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Abstract

Predictive models of nanoparticle transport can drive design of nanotherapeutic platforms to 

overcome biological barriers and achieve localized delivery. In this paper, we demonstrate the 

ability of artificial neural networks to predict both nanoparticle properties, such as size and protein 

adsorption, and aspects of the brain microenvironment, such as cell internalization, viscosity, and 

brain region by using large (>100 000) trajectory datasets collected via multiple particle tracking 

in in vitro gel models of the brain and cultured organotypic brain slices. Our neural network 

achieved a 0.75 recall score when predicting gel viscosity based on trajectory datasets, compared 

to 0.49 using an obstruction scaling model. When predicting in situ nanoparticle size based on 

trajectory datasets, neural networks achieved a 0.90 recall score compared to 0.83 using an 

optimized Stokes–Einstein predictor. To distinguish between nanoparticles of different sizes in 

more complex nanoparticle mixtures, our neural network achieved up to a recall score of 0.85. 

Even in cases of more nuanced output variables where mathematical models are not available, 

such as protein adhesion, neural networks retained the ability to distinguish between particle 

populations (recall score of 0.89). These findings demonstrate how trajectory datasets in 

combination with machine learning techniques can be used to characterize the particle-

microenvironment interaction space.
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Introduction

Nanotherapeutics have shown promise in their ability to enhance the efficacy of small 

molecule drugs and biologics in vivo, either through improved targeting, reduced toxicity, or 

enhanced drug stability.1 Since the FDA approval of liposomal doxorubicin in 1995 as a 

nanotherapeutic, 50 new nanoparticle-based drugs have entered the market, as of 2016.2 Yet, 

an unrealized promise of nanotherapeutics is the ability to decouple transport properties 

from their therapeutic effect. A better understanding of this relationship would allow 

researchers to make precision changes to nanotherapeutic characteristics to tune delivery and 

provide the most efficacious formulation for the target disease without needing to change the 

therapeutic agent. In order to achieve successful delivery, a nanoparticle formulation must be 

optimized to achieve localized delivery, evade immune detection, cross biological barriers, 

and minimize off-target effects.3 Many studies have investigated nanoparticle transport 

methods using empirical approaches to measure nanoparticle transport properties in in vitro, 
ex vivo, and in vivo models,4-6 while others have developed theoretical and computational 

models examining local phenomena and systems-wide behavior.7,8 A fourth paradigm that 

we seek to implement here is the use of machine learning methods on large (104–106 

trajectories) experimental datasets of nanoparticle transport properties in in vitro and ex vivo 
models to build predictive models of nanoparticle behavior.

Multiple particle tracking (MPT) is a characterization technique used in many biological 

domains. MPT relies upon tracking the microscopic motion of hundreds to thousands of 

individual particles simultaneously in real-time using video microscopy. Investigators can 

use the resulting nanoparticle trajectory datasets to obtain mean-squared displacement 

(MSD) profiles and diffusion coefficients (Deff) as well as geometric features such as 

trajectory boundedness and asymmetry. MPT is responsible for a number of discoveries, 

including the mechanical properties of living cells,9 size selectivity of mucosal layers,10,11 

and extracellular pore size of various tissues.6,12 Collectively, these findings give insights 

into design principles that result in optimal delivery to target sites. However, these datasets 

mostly take the form of heuristics rather than empirical and theoretical models that can be 

optimized with computational approaches. This leaves a large unexplored design space and 

opportunity for more comprehensive and adaptive models of nanoparticle property-

environment interaction systems.

The use of trajectory datasets from MPT has primarily been limited to calculating ensemble-

level Deff and MSD profiles. As MPT datasets can be quite large (102–105 trajectories per 

experiment), they are a clear candidate for the incorporation of data science methods to 

investigate trends and make predictions. In this paper, we use neural networks to predict 

both nanoparticle properties and properties of the surrounding microenvironment from input 

nanoparticle trajectory datasets. From experimentally generated nanoparticle trajectories, we 

demonstrate the ability to predict nanoparticle size, whether or not a nanoparticle has been 

internalized by a cell, and whether or not a particle was pre-incubated with serum prior to 

use. This is non-trivial, due to the heterogeneity of nanoparticle behavior and the interacting 

effects of nanoparticle properties and the microenvironment on nanoparticle transport. 

Further, we introduce a collection of MPT and downstream analysis tools in a Python-based 

diff_classifier package for high-throughput analysis of nanoparticle diffusion datasets.
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Results and discussion

Neural network predictors of nanoparticle size using MPT datasets

First, we sought to examine whether machine learning techniques can be used to distinguish 

nanoparticle properties from MPT trajectory datasets. We selected nanoparticle size, a 

nanoparticle property which can directly correlate to diffusive behavior with theory. We 

performed diffusion experiments in 0.4% agarose gels using three different diameters of PS-

COOH nanoparticles: 100, 200, and 500 nm (Fig. 1a). Hydrodynamic size distributions of 

each particle type were obtained via DLS and are shown in Fig. 1b. An initial comparison of 

geometric ensemble average mean squared displacement (〈MSD〉) profiles is shown in Fig. 

1c. For spherical particles diffusing in a free media, particle radius r is related to diffusion 

coefficient D by Stokes–Einstein:

D =
kBT
6πηr

where kB is Boltzmann’s constant, T is the absolute temperature, and η is the dynamic 

viscosity. In porous media such as agarose, the diffusion coefficient is referred to as an 

effective diffusion coefficient, Deff, and takes into account the gel’s tortuosity λ, a parameter 

describing the hindrance a particle experiences relative to diffusion in free media.13

Deff = D
λ2

For the purposes of our predictor, we initially assumed a tortuosity value of 1 (Deff = D), due 

to the low concentration of agarose used in our studies. As expected from Stokes–Einstein, 

the particles’ diffusive ability decreased with increasing particle size. The populations were 

distinct enough that particle size could be predicted with some accuracy without any 

additional information, using Deff only. By using Stokes–Einstein to calculate particle size 

based on Deff at a time lag of 100 ms and binning trajectories into three groups (<150, 150–

350, and >350 nm), we built a predictor that achieved an average recall score (a non-binary 

version of the sensitivity, the ability of the classifier to find all positive samples) of 0.636 

(Table 1). In the case of larger particle sizes (200 nm and 500 nm), the predictor 

overestimated Deff. This resulted in higher recall values for 500 nm nanoparticles (0.888) at 

the expense of lower recall values for 200 nm nanoparticles (0.278).

In order to improve the performance of the predictor, we altered our analysis in two ways: 

first, the way the dataset was split into training and test populations was changed. Second, 

the assumption of no tortuosity (λ = 1) was re-examined. When selecting a training-test 

split, we chose to split the test dataset spatially based on the coordinates of the input 

trajectories in a checkerboard pattern rather than a random train-test split for two reasons: 

first, later predictors rely on locally averaged features. Using random train-test splits would 

cause contamination of the training dataset with information from the test dataset due to the 

use of local feature averages as inputs. Second, the spatial train-test split reflects more 

accurately sample-to-sample variability. Due to inherent batch-to-batch variability in gel 
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samples,14 the predictor can be over-trained if not enough independent samples are included 

in the training dataset. While each square region isn’t an independent sample, there are 

regional differences that are better accounted for by a spatial split rather than a random split. 

