalization with a 0.686 average recall score in the test
dataset (Table 6). Internalized PS-PEG nanoparticles were the most difficult to resolve, with
a recall score of 0.412 in the test dataset. This is likely due to three causes: (1) there are very
few internalized PS-PEG nanoparticles, and thus a small training dataset (Fig. 5d), (2) there
is less of a binary behavior of PS-PEG nanoparticles “in cells” and “out of cells”, and (3)
any immobilized PS-PEG nanoparticles in cells are difficult to distinguish from immobilized
PS-COOH nanoparticles in cells. While PS-COOH internalized particles are almost
uniformly immobile and the non-internalized PS-COOH particles are free to move the
internalized PS-PEG nanoparticles have broader distribution in diffusive behavior (Fig. 5d).

Thus, the internalized PS-PEG nanoparticles can be mistaken by the network for both PS-
PEG nanoparticles out of cells and PS-COOH nanoparticles in cells.

We also note that our ability to label particles as internalized and non-internalized is
imperfect. Without a highly accurate reference standard, there will be trajectories falsely
labelled as internalized due to imperfectly resolved cellular edges and variable particle
behavior at cellular interfaces. Other trajectories will be falsely labelled as non-internalized
due to thin cellular features that are lost in image processing steps (Fig. 5¢). This will
inevitably limit the accuracy of our neural network classifier. We were able to improve the
performance of our neural network classifier by excluding particles near cellular interfaces.
When we excluded particles within 10 pixels (0.7 um), we achieved an average recall score
of 0.702 and a recall score of 0.434 for internalized PS-PEG nanoparticles in the test dataset.
When we excluded particles within 20 pixels (1.4 um), we achieved an average recall score
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of 0.719 and a recall score of 0.439 for internalized PS-PEG nanoparticles in the test dataset.
By excluding particles at the interface, we minimize errors due to variable behavior at cell
interfaces and inaccurate binarization of the cellular images.

By implementing a neural network, we were able to achieve high predictive ability in
determining cell internalization based on trajectory datasets. This could be expanded to
include internalization in cellular substructures such as lysosomes and vacuoles. In cases
where cell stains are available, using this information can allow for more powerful predictive
models. For example, instead of predicting cell internalization, investigators could predict
whether particles were sequestered in organelles, diffusing in the cytosol, associated with the
cell membrane, or embedded in the extracellular matrix. Additional questions could probe
the relationship of nanoparticle diffusion to cell type, phenotype, and intracellular protein
distribution.

Conclusions

Traditional applications of MPT have a large amount of overhead. For example, a single
experiment examining 4 different conditions and 3 replicates per condition can run upwards
of 1 terabyte of data. From that terabyte of video, thousands to millions of trajectories are
collected, all to report an often ensemble-averaged D¢ Value per condition. These large
datasets are a prime target for machine learning methods. Trajectory datasets have been used
in biological settings, for example, to classify motion types. Additionally, applications
outside biomedical fields, including mapping new environments, learning interactive
behaviors from pedestrian trajectories, and training self-driving cars from driver data,
suggest there are many methods left untried in this area.

Using a range of experiments, we have sought to push the boundaries of the level of
information that can be extracted using MPT techniques. In some well-defined cases such as
particle size, in vitro cell uptake, and /n vitro protein corona, we were able to achieve
powerful predictive models using neural networks. These models retained their predictive
abilities when extended to more complex models such as samples containing mixed particle
sizes. Ex vivoslice studies exhibited some utility as well, but variability from slice to slice
and from animal to animal limited their applicability. We suggested additional ways that
these weaknesses can be overcome, for instance, by combining cell histology datasets with
trajectory datasets. The use of trajectories as a form of biological marker can potentially
become a powerful diagnostic tool without the need of expensive or complicated reagents.
Future experiments could seek to implement nanoparticle movement as a surrogate for tissue
breakdown, disease severity, tissue age, altered cellular behavior, or altered protein
expression.

Materials and methods

Nanoparticle preparation and characterization

One hundred-nm fluorescent carboxylate (COOH)-modified polystyrene latex (PS)
nanoparticles (PS-COOH) (Fisher Scientific, Hampton, NH) were covalently modified with
methoxy (MeO)-poly(ethylene glycol) (PEG)-amine (NH,) (5 kDa MW, Creative PEG
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Works, Winston-Salem, NC) by carboxyl amine reaction.19 Briefly, 50-100 uL of PS-COOH
particle suspension was washed and resuspended to 2- to 6-fold dilution in ultrapure water.
An excess of MeO-PEG-NH, was added to the particle suspension and mixed to dissolve the
PEG. N-Hydroxysulfosuccinimide (MilliporeSigma, Burlington, MA) was added to a final
concentration of 7 mM and 200 mM borate buffer, pH 8.2, was added to a 4-fold dilution of
the starting volume. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, Invitrogen,
Carlsbad, CA) was added to stoichiometrically complement the added MeO-PEG-NH,.
Particle suspensions were placed on a rotary incubator for 4 h at 25 °C and then washed via
centrifugation (Amicon Ultra 0.5 mL 100k MWCO; MilliporeSigma) at conditions specified
previously.1! Particles were resuspended in ultrapure water to the initial particle volume and
stored at 4 °C until use. The hydrodynamic diameter, polydispersity index (PDI), and (-
potential were measured for COOH- and PEG-coated fluorescent nanoparticles via dynamic
light scattering (DLS) (NanoSizer Zeta Series, Malvern Instruments, Malvern, UK, n=3
measurements per sample). Particles were diluted to ~0.002% solids in filtered (0.45 pm,
Whatman, Maidstone, UK) 10 mM NaCl and incubated for 24 h prior to measurement.

Avrtificial cerebrospinal fluid preparation

Artificial cerebrospinal fluid (ACSF) was chosen to constitute agarose gels to best mimic the
brain microenvironment. ACSF was prepared with the addition of the following
concentrations of reagents to deionized (DI) water: 119 mM NaCl (MilliporeSigma), 26.2
mM NaHCO3 (MilliporeSigma), 2.5 mM KCI (MilliporeSigma), 1 mM NaH,PO4
(MilliporeSigma), 1.3 mM MgCl, (MilliporeSigma), and 10 mM glucose (MilliporeSigma).
The solution was filtered (0.45 pum) in a sterile environment and stored at 4 °C until use. For
individual experiments, aliquots of ACSF were taken and 2 mM CaCl, (MilliporeSigma)
was added. The resulting media was adjusted to pH 7.2 with 0.2 mM HCI.

Agarose gel preparation and MPT for size prediction and gel stiffness studies

Agarose gels were prepared by adding the desired amount of agarose (low
electroendosmosis, gel point for 1.5% gel, 36 + 1.5 °C, MilliporeSigma) to ACSF. For
nanoparticle size prediction studies, 0.4% agarose was used for all conditions, where 40 mg
agarose was dissolved in 10 mL ACSF. For gel stiffness studies, 0.4, 0.6, 0.8, 1.0, and 1.2-
percent agarose was used, corresponding to 40, 60, 80, 100, and 120 mg agarose in 10 mL
ACSF, respectively. The agarose—ACSF mixture was heated to 99 °C and mixed well until
the agarose was completely dissolved, as indicated by no visible particulates in the solution.
400 pL agarose—ACSF was added to a well in an 8-well chambered coverglass plate
(ThermoFisher Scientific, Waltham, MA) and PS-COOH nanoparticles were immediately
added and mixed until evenly distributed to achieve a concentration of 0.005% solids. Two
samples were prepared for each combination of particle size and gel stiffness. The prepared
gels were allowed to set overnight at room temperature.