For a more accurate estimate of tortuosity, we selected λ values for the predictor by 

minimizing the difference between median log(Deff) in each particle strata in the training 

dataset and the log(Deff) predicted by Stokes–Einstein. This resulted in a λ value of 1.33 and 

a predictor that achieved an average recall score of 0.703 in the test dataset, with recall 

scores of 0.457 for 200 nm nanoparticles and 0.744 for 500 nm nanoparticles (Table 1). By 

accounting for tortuosity, the Stokes–Einstein predictor improved overall predictive power 

by increasing the number of correctly identified 100 nm and 200 nm nanoparticles (22% and 

64% increase, respectively) at the expense of mislabeling a small percentage of 500 nm 

nanoparticles (16% decrease).

The Stokes–Einstein based predictor was further improved by calculating Deff based on local 

averages over 9 μm × 9 μm windows rather than Deff of individual trajectories. Each video 

was split spatially into 256 9 μm × 9 μm regions and the average features in each region 

were calculated. Each trajectory was then characterized by a locally averaged Deff within its 

corresponding region. This minimized some of the noise inherent in MPT datasets. Using 

the updated local averaging/anomalous diffusion configuration, we performed a regional 

training-test split like the one performed previously and found a λ value of 1.26 for the 

training dataset. The new predictor achieved an average recall score of 0.829 in the test 

dataset (Table 1). While this exceeds the performance of a random guess (recall score of 

0.333), such accurate results would not carry over to experiments with a wider range of 

particle sizes. For example, samples with intermediate particles sizes (such as the 200 nm 

particles with a recall score of 0.726) are difficult to distinguish due to high variances in Deff 

distributions. Additionally, the ability to resolve trajectories will also be limited at the large 

nanoparticle limit as the distance travelled by the nanoparticle approaches the image 

resolution (0.07 μm per pixel for all videos in this paper). We aimed to improve performance 

by accounting for factors other than the raw Deff and incorporating a machine learning 

model.

In addition to generating 〈MSD〉 profiles and raw Deff distributions, 17 distinct features were 

calculated for each individual trajectory (Table S1†). A principle component analysis (PCA) 

was then run on the composite dataset of individual features and locally averaged features. 

The sampling adequacy was verified via the Kaiser-Meyer-Olkin (KMO) criterion (KMO = 

0.919). PCA yielded 11 primary components to achieve 81.3% explained variance. Average 

component scores and component distributions from the PCA are shown in Fig. 1e, f, and 

the primary contributing features to each component as well as the explained variance are 

shown in Table 2. This breakdown of the principle components gives a semi-quantitative 

analysis of the overall contribution of each component to the model. For instance, the first 

component accounting for 30.6% of the total variance captures contributions from the mean 

efficiency, the mean straightness, and the mean Deff1. The second component, accounting for 

15.3% of the total variance, captures contributions from the three mean asymmetry measures 

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c9nr06327g
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and the mean elongation. And the third component, accounting for 7.9% of the total 

variance, captures contributions from the asymmetry measures prior to averaging. Using the 

first three components, each particle type forms distinct clusters (Fig. 1g). There is very little 

overlap between the three populations, with a distinct boundary between the 100 nm 

population and the 200 and 500 nm populations.

Using all 51 components as inputs (17 individual trajectory features and 34 locally averaged 

features), we built a neural network classifier using the checkerboard train-test split 

described above. The neural network classifier was able to predict particle size with a 0.902 

average recall score in the test dataset, with recall scores of 1.000, 0.856 and 0.852 for the 

100 nm, 200 nm and 500 nm nanoparticles, respectively (Table 1). By implementing a neural 

network using trajectory feature datasets, we were able to achieve high predictive ability in 

determining nanoparticle size. The ability to resolve particle sizes at the micron level in an 

in vitro model of the brain microenvironment demonstrates one aspect of the utility of 

nanoparticles as probes. We were able to directly compare neural network performance with 

expected results from theory. However, these predictors will have little practical value unless 

they can be used in more complex environments. For example, one test case would be 

mixtures of particles of different sizes. We investigated the case of 40 nm/100 nm and 40 

nm/200 nm mixtures to determine whether we could distinguish between the two particle 

sizes when the particles were mixed together. Without performing any local averaging, the 

neural network predictor achieved an average recall value of 0.846 (40 nm: 0.858, 200 nm: 

0.834) for the 40/200 mixture and 0.714 (40 nm: 0.773, 100 nm: 0.655) for the 40/100 

mixture (Fig. S1 and Tables S2, S3†). Similar neural network predictors could be used to 

predict particle size of polydisperse samples in more complex media environments without 

access to the “true” value. For example, users could track changes in particle size 

distributions during an aggregation event. Neural network predictors could prove useful in 

cases where size measurements are required, but nanoparticle samples cannot be extracted 

for measurement by standard techniques, such as dynamic light scattering. Additionally, size 

could be quantified in environments not suitable for size measurements, such as gels or ex 
vivo tissue slices, as demonstrated in this study.

Neural network predictors of nanoparticle surface functionality and protein corona in an in 
vitro agarose gel model

Next, we wanted to predict a more nuanced nanoparticle property using MPT datasets. It is 

known that in biological environments, the properties of the nanoparticle surface affect its 

ability to diffuse.6,12,15 However, to our knowledge, there are no theoretical or empirical 

models relating the diffusive properties of a nanoparticle to its surface functionality or 

material properties. As surface properties are a more multi-dimensional feature space (e.g. 
surface charge, hydrophobicity, ligand density) and oftentimes depend on the surrounding 

environment, it is difficult to create a model accounting for all possible permutations.3 We 

chose to examine the effect of two nanoparticle properties on their diffusive ability: surface 

PEGylation and adhered surface proteins. Nanoparticle PEGylation is a common method 

used to evade the immune system,16 as well as to improve colloidal stability.17 PEGylation 

has also been shown to improve the ability of nanoparticles to penetrate complex systems, 

including mucus,15 vitreous,12 tumors,18 and the brain parenchyma.19 In biological 
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environments, nanoparticles accumulate a layer of proteins known as the protein corona.20,21 

This can alter aggregation rates, cell internalization, and transport properties.22 For instance, 

protein coatings have been demonstrated to increase the time scale over which nanoparticles 

interact with cells23 and strongly reduce nanoparticle adhesion to cellular surfaces.24 We 

incubated PS-COOH and PS-PEG nanoparticles in horse serum to create a protein corona on 

the particle surface. DLS measurements quantified a change in particle size and zeta 

potential. PS-COOH nanoparticles increased in size from 142.0 ± 4.2 to 2583 ± 441 nm and 

ζ-potential increased from −40.4 ± 2.8 to −12.3 ± 1.2 mV; PS-PEG nanoparticles increased 

in size from 163.2 ± 1.5 to 408.2 ± 87.7 nm and ζ-potential decreased from −6.2 ± 2.5 to 

−9.4 ± 0.9 mV (Fig. 2b and c). We further confirmed protein adhesion via bicinchoninic acid 

(BCA) assay. An average of 47.0 ± 2.5 × 10−11 μg protein was found on the surface of each 

PS-COOH nanoparticle compared to 10.0 ± 0.3 × 10−11 μg per particle for PS-PEG 

nanoparticles (Fig. 2d).