Five videos were collected per well at 10 Hz and 100x magnification for 6.5 s via
fluorescent microscopy using a cMOS camera (Hamamatsu Photonics, Bridgewater, NJ)
mounted on a confocal microscope (Nikon Instruments, Melville, NY). Nanoparticle
trajectories and trajectory features were calculated via diff_classifier, a self-developed
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Python package.34 A complete list of trajectory features, including a brief description and
method of calculation, is provided as ESI Table S1.t

Rheological characterization of agarose gels

A rheometer (Physica MCR 301, Anton Paar, Graz, Austria) operating in oscillatory mode
was used to characterize the mechanical properties of the different weight percent agarose
gels (0.4, 0.6, 0.8, and 1.0%). Three samples were prepared for each weight percent. A 25
mm parallel plate attachment (Anton Paar) was operated at a 0.5 mm gap for all
experiments. Additionally, the base plate was set to 22 °C 30 min prior to the experiment
and held constant throughout the duration of the experimental window.

The linear viscoelastic region was first determined by performing a strain and frequency
sweep on 0.4% agarose following a 4 h incubation at 22 °C. For the strain sweep, the
frequency was set to 1 Hz, and the storage and loss moduli were measured at various strains
(0.1-10%). For the frequency sweep, the strain was set at 2%, and the storage and loss
moduli were measured at various frequencies (0.1-10 Hz). The sweeps demonstrated that at
2% strain and 2 Hz, 0.4% agarose is in the linear viscoelastic region because slight changes
in strain or frequency do not change the measured storage modulus (Fig. S51).

Time sweeps were performed on all concentrations of agarose by monitoring the storage and
loss moduli for 4 h upon removal from 99 °C stock solution. For 0.4, 0.6, and 0.8% agarose
gels, time sweeps were performed at a strain and frequency of 2% and 2 Hz, respectively.
For the 1.0% agarose gel, time sweeps were performed at a strain and frequency of 0.5% and
0.5 Hz to remain within the linear viscoelastic region.

In vitro MPT in microglial cell culture for prediction of extracellular versus intracellular
diffusion

BV-2 immortalized microglial cells (ATCC, CRL-2469) at passage 8 (P8) were cultured
from frozen stock at a seeding density of 2 million cells per cm? in T-75 flasks (USA
Scientific, Ocala, FL), yielding 70-80% confluency in 7 days. Cell culture media (CCM)
consisted of 90% Dulbecco’s Modified Eagle Medium (DMEM; ATCC) with 4 mM L-
glutamine adjusted to contain 1.5 g L1 sodium bicarbonate and 4.5 g L™ glucose, 10% fetal
bovine serum (FBS; ATCC), and 1% penicillin/streptomycin (Gibco, ThermoFisher). After
eight days, the cells were passaged to P9 and subsequently plated into four 35 mm dishes
(ATCC) at a seeding density of 700 000 cells per cm2. PS-COOH and PS-PEG nanoparticles
were first prepared in filtered (0.45 pm) 10 mM NaCl solution and mixed with CCM. The
cells were incubated with the particles for 30 min prior to imaging. During imaging, cells
were maintained at 37 °C and 5% CO, using Heracell TriGas (ThermoFisher) incubation
chamber. Five videos per sample were collected using the described acquisition settings
above.

MPT of protein-coated nanoparticles in agarose gels

100 nm PS-COOH and 100 nm PS-PEG nanoparticles were added to separate samples of
horse serum (Fisher Scientific) in a 1 : 100 dilution. Particles were incubated in serum for 24
h at 37 °C. In order to ensure similar concentrations of nanoparticles in gels, particles were
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centrifuged, and the pellet was resuspended in a volume of horse serum equivalent to the
original starting volume. Nanoparticle hydrodynamic diameter and zeta potential were
measured using methods specified above. The measured hydrodynamic diameter
distributions are shown in Fig. 2b. Serum-treated nanoparticles were loaded into 0.4%
agarose gels in ACSF as described previously. MPT videos were collected at 10 Hz and
100x magnification for 6.5 s and trajectories generated via diff_classifier.

Protein corona assay

Protein adhesion of serum-incubated nanoparticles was determined via BCA assay
(ThermoFisher). Briefly, nanoparticle suspensions of each particle preparation were spun
down at 100 000g. The supernatant was discarded, and the particle pellet was resuspended in
10 mM NaCl. BCA working reagent was prepared by mixing 50 parts Reagent A (sodium
carbonate, sodium bicarbonate, BCA, sodium tartrate, 0.1 M sodium hydroxide) with 1-part
Reagent B (4% cupric sulfate). In a 96-well plate, 25 pL of each nanoparticle sample (7= 3
per sample) was mixed with 200 uL of the working reagent. The cover plate was incubated
at 37 °C for 30 min, and UV-Vis measurements were taken at 562 nm. In order to account
for nanoparticle fluorescence, serum-incubated UV-Vis measurements were normalized to
UV-Vis measurements of serum-free nanoparticles at the same concentration. Measurements
were quantified using a 5-point bovine-serum albumin (BSA) calibration curve with
concentrations between 5 and 250 pug mL~1.,

MPT in rat brain slices

Serum-incubated particles were prepared as described above. All animal procedures were
performed in accordance with the Guidelines for Care and Use of Laboratory Animals of the
University of Washington and experiments were approved by the Animal Ethics Committee
of the University of Washington, (approval ID: 4383-02). Brain slices were prepared from 30
to 40 g postnatal day 14 (P14) Sprague-Dawley rat pups. Briefly, animals were administered
an intraperitoneal injection of pentobarbital (150 mg kg™1). After euthanasia, animals were
decapitated and brains rapidly removed and immersed in cold dissecting media consisting of
500 mL HBSS (Fisher Scientific), 1% penicillin-streptomycin (MilliporeSigma), and 3.2 g
glucose (MilliporeSigma). 300 pm-thick coronal slices (7= 2 per rat) were prepared using a
Mcllwain tissue chopper (Ted Pella, Redding, CA). The tissue chopper and razor blades
were washed with 70% ethanol prior to sectioning. Slices were placed in a Petri dish
containing dissecting media and separated under a surgical dissection microscope.
Individual slices were placed on 30 mm cell culture inserts (Fisher Scientific) in 6-well
plates (Eppendorf, Hamburg, Germany), filled with 1.5 mL slice culture media containing
200 mL MEM (Fisher Scientific), 100 mL HBSS, 100 mL horse serum (Fisher Scientific), 4
mL Glutamax (Fisher Scientific), and 1% penicillin-streptomycin. Slices were allowed to
incubate in sterile conditions at 37 °C and 5% CO, overnight. 30 min prior to imaging,
slices were incubated with either 100 nm PS-COOH nanoparticles, PS-PEG nanoparticles,
PS-COOH nanoparticles incubated in horse serum, or PS-PEG nanoparticles incubated in
horse serum at a concentration of approximately 0.014% solids. Slices were imaged in a
temperature-controlled incubation chamber maintained at 37 °C, 5% CO,, and 80%
humidity. 10 videos were collected in the cortex of each slice, and trajectories were
calculated via diff_classifier.
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FACS cell uptake study

Brain slices (/7= 3 per sample) were prepared from 30 to 40 g P14 Sprague-Dawley rat pups.
Slices were incubated with either fluorescently labelled 100 nm PS-COOH nanoparticles,
PS-PEG nanoparticles, PS-COOH nanoparticles incubated in horse serum, or PS-PEG
nanoparticles incubated in horse serum at a concentration of approximately 0.014% solids
for 2 h. Slices were treated with Accutase (Millipore) for 30 min on ice and homogenized.
The tissue suspension was filtered through a tissue strainer and diluted in HBSS + 25 mM
HEPES (Fisher Scientific). The suspension was spun down at 600g at 4 °C for 5 min and the
supernatant discarded. The cell pellet was resuspended in FBS and mixed with a Percoll
solution [30% Percoll (GE Healthcare), 3% 10x PBS, 67% HBSS + 25 mM HEPES]. The
Percoll cell suspension was overlayed with 1 mL FACS buffer (45 mL HBSS, 5 mL FBS,
0.5 mL HEPES). The cell suspension was spun down at 800g at 4 °C for 30 min. The
supernatant was discarded, and the cell pellet was washed 2x with FACS buffer.