We hypothesized that the protein corona would change how nanoparticles behaved in an 

agarose matrix, exhibiting higher Deff than non-coated particles due to reduced interactions 

with agarose chains. MPT experiments resulted in 〈MSD〉 profiles of similar magnitudes 

(Fig. S2a†), with geometric ensemble-averaged Deff at τ = 1 s of 0.74 and 1.07 μm2 s−1 for 

serum-free and serum-incubated PS-COOH nanoparticles, respectively, and 0.93 and 1.78 

μm2 s−1 for serum-free and serum-incubated PS-PEG nanoparticles, respectively. The 

serum-incubated particles had higher diffusivities when compared with particles not 

incubated in serum, especially in the case of PS-PEG nanoparticles. The higher diffusivities 

of serum-incubated particles in agarose gels align with previous in vitro cell experiments 

performed by Lesniak et al.24 In non-aggregating conditions, PS-PEG and PS-COOH have 

been shown to have diffusive behavior of similar magnitudes,17 and our findings match these 

previous results.

With the resulting trajectory feature datasets, PCAwas performed as described above for the 

size-dependent study. The sampling adequacy was verified via the KMO criterion (KMO = 

0.864). The PCA yielded 13 primary components to achieve 81.2% explained variance. 

Average component scores and component distributions from the PCA are shown in Fig. S2b 

and c.† Using the first three components, each particle type formed distinct clusters as 

shown in Fig. S2d.† Using a trained neural network, we predicted particle type (PS-COOH, 

PS-COOH in serum, PS-PEG, and PS-PEG in serum) with an average recall score of 0.885 

in the test dataset (Table 3). This demonstrates the predictive power that can be leveraged 

when using trajectory features other than just Deff, as implemented in the Stokes–Einstein 

size predictors in the previous study. A predictor based on log median Deff using locally 

averaged trajectory features is not able to parse out these differences, with an average recall 

score of 0.427 (Table 3). As the 〈MSD〉 profiles are of similar magnitude for all four particle 

types (Fig. 2a), one wouldn’t expect that such a predictor would perform very well.

The fact that such nuanced nanoparticle properties such as surface functionality and protein 

adsorption can be resolved using an indirect measurement technique such as MPT is very 

promising. This leaves room to probe additional nanoparticle properties, such as the effect of 

nanoparticle composition, shape, density, and porosity on nanoparticle transport behavior. 

Curtis et al. Page 6

Nanoscale. Author manuscript; available in PMC 2020 May 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additionally, this method can be extended to provide systems-wide predictive models that 

account for a host of particle parameters.

Neural network predictors of nanoparticle surface functionality and protein corona in an ex 
vivo brain tissue slice model

While we have demonstrated the ability to differentiate between nanoparticle properties 

using MPT datasets and neural network, we wanted to test to what extent such predictive 

ability was preserved in a more physiologically relevant model. Agarose gels can capture 

some aspects of the tissue microenvironment, such as ionic composition and viscoelastic 

properties, but they are not dynamic and neglect interactions with cells and proteins. We 

hypothesized that MPT could also be used to detect the extent of these interactions, given 

that protein adsorption has been shown to decrease nanoparticle interactions with cell 

membranes.24 Both a computational and experimental approach were used to test this 

hypothesis. Computationally, we used a random walker model where nanoparticles were 

capable of adhering to cells, modeled as squares, to demonstrate the impact that adhesion 

interactions of varying strength have on 〈MSD〉 profiles (Fig. 3b). Adhesion interactions are 

represented as the probability a random walker will “stick” when encountering a surface 

while diffusing. When this sticking probability increased (10%, 20%, 30%, 50%, 75%, 90%, 

99%), the Deff decreased by a factor of 0.00, 0.01, 0.02, 0.02, 0.05, 0.27, and 5.56, 

respectively, when compared to particles with a sticking probability of 1%. We repeated this 

experiment with a 2-fold narrower spacing between “cells”, and it resulted in an even 

stronger effect. In this scenario, Deff decreased by a factor of 0.00, 0.00, 0.04, 0.05, 0.18, 

0.47, and 14.07, respectively, when compared to particles with a sticking probability of 1%.

To capture some of the biological effects ignored by the agarose gel model, an ex vivo rat 

brain slice model was used. Unlike in the gel experiment, we saw a bifurcation between PS-

COOH and PS-PEG particles. We calculated geometric ensemble-averaged Deff at τ = 1 s of 

0.0093 and 0.018 μm2 s−1 for serum-coated PS-COOH and serum-free PS-COOH, 

respectively, and Deff of 0.61 and 0.22 μm2 s−1 for serum-coated PS-PEG and serum-free 

PS-PEG, respectively (Fig. 3d). In tissue, the PS-COOH particle types with and without 

serum were more immobile compared to gel studies. Here, we calculated Deff of 0.0093 and 

0.018 μm2 s−1 for serum-coated PS-COOH and serum-free PS-COOH, respectively, in 

tissue, and 1.07 and 0.74 μm2 s−1 for serum-coated PS-COOH and serum-free PS-COOH, 

respectively, in gels. This has been shown in previous experiments, as PS-COOH 

nanoparticles are subject to both electrostatic and hydrophobic interactions with various 

components of the brain microenvironment, hindering their diffusive ability.17 Contrary to 

experiments run in gel, the protein corona did not uniformly increase ensemble nanoparticle 

diffusive behavior. On average, serum-incubated PS-COOH nanoparticles had lower MSD 

profiles than their serum-free counterparts, while incubation with serum increased the 

diffusivities of PS-PEG nanoparticles (Fig. S3a†). It has previously been shown that altering 

PEG grafting density on a nanoparticle surface can influence both total protein adsorption 

and protein corona composition, and subsequently affect cellular uptake.25 To explain the 

diverging behavior in nanoparticle diffusion in greater detail, fluorescence activated cell 

sorting (FACS) was used to evaluate the cellular uptake profiles of each type of nanoparticle 

(Fig. 3c; example raw FACS data found in Fig. S4†). It was determined that 8.7 ± 0.8% of 
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Cd11b+ macrophages took up PS-PEG nanoparticles, compared to 2.0 ± 0.3% for serum-

incubated PS-PEG nanoparticles. The opposite effect was observed for PS-COOH 

nanoparticles, where 12.2 ± 1.7% of macrophages took up the serum-free PS-COOH 

nanoparticles compared to 21.3 ± 1.0% uptake for serum-incubated PS-COOH particles. 