The cells were stained with DAPI (Molecular Probes), FITC CD11b (BioLegend), and the
CD11b isotype PE Cy7 CD45 (BioLegend). Flow cytometry analysis was performed on the
LSR Il instrument (BD BioSciences). Laser lines and optical emission filters were arranged
as follows: DAPI: 355 nM 20 mW UV laser and 450/50 emission detector; FITC: 488 nM
100 mW blue laser and 530/30 emission filter; Texas RED: 561 nM 150 mW yellow-green
laser and 610/20 emission detector. Gating was performed using DAPI, FITC, and particle
controls. Each sample measurement included 10 000 events.

MPT analysis and trajectory feature selection

Nanoparticle trajectories were extracted from microscopy videos viaa lab-developed Python
package diff_classifier for parallelized and reproducible MPT workflows. The diff_classifier
package relies on a headless implementation of an ImageJ plugin TrackMate with tracking
parameters selected with a combination of user inputs and regression techniques based on
input images.3° Diff_classifier also performs trajectory feature extraction based on features
from the TrajClassifier ImageJ plugin8 (e.g. alpha, the anomalous diffusion exponent, and
boundedness, which quantifies how much a particle is restricted in a circular confined
space). These features are an extended feature dataset of Wagner et a/. used to classify
nanoparticles by their motion type. Features were limited to geometric features, such that
particles could be distinguished solely based on their motion, so features based on particle
intensity values were excluded. Features were also selected to be rotation- and translation-
invariant, so that position or orientation are not taken into account when making predictions.
36 Based on 17 features (Table S1t), an additional set of 34 local average and deviation
parameters were calculated for 256 total 9 um x 9 um tiled rectangular regions in each
video.

Principle component analysis (PCA)

A spatial checkerboard train-test split was performed on the geometric feature datasets from
each experiment. Every other square (of area 256 x 256 pixels?) in the checkerboard pattern
was assigned to either the training dataset or the test dataset. PCA with feature scaling was
carried out on the training dataset of experimental dataset. The sampling adequacy of the
data was done viathe KMO measure and was found to be appropriate (KMO > 0.8).37
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Components were extracted to describe >80% of the total variance. The resulting PCA
transformation was applied to the test dataset for downstream analysis.

Neural network

In order to evaluate whether trajectories can be used to predict particle properties or
parameters of the surrounding tissue microenvironment, single-layer neural networks were
trained using scikit-learn’s Multi-Layer Perceptron Classifier using the trajectory features as
inputs. An initial grid search was performed to select the best hyperparameters of the neural
network. These hyperparameters included number of neurons in the hidden layer (600, 900,
1200), initial learning rate (0.001, 0.005, 0.01), batch size (50, 100, 200), and the L2
regularization term (0.001, 0.01, 0.1), with 10% of the training dataset set aside for cross
validation for all models. All models used stochastic gradient descent for weight
optimization, the rectified linear unit function for activations in the hidden layer, the log loss
cost function, and an adaptive learning rate decreasing the learning rate by a factor of five
each time two consecutive epochs fail to decrease training loss by 1074, After performing the
initial hyperparameter search on the nanoparticle size dataset, we selected a hidden layer
size of 900, an initial learning rate of 0.005, a batch size of 50, and an L2 regularization term
of size 0.001 based on the average recall score in the training dataset. All models were
trained on the checkerboard training datasets described above. For the slice study, additional
training and testing iterations was performed with an alternate splitting procedure, isolating
data from one slice as a test dataset while training on the other three slices to test whether
the trained neural network models could be extended to experiments outside the original
dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Size-dependent nanoparticle diffusion analysis. (a) 100-, 200-, and 500 nm carboxyl-
modified polystyrene particles. (b) Hydrodynamic diameter (intensity mean) distributions
(purple: 100 nm, teal: 200 nm, yellow-green: 500 nm) measured in 10 mM NaCl (n=3
measurements). (c) {(MSD) profiles of PS-COOH nanoparticles of varying size (n= 2 wells
per particle size, n=5 videos per well). (d) log D¢ distributions stratified by particle size
and binned by predicted particle size using the Stokes—Einstein based predictor with
anomalous diffusion exponent. (e) Average component profile of PCA analysis stratified by
particle size. (f) Principle component distributions of PCA analysis stratified by particle size.
(9) The first three primary components of 400 randomly selected trajectories per size plotted
against each other.
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Fig. 2.

Pagrticle surface property-dependent nanoparticle diffusion analysis. (a) Carboxyl- and PEG-
modified polystyrene nanoparticles incubated with and without horse serum. (b)
Hydrodynamic diameter (intensity mean) distributions (purple: PS-COOH, teal: PS-PEG,
blue: PS-COOH in serum, yellow-green: PS-PEG in serum) measured in 10 mM NaCl (n=
3 measurements). (c) Concentration of surface-adhered proteins from horse serum-incubated
PS-COOH (orange) and PS-PEG (purple) nanoparticles determined using BCA assay. UV-
Vis adsorption calibration curve generated from BSA standards is shown in blue. (d) log Dasf
distributions stratified by particle type and binned by predicted particle type using log
median predictor.
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Fig. 3.
Pagrticle surface property-dependent nanoparticle diffusion analysis in an organotypic brain
slice model. (a) Carboxyl- and PEG-modified polystyrene nanoparticles incubated with and
without horse serum were allowed to diffuse in rat brain slices. (b) (top left) 2D
computational diffusion model varying the “stickiness” of cellular surfaces (purple squares:
cells). (top right) Example nanoparticle trajectories. (bottom left) (MSD) profiles as a
function of cell “stickiness”. Stickiness was quantified as the probability a particle remains
adhered to a cell’s surface when in contact with the cell boundary (distance between cells:
20 pixels), (bottom right) (MSD) profiles as a function of cell “stickiness” (distance
between cells: 10 pixels) (¢) FACS results quantifying cell uptake of nanoparticles in
microglia stratified by particle type (7= 3 slices per condition, purple: PS-PEG in serum,
blue: PS-PEG, teal: PS-COOH in serum, yellow-green: PS-COOH) (d) log D¢ distributions
stratified by particle type and binned by predicted particle size using log median predictor.
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Fig. 4.

Digffusion analysis for the prediction of agarose gel concentration. (a) Schematic
representation of the relationship between agarose concentration and gel stiffness. (b)
Computational model of diffusion in agarose gel of increasing agarose concentration.
Agarose is modeled as 2D squares with “sticky” surfaces. (¢) Computational model
generated (MSD) profiles for increasing agarose concentrations. Concentrations represent
multiples of the base agarose concentration (256 squares/512 x 512 pm?) (d) oscillatory
rheological analysis of agarose gels of varying weight % (purple: 0.4%, blue: 0.6%, light-
blue: 0.8%, teal: 1.0%) () log Da¢s distributions stratified by agarose gel concentration
binned by predicted agarose gel concentration using log median predictor (purple: 0.4%,
blue: 0.6%, light-blue: 0.8%, teal: 1.0%, yellow-green: 1.2%).
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(a) Particle type- and cellular internalization-dependent diffusion analysis. (b) (left) Example

frame of PS-PEG nanoparticle diffusion in BV-2 microglial cell culture. (right) Example
frame of PS-COOH nanoparticle diffusion in BV-2 microglial cell culture. (c)
Demonstration of cell image analysis. (top left) Raw image. (top middle) Binarized image.
(top right) Euclidean distance transform of binarized image (bottom left). Binarized image
with area 10 pixels from cell surfaces highlighted in red. (bottom middle) Binarized image
with area 20 pixels from cell surfaces highlighted in red. (d) log D.¢ distributions stratified
by agarose gel concentration binned by predicted agarose gel concentration using log
median predictor (purple: PS-PEG out of cells, blue: PS-COOH out of cells, teal: PS-PEG in
cells, yellow-green: PS-COOH in cells).
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