Particles confined in cells and internal cellular compartments have restricted trajectories and 

reduced Deff, suggesting that any differences we observed in ex vivo particle behavior could 

in turn be caused by cellular internalization.26,27

The sampling adequacy was verified via the KMO criterion (KMO = 0.907). The PCA 

yielded 12 primary components to achieve 80.9% explained variance. Average component 

scores and component distributions from the PCA are shown in Fig. S3b and c.† We plotted 

the first three components against each other in Fig. S3d,† where we saw significant overlap 

between the four populations, and the serum-incubated PS-PEG population was difficult to 

distinguish. Using all 51 components as inputs, we built a neural network classifier that was 

able to predict particle type with a 0.591 average recall score in the test dataset (Table 4). 

Our ability to predict particle type accurately was significantly reduced in comparison to the 

results in gels. This is partly due to the more significant inter-sample variation in particle 

behavior. A major contributor to the poor performance of the neural network classifier was 

the inability to distinguish the PS-PEG population, which had a recall score of 0.283. 

However, this method still outperforms a classification based on binning by median Deff 

(Fig. 3d) with an average recall score of 0.110 in the test dataset. While it is reassuring that 

the predictor can still make accurate predictions despite intra-sample variability, it also raises 

concerns whether this prediction would be reproducible across slices outside of the training 

dataset.

In order to test the ability of our neural network to predict particle type in slices not included 

in the training dataset, we selected a new training/test configuration. We trained our neural 

network on 3 of 4 slices for each particle type and reserved one slice as a test dataset. This 

was repeated four times, such that each slice was used once as a test dataset. In this case, we 

were able to retain some of our predictive ability. We generated a range of average recall 

scores of 0.402–0.513 in the test dataset, but we had a complete loss of predictive ability of 

serum-free PS-PEG nanoparticles, with a range of recall scores of 0.039–0.105 (Table S4†). 

If we limit our predictions to incubation status (serum-free or serum-incubated), this 

configuration provides predictive ability for the test datasets with 0.480–0.706 average recall 

scores for PS-COOH nanoparticles (Table S5†), and 0.479–0.690 average recall scores for 

PS-PEG nanoparticles (Table S6†). When predicting serum status in the PS-PEG particle 

population, our neural network configuration still could not resolve serum-free particles, 

with recall scores of 0.071–0.535. Our results indicate that while there are measurable 

differences between particle populations, the amount of inter-sample variability hinders the 

utility of such predictors. We could resolve this further with very large training datasets, but 

this is not likely to be a cure-all, as serum-free PS-PEG particles had low recall scores even 

without accounting for intra-sample variability. As we have demonstrated that there are 

significant differences in cell uptake between serum-free and serum-incubated nanoparticles, 

neural network predictors could be improved by incorporating information relating to 

nanoparticle–cell interactions. For instance, complementary histology can be included in 

input datasets to improve predictive ability.
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Neural network predictors of gel stiffness using MPT datasets

Next, we sought to demonstrate that nanoparticle probes can also be used to predict aspects 

of their surrounding environment. If we could demonstrate that subtle differences in the 

surrounding tissue microenvironment could be differentiated solely with MPT trajectory 

datasets, this could potentially be used as a powerful preclinical diagnostic tool. We first 

chose a simple and controllable model with a tunable parameter: agarose gels with varying 

agarose concentrations to adjust gel stiffness and porosity. Low concentration agarose gels 

have been used as a model of brain tissue because they have similar infusion properties28 

and pore sizes29 to the brain microenvironment. By varying agarose concentration, we can 

mimic changes in the brain microenvironment that may occur in disease states30 or aging 

processes.31 To model this computationally, we used a random walker model with 

increasingly densely packed “sticky” particulates to demonstrate the impact of varyingly 

dense microenvironments on diffusive ability (Fig. 4b). Particulate concentrations were 

increased 4-, 8-, 12-, 16-, 20-, 24-, 28-, 32-, and 36-fold in each simulation resulting in 

0.09-, 0.20-, 0.32-, 0.71-, 1.15-, 2.01-, 3.45-, 5.81-, and 6.82- fold decreases, respectively, in 

ensemble-averaged Deff. This general trend is likely to hold in in vitro experiments.

We chose a range of agarose concentrations from 0.4 to 1.2 weight % agarose that 

encompass concentrations found to mimic infusion properties of the brain.28 We use 0.2% 

agarose intervals to test the resolution limits of our neural network predictors. An oscillatory 

rheological analysis was performed on each weight % agarose gel to verify the storage 

moduli increased with increasing agarose concentration (Fig. 4d and Fig. S5†). An initial 

comparison of 〈MSD〉 profiles generated from MPT experiments performed in each gel is 

shown in Fig. S6a.† As expected, the nanoparticles’ diffusive ability decreased with 

increasing agarose concentration, with calculated geometric ensemble-averaged Deff at τ = 1 

s of 0.51, 0.43, 0.23, 0.22, and 0.17 μm2 s−1 for 0.4%, 0.6%, 0.8%, 1.0%, and 1.2% agarose 

gels, respectively (Fig. 4d). However, these differences are much smaller in magnitude 

compared to the differences caused by particle size. Similar to the particle size experiment, 

we built a baseline predictor using theory with which we could compare the neural network 

predictive ability. The Deff of nanoparticles diffusing in porous media is related to the 

volume fraction of polymer gel by the following obstruction scaling model:

Dg
D0

= e −π
rs + rf

ksaϕ−0.75C∞−0.25(1 − 2χ)−0.25 + 2rf

2

where Dg is the diffusion coefficient in the gel, D0 is the diffusion coefficient in water, rs is 

the nanoparticle radius, rf is the radius of the polymer chain, ks is a constant of 

proportionality, a is the equivalent bond length of the monomer, ϕ is the volume fraction of 

polymer in the gel, C∞ is the characteristic ratio of the polymer, and χ is the Flory–Huggins 

interaction parameter.32

Using the percent agarose values and the calculated Deff of the nanoparticle trajectories at τ 
= 100 ms, we fit the model using a nonlinear curve fit. We calculated percent agarose 

concentrations for each trajectory in the whole dataset and binned trajectories into five 

groups: <0.5%, 0.5–0.7%, 0.7–0.9%, 0.9–1.1%, and >1.1%. This predictor achieved an 
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average recall score of 0.218 (Table 5). If we reduce the resolution and only look at the 0.4, 

0.8, and 1.2% samples, we get an average recall score of 0.367, which is not competitive 

with a random guess, which has an average recall score of 0.333. If, in addition to reduced 

resolution, we use locally averaged Deff, we obtain an average recall score of 0.488. The 

predictor had the most difficulty predicting intermediate agarose concentrations (e.g. 0.228 

for trajectories in 0.8% agarose). Predicting viscoelastic properties of the surrounding media 

proves to be a more difficult problem than predicting particle size and leaves room for 

ongoing exploration using a neural network classifier on input trajectory datasets.

A PCA yielded 14 primary components to achieve 81.7% explained variance. Average 

component scores and component distributions from the PCA are shown in Fig. S6b and c.† 

Using the first three components plotted against each other, distinct regions can be observed 

(Fig. S6d†), but the intermediate gel viscosities, particularly the 0.6% and 0.8%, are difficult 

to distinguish visually. Using all 51 components as inputs, we built a neural network 

classifier that was able to predict agarose concentration with a 0.521 average recall score in 

the test dataset (Table 5). The predictor was able to resolve trajectories in both high and 

lower agarose concentrations, with recall scores of 0.695 and 0.702 in 0.4% and 1.2% 

agarose, respectively. However, the neural network predictor lost power at intermediate 

agarose concentrations, with recall scores of 0.486, 0.329, and 0.395 for 0.6, 0.8, and 1.0% 

agarose concentrations, respectively. If we reduce the resolution and only include 0.4, 0.8, 

and 1.2% samples, we achieved an average recall score of 0.747 in the test dataset. This 

predictor still suffers at intermediate concentrations with a 0.569 recall score for 0.8% 

agarose, but the neural network is still able to outperform the obstruction model predictor. 

This demonstrates the potential power of using trajectory datasets to predict aspects of the 

surrounding environment. Additional factors that could be probed are changes in surface 

charge and hydrophobicity of gel components, heterogeneity of gels, and the composition of 

the surrounding media.

Neural network predictors of nanoparticle surface functionality and cell uptake status 
using MPT datasets

Next, we wanted to build a predictor that would be able to distinguish both nanoparticle 

properties and aspects of the surrounding environment. Nanoparticle behavior is a function 

of the surrounding environment, and if we hope to build predictive models that are useful in 

more complex environments, it is important that we can capture these interactive effects. We 

sought to demonstrate the ability to predict particle internalization into a cell by using 

trajectory feature datasets using two different particle types, PS-COOH and PS-PEG. Even 

without accounting for the complex biology involved, we can predict distinct diffusive 

behavior due solely to geometric constraints. For example, Brownian motion confined to a 

circle of radius rc
2 can be modeled by:

〈r2(n)〉 = rc2 1 − A1e−4A2DnΔt ∕ rc2

where D is the diffusion coefficient, n is the frame, Δt the shutter speed, and A1 and A2 are 

shape constants.26 Nanoparticles in cells will likely not only be confined within the cell 
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membrane but will also be internalized into organelles, resulting in hindered diffusive 

behavior.33 As observed previously, surface charge impacts both interactions with cells and 

cell uptake profiles. We sought to build a predictor that would be able to determine whether 

a particle has been internalized based on its trajectory features.

In this experiment, BV-2 cells were exposed to PS-COOH or PS-PEG nanoparticles for 1 h 

prior to imaging. Using binary images generated from brightfield images of cells taken 

directly after tracking experiments (Fig. 5b and c), trajectories were labelled as either “in 

cells” or “out of cells”. Ensemble-averaged MSDs of PS-COOH and PS-PEG nanoparticles 

stratified by cell internalization are shown in Fig. S7a.† Nanoparticles in cells consistently 

had lower Deff than their uninternalized counterparts. We calculated 0.00088 and 69 μm2 s−1 

geometric ensemble-averaged Deff for PS-COOH nanoparticles “in cells” and “out of cells”, 

respectively, and 0.0025 and 1.08 μm2 s−1 for PS-PEG nanoparticles “in cells” and “out of 

cells”, respectively. 〈MSD〉 profiles of non-internalized PS-COOH and PS-PEG cells are of 

similar magnitude.

We performed a PCA on the composite dataset of individual features and locally averaged 

features. The sampling adequacy was verified via the KMO criterion (KMO = 0.948). The 

PCA yielded 13 primary components to achieve 80.7% explained variance. Average 

component scores and component distributions from the PCA are shown Fig. S7b and c.† 

Using the first three components, each particle type forms distinct clusters (Fig. S7d†), 

where there is overlap between the four populations, but each population can be resolved 

visually. Using all 51 components as inputs we built a neural network classifier that was able 

to predict particle type/cell internalization with a 0.686 average recall score in the test 

dataset (Table 6). Internalized PS-PEG nanoparticles were the most difficult to resolve, with 

a recall score of 0.412 in the test dataset. This is likely due to three causes: (1) there are very 

few internalized PS-PEG nanoparticles, and thus a small training dataset (Fig. 5d), (2) there 

is less of a binary behavior of PS-PEG nanoparticles “in cells” and “out of cells”, and (3) 

any immobilized PS-PEG nanoparticles in cells are difficult to distinguish from immobilized 

PS-COOH nanoparticles in cells. While PS-COOH internalized particles are almost 

uniformly immobile and the non-internalized PS-COOH particles are free to move the 

internalized PS-PEG nanoparticles have broader distribution in diffusive behavior (Fig. 5d).

Thus, the internalized PS-PEG nanoparticles can be mistaken by the network for both PS-

PEG nanoparticles out of cells and PS-COOH nanoparticles in cells.

We also note that our ability to label particles as internalized and non-internalized is 

imperfect. Without a highly accurate reference standard, there will be trajectories falsely 

labelled as internalized due to imperfectly resolved cellular edges and variable particle 

behavior at cellular interfaces. Other trajectories will be falsely labelled as non-internalized 

due to thin cellular features that are lost in image processing steps (Fig. 5c). This will 

inevitably limit the accuracy of our neuraI network classifier. We were able to improve the 

performance of our neural network classifier by excluding particles near cellular interfaces. 

When we excluded particles within 10 pixels (0.7 μm), we achieved an average recall score 

of 0.702 and a recall score of 0.434 for internalized PS-PEG nanoparticles in the test dataset. 

When we excluded particles within 20 pixels (1.4 μm), we achieved an average recall score 
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of 0.719 and a recall score of 0.439 for internalized PS-PEG nanoparticles in the test dataset. 

By excluding particles at the interface, we minimize errors due to variable behavior at cell 

interfaces and inaccurate binarization of the cellular images.

By implementing a neural network, we were able to achieve high predictive ability in 

determining cell internalization based on trajectory datasets. This could be expanded to 

include internalization in cellular substructures such as lysosomes and vacuoles. In cases 

where cell stains are available, using this information can allow for more powerful predictive 

models. For example, instead of predicting cell internalization, investigators could predict 

whether particles were sequestered in organelles, diffusing in the cytosol, associated with the 

cell membrane, or embedded in the extracellular matrix. Additional questions could probe 

the relationship of nanoparticle diffusion to cell type, phenotype, and intracellular protein 

distribution.

Conclusions

Traditional applications of MPT have a large amount of overhead. For example, a single 

experiment examining 4 different conditions and 3 replicates per condition can run upwards 

of 1 terabyte of data. From that terabyte of video, thousands to millions of trajectories are 

collected, all to report an often ensemble-averaged Deff value per condition. These large 

datasets are a prime target for machine learning methods. Trajectory datasets have been used 

in biological settings, for example, to classify motion types. Additionally, applications 

outside biomedical fields, including mapping new environments, learning interactive 

behaviors from pedestrian trajectories, and training self-driving cars from driver data, 

suggest there are many methods left untried in this area.

Using a range of experiments, we have sought to push the boundaries of the level of 

information that can be extracted using MPT techniques. In some well-defined cases such as 

particle size, in vitro cell uptake, and in vitro protein corona, we were able to achieve 

powerful predictive models using neural networks. These models retained their predictive 

abilities when extended to more complex models such as samples containing mixed particle 

sizes. Ex vivo slice studies exhibited some utility as well, but variability from slice to slice 

and from animal to animal limited their applicability. We suggested additional ways that 

these weaknesses can be overcome, for instance, by combining cell histology datasets with 

trajectory datasets. The use of trajectories as a form of biological marker can potentially 

become a powerful diagnostic tool without the need of expensive or complicated reagents. 

Future experiments could seek to implement nanoparticle movement as a surrogate for tissue 

breakdown, disease severity, tissue age, altered cellular behavior, or altered protein 

expression.

Materials and methods

Nanoparticle preparation and characterization

One hundred-nm fluorescent carboxylate (COOH)-modified polystyrene latex (PS) 

nanoparticles (PS-COOH) (Fisher Scientific, Hampton, NH) were covalently modified with 

methoxy (MeO)-poly(ethylene glycol) (PEG)-amine (NH2) (5 kDa MW, Creative PEG 
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Works, Winston-Salem, NC) by carboxyl amine reaction.19 Briefly, 50–100 μL of PS-COOH 

particle suspension was washed and resuspended to 2- to 6-fold dilution in ultrapure water. 

An excess of MeO-PEG-NH2 was added to the particle suspension and mixed to dissolve the 

PEG. N-Hydroxysulfosuccinimide (MilliporeSigma, Burlington, MA) was added to a final 

concentration of 7 mM and 200 mM borate buffer, pH 8.2, was added to a 4-fold dilution of 

the starting volume. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, Invitrogen, 

Carlsbad, CA) was added to stoichiometrically complement the added MeO-PEG-NH2. 

Particle suspensions were placed on a rotary incubator for 4 h at 25 °C and then washed via 
centrifugation (Amicon Ultra 0.5 mL 100k MWCO; MilliporeSigma) at conditions specified 

previously.11 Particles were resuspended in ultrapure water to the initial particle volume and 

stored at 4 °C until use. The hydrodynamic diameter, polydispersity index (PDI), and ζ-

potential were measured for COOH- and PEG-coated fluorescent nanoparticles via dynamic 

light scattering (DLS) (NanoSizer Zeta Series, Malvern Instruments, Malvern, UK, n = 3 

measurements per sample). Particles were diluted to ~0.002% solids in filtered (0.45 μm, 

Whatman, Maidstone, UK) 10 mM NaCl and incubated for 24 h prior to measurement.

Artificial cerebrospinal fluid preparation

Artificial cerebrospinal fluid (ACSF) was chosen to constitute agarose gels to best mimic the 

brain microenvironment. ACSF was prepared with the addition of the following 

concentrations of reagents to deionized (DI) water: 119 mM NaCl (MilliporeSigma), 26.2 

mM NaHCO3 (MilliporeSigma), 2.5 mM KCl (MilliporeSigma), 1 mM NaH2PO4 

(MilliporeSigma), 1.3 mM MgCl2 (MilliporeSigma), and 10 mM glucose (MilliporeSigma). 

The solution was filtered (0.45 μm) in a sterile environment and stored at 4 °C until use. For 

individual experiments, aliquots of ACSF were taken and 2 mM CaCl2 (MilliporeSigma) 

was added. The resulting media was adjusted to pH 7.2 with 0.2 mM HCl.

Agarose gel preparation and MPT for size prediction and gel stiffness studies

Agarose gels were prepared by adding the desired amount of agarose (low 

electroendosmosis, gel point for 1.5% gel, 36 ± 1.5 °C, MilliporeSigma) to ACSF. For 

nanoparticle size prediction studies, 0.4% agarose was used for all conditions, where 40 mg 

agarose was dissolved in 10 mL ACSF. For gel stiffness studies, 0.4, 0.6, 0.8, 1.0, and 1.2-

percent agarose was used, corresponding to 40, 60, 80, 100, and 120 mg agarose in 10 mL 

ACSF, respectively. The agarose–ACSF mixture was heated to 99 °C and mixed well until 

the agarose was completely dissolved, as indicated by no visible particulates in the solution. 

400 μL agarose–ACSF was added to a well in an 8-well chambered coverglass plate 

(ThermoFisher Scientific, Waltham, MA) and PS-COOH nanoparticles were immediately 

added and mixed until evenly distributed to achieve a concentration of 0.005% solids. Two 

samples were prepared for each combination of particle size and gel stiffness. The prepared 

gels were allowed to set overnight at room temperature.

Five videos were collected per well at 10 Hz and 100× magnification for 6.5 s via 
fluorescent microscopy using a cMOS camera (Hamamatsu Photonics, Bridgewater, NJ) 

mounted on a confocal microscope (Nikon Instruments, Melville, NY). Nanoparticle 

trajectories and trajectory features were calculated via diff_classifier, a self-developed 
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Python package.34 A complete list of trajectory features, including a brief description and 

method of calculation, is provided as ESI Table S1.†

Rheological characterization of agarose gels

A rheometer (Physica MCR 301, Anton Paar, Graz, Austria) operating in oscillatory mode 

was used to characterize the mechanical properties of the different weight percent agarose 

gels (0.4, 0.6, 0.8, and 1.0%). Three samples were prepared for each weight percent. A 25 

mm parallel plate attachment (Anton Paar) was operated at a 0.5 mm gap for all 

experiments. Additionally, the base plate was set to 22 °C 30 min prior to the experiment 

and held constant throughout the duration of the experimental window.

The linear viscoelastic region was first determined by performing a strain and frequency 

sweep on 0.4% agarose following a 4 h incubation at 22 °C. For the strain sweep, the 

frequency was set to 1 Hz, and the storage and loss moduli were measured at various strains 

(0.1–10%). For the frequency sweep, the strain was set at 2%, and the storage and loss 

moduli were measured at various frequencies (0.1–10 Hz). The sweeps demonstrated that at 

2% strain and 2 Hz, 0.4% agarose is in the linear viscoelastic region because slight changes 

in strain or frequency do not change the measured storage modulus (Fig. S5†).

Time sweeps were performed on all concentrations of agarose by monitoring the storage and 

loss moduli for 4 h upon removal from 99 °C stock solution. For 0.4, 0.6, and 0.8% agarose 

gels, time sweeps were performed at a strain and frequency of 2% and 2 Hz, respectively. 

For the 1.0% agarose gel, time sweeps were performed at a strain and frequency of 0.5% and 

0.5 Hz to remain within the linear viscoelastic region.

In vitro MPT in microglial cell culture for prediction of extracellular versus intracellular 
diffusion

BV-2 immortalized microglial cells (ATCC, CRL-2469) at passage 8 (P8) were cultured 

from frozen stock at a seeding density of 2 million cells per cm2 in T-75 flasks (USA 

Scientific, Ocala, FL), yielding 70–80% confluency in 7 days. Cell culture media (CCM) 

consisted of 90% Dulbecco’s Modified Eagle Medium (DMEM; ATCC) with 4 mM L-

glutamine adjusted to contain 1.5 g L−1 sodium bicarbonate and 4.5 g L−1 glucose, 10% fetal 

bovine serum (FBS; ATCC), and 1% penicillin/streptomycin (Gibco, ThermoFisher). After 

eight days, the cells were passaged to P9 and subsequently plated into four 35 mm dishes 

(ATCC) at a seeding density of 700 000 cells per cm2. PS-COOH and PS-PEG nanoparticles 

were first prepared in filtered (0.45 μm) 10 mM NaCl solution and mixed with CCM. The 

cells were incubated with the particles for 30 min prior to imaging. During imaging, cells 

were maintained at 37 °C and 5% CO2 using Heracell TriGas (ThermoFisher) incubation 

chamber. Five videos per sample were collected using the described acquisition settings 

above.

MPT of protein-coated nanoparticles in agarose gels

100 nm PS-COOH and 100 nm PS-PEG nanoparticles were added to separate samples of 

horse serum (Fisher Scientific) in a 1 : 100 dilution. Particles were incubated in serum for 24 

h at 37 °C. In order to ensure similar concentrations of nanoparticles in gels, particles were 
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centrifuged, and the pellet was resuspended in a volume of horse serum equivalent to the 

original starting volume. Nanoparticle hydrodynamic diameter and zeta potential were 

measured using methods specified above. The measured hydrodynamic diameter 

distributions are shown in Fig. 2b. Serum-treated nanoparticles were loaded into 0.4% 

agarose gels in ACSF as described previously. MPT videos were collected at 10 Hz and 

100× magnification for 6.5 s and trajectories generated via diff_classifier.

Protein corona assay

Protein adhesion of serum-incubated nanoparticles was determined via BCA assay 

(ThermoFisher). Briefly, nanoparticle suspensions of each particle preparation were spun 

down at 100 000g. The supernatant was discarded, and the particle pellet was resuspended in 

10 mM NaCl. BCA working reagent was prepared by mixing 50 parts Reagent A (sodium 

carbonate, sodium bicarbonate, BCA, sodium tartrate, 0.1 M sodium hydroxide) with 1-part 

Reagent B (4% cupric sulfate). In a 96-well plate, 25 μL of each nanoparticle sample (n = 3 

per sample) was mixed with 200 μL of the working reagent. The cover plate was incubated 

at 37 °C for 30 min, and UV-Vis measurements were taken at 562 nm. In order to account 

for nanoparticle fluorescence, serum-incubated UV-Vis measurements were normalized to 

UV-Vis measurements of serum-free nanoparticles at the same concentration. Measurements 

were quantified using a 5-point bovine-serum albumin (BSA) calibration curve with 

concentrations between 5 and 250 μg mL−1.

MPT in rat brain slices

Serum-incubated particles were prepared as described above. All animal procedures were 

performed in accordance with the Guidelines for Care and Use of Laboratory Animals of the 

University of Washington and experiments were approved by the Animal Ethics Committee 

of the University of Washington, (approval ID: 4383-02). Brain slices were prepared from 30 

to 40 g postnatal day 14 (P14) Sprague-Dawley rat pups. Briefly, animals were administered 

an intraperitoneal injection of pentobarbital (150 mg kg−1). After euthanasia, animals were 

decapitated and brains rapidly removed and immersed in cold dissecting media consisting of 

500 mL HBSS (Fisher Scientific), 1% penicillin-streptomycin (MilliporeSigma), and 3.2 g 

glucose (MilliporeSigma). 300 μm-thick coronal slices (n = 2 per rat) were prepared using a 

McIlwain tissue chopper (Ted Pella, Redding, CA). The tissue chopper and razor blades 

were washed with 70% ethanol prior to sectioning. Slices were placed in a Petri dish 

containing dissecting media and separated under a surgical dissection microscope. 

Individual slices were placed on 30 mm cell culture inserts (Fisher Scientific) in 6-well 

plates (Eppendorf, Hamburg, Germany), filled with 1.5 mL slice culture media containing 

200 mL MEM (Fisher Scientific), 100 mL HBSS, 100 mL horse serum (Fisher Scientific), 4 

mL Glutamax (Fisher Scientific), and 1% penicillin-streptomycin. Slices were allowed to 

incubate in sterile conditions at 37 °C and 5% CO2 overnight. 30 min prior to imaging, 

slices were incubated with either 100 nm PS-COOH nanoparticles, PS-PEG nanoparticles, 

PS-COOH nanoparticles incubated in horse serum, or PS-PEG nanoparticles incubated in 

horse serum at a concentration of approximately 0.014% solids. Slices were imaged in a 

temperature-controlled incubation chamber maintained at 37 °C, 5% CO2, and 80% 

humidity. 10 videos were collected in the cortex of each slice, and trajectories were 

calculated via diff_classifier.
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FACS cell uptake study

Brain slices (n = 3 per sample) were prepared from 30 to 40 g P14 Sprague-Dawley rat pups. 

Slices were incubated with either fIuorescently labelled 100 nm PS-COOH nanoparticles, 

PS-PEG nanoparticles, PS-COOH nanoparticles incubated in horse serum, or PS-PEG 

nanoparticles incubated in horse serum at a concentration of approximately 0.014% solids 

for 2 h. Slices were treated with Accutase (Millipore) for 30 min on ice and homogenized. 

The tissue suspension was filtered through a tissue strainer and diluted in HBSS + 25 mM 

HEPES (Fisher Scientific). The suspension was spun down at 600g at 4 °C for 5 min and the 

supernatant discarded. The cell pellet was resuspended in FBS and mixed with a Percoll 

solution [30% Percoll (GE Healthcare), 3% 10× PBS, 67% HBSS + 25 mM HEPES]. The 

Percoll cell suspension was overlayed with 1 mL FACS buffer (45 mL HBSS, 5 mL FBS, 

0.5 mL HEPES). The cell suspension was spun down at 800g at 4 °C for 30 min. The 

supernatant was discarded, and the cell pellet was washed 2× with FACS buffer.

The cells were stained with DAPI (Molecular Probes), FITC CD11b (BioLegend), and the 

CD11b isotype PE Cy7 CD45 (BioLegend). Flow cytometry analysis was performed on the 

LSR II instrument (BD BioSciences). Laser lines and optical emission filters were arranged 

as follows: DAPI: 355 nM 20 mW UV laser and 450/50 emission detector; FITC: 488 nM 

100 mW blue laser and 530/30 emission filter; Texas RED: 561 nM 150 mW yellow-green 

laser and 610/20 emission detector. Gating was performed using DAPI, FITC, and particle 

controls. Each sample measurement included 10 000 events.

MPT analysis and trajectory feature selection

Nanoparticle trajectories were extracted from microscopy videos via a lab-developed Python 

package diff_classifier for parallelized and reproducible MPT workflows. The diff_classifier 

package relies on a headless implementation of an ImageJ plugin TrackMate with tracking 

parameters selected with a combination of user inputs and regression techniques based on 

input images.35 Diff_classifier also performs trajectory feature extraction based on features 

from the TrajClassifier ImageJ plugin26 (e.g. alpha, the anomalous diffusion exponent, and 

boundedness, which quantifies how much a particle is restricted in a circular confined 

space). These features are an extended feature dataset of Wagner et al. used to classify 

nanoparticles by their motion type. Features were limited to geometric features, such that 

particles could be distinguished solely based on their motion, so features based on particle 

intensity values were excluded. Features were also selected to be rotation- and translation-

invariant, so that position or orientation are not taken into account when making predictions.
36 Based on 17 features (Table S1†), an additional set of 34 local average and deviation 

parameters were calculated for 256 total 9 μm × 9 μm tiled rectangular regions in each 

video.

Principle component analysis (PCA)

A spatial checkerboard train-test split was performed on the geometric feature datasets from 

each experiment. Every other square (of area 256 × 256 pixels2) in the checkerboard pattern 

was assigned to either the training dataset or the test dataset. PCA with feature scaling was 

carried out on the training dataset of experimental dataset. The sampling adequacy of the 

data was done via the KMO measure and was found to be appropriate (KMO > 0.8).37 
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Components were extracted to describe >80% of the total variance. The resulting PCA 

transformation was applied to the test dataset for downstream analysis.

Neural network

In order to evaluate whether trajectories can be used to predict particle properties or 

parameters of the surrounding tissue microenvironment, single-layer neural networks were 

trained using scikit-learn’s Multi-Layer Perceptron Classifier using the trajectory features as 

inputs. An initial grid search was performed to select the best hyperparameters of the neural 

network. These hyperparameters included number of neurons in the hidden layer (600, 900, 

1200), initial learning rate (0.001, 0.005, 0.01), batch size (50, 100, 200), and the L2 

regularization term (0.001, 0.01, 0.1), with 10% of the training dataset set aside for cross 

validation for all models. All models used stochastic gradient descent for weight 

optimization, the rectified linear unit function for activations in the hidden layer, the log loss 

cost function, and an adaptive learning rate decreasing the learning rate by a factor of five 

each time two consecutive epochs fail to decrease training loss by 10−4. After performing the 

initial hyperparameter search on the nanoparticle size dataset, we selected a hidden layer 

size of 900, an initial learning rate of 0.005, a batch size of 50, and an L2 regularization term 

of size 0.001 based on the average recall score in the training dataset. All models were 

trained on the checkerboard training datasets described above. For the slice study, additional 

training and testing iterations was performed with an alternate splitting procedure, isolating 

data from one slice as a test dataset while training on the other three slices to test whether 

the trained neural network models could be extended to experiments outside the original 

dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Size-dependent nanoparticle diffusion analysis. (a) 100-, 200-, and 500 nm carboxyl-

modified polystyrene particles. (b) Hydrodynamic diameter (intensity mean) distributions 

(purple: 100 nm, teal: 200 nm, yellow-green: 500 nm) measured in 10 mM NaCl (n = 3 

measurements). (c) 〈MSD〉 profiles of PS-COOH nanoparticles of varying size (n = 2 wells 

per particle size, n = 5 videos per well). (d) log Deff distributions stratified by particle size 

and binned by predicted particle size using the Stokes–Einstein based predictor with 

anomalous diffusion exponent. (e) Average component profile of PCA analysis stratified by 

particle size. (f) Principle component distributions of PCA analysis stratified by particle size. 

(g) The first three primary components of 400 randomly selected trajectories per size plotted 

against each other.
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Fig. 2. 
Particle surface property-dependent nanoparticle diffusion analysis. (a) Carboxyl- and PEG-

modified polystyrene nanoparticles incubated with and without horse serum. (b) 

Hydrodynamic diameter (intensity mean) distributions (purple: PS-COOH, teal: PS-PEG, 

blue: PS-COOH in serum, yellow-green: PS-PEG in serum) measured in 10 mM NaCl (n = 

3 measurements). (c) Concentration of surface-adhered proteins from horse serum-incubated 

PS-COOH (orange) and PS-PEG (purple) nanoparticles determined using BCA assay. UV-

Vis adsorption calibration curve generated from BSA standards is shown in blue. (d) log Deff 

distributions stratified by particle type and binned by predicted particle type using log 

median predictor.
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Fig. 3. 
Particle surface property-dependent nanoparticle diffusion analysis in an organotypic brain 

slice model. (a) Carboxyl- and PEG-modified polystyrene nanoparticles incubated with and 

without horse serum were allowed to diffuse in rat brain slices. (b) (top left) 2D 

computational diffusion model varying the “stickiness” of cellular surfaces (purple squares: 

cells). (top right) Example nanoparticle trajectories. (bottom left) 〈MSD〉 profiles as a 

function of cell “stickiness”. Stickiness was quantified as the probability a particle remains 

adhered to a cell’s surface when in contact with the cell boundary (distance between cells: 

20 pixels), (bottom right) 〈MSD〉 profiles as a function of cell “stickiness” (distance 

between cells: 10 pixels) (c) FACS results quantifying cell uptake of nanoparticles in 

microglia stratified by particle type (n = 3 slices per condition, purple: PS-PEG in serum, 

blue: PS-PEG, teal: PS-COOH in serum, yellow-green: PS-COOH) (d) log Deff distributions 

stratified by particle type and binned by predicted particle size using log median predictor.
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Fig. 4. 
Diffusion analysis for the prediction of agarose gel concentration. (a) Schematic 

representation of the relationship between agarose concentration and gel stiffness. (b) 

Computational model of diffusion in agarose gel of increasing agarose concentration. 

Agarose is modeled as 2D squares with “sticky” surfaces. (c) Computational model 

generated 〈MSD〉 profiles for increasing agarose concentrations. Concentrations represent 

multiples of the base agarose concentration (256 squares/512 × 512 μm2) (d) oscillatory 

rheological analysis of agarose gels of varying weight % (purple: 0.4%, blue: 0.6%, light-

blue: 0.8%, teal: 1.0%) (e) log Deff distributions stratified by agarose gel concentration 

binned by predicted agarose gel concentration using log median predictor (purple: 0.4%, 

blue: 0.6%, light-blue: 0.8%, teal: 1.0%, yellow-green: 1.2%).
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Fig. 5. 
(a) Particle type- and cellular internalization-dependent diffusion analysis. (b) (left) Example 

frame of PS-PEG nanoparticle diffusion in BV-2 microglial cell culture. (right) Example 

frame of PS-COOH nanoparticle diffusion in BV-2 microglial cell culture. (c) 

Demonstration of cell image analysis. (top left) Raw image. (top middle) Binarized image. 

(top right) Euclidean distance transform of binarized image (bottom left). Binarized image 

with area 10 pixels from cell surfaces highlighted in red. (bottom middle) Binarized image 

with area 20 pixels from cell surfaces highlighted in red. (d) log Deff distributions stratified 

by agarose gel concentration binned by predicted agarose gel concentration using log 

median predictor (purple: PS-PEG out of cells, blue: PS-COOH out of cells, teal: PS-PEG in 

cells, yellow-green: PS-COOH in cells).
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