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Abstract

Studies comparing diverse groups have shown that many psychiatric diseases involve disruptions 

across distributed large-scale networks of the brain. There is hope that fMRI functional 

connectivity techniques will shed light on these disruptions, providing prognostic and diagnostic 

biomarkers as well as targets for therapeutic interventions. However, to date, progress on clinical 

translation of fMRI methods has been limited. Here, we argue that this limited translation is driven 
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by a combination of inter-subject heterogeneity and the relatively low reliability of standard fMRI 

techniques at the individual level. We review a potential solution to these limitations: the use of 

new “precision” fMRI approaches that shift the focus of analysis from groups to single individuals 

through the use of extended data acquisition strategies. We begin by discussing the potential 

advantages of fMRI functional connectivity methods for improving our understanding of 

functional neuroanatomy and disruptions in psychiatric disorders. We then discuss the budding 

field of precision fMRI and findings garnered from this work. We demonstrate that precision fMRI 

can improve the reliability of functional connectivity measures, while showing high stability and 

sensitivity to individual differences. We close by discussing the application of these approaches to 

clinical settings.
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There is an enormous need to improve diagnosis and treatment of neuropsychiatric disorders 

given their personal and societal burden (1–3). A substantial body of neuroimaging work has 

documented variations in brain function that accompany psychiatric disorders with the hope 

of developing biomarkers and novel treatments. These studies generally observe that 

psychiatric disorders are associated not with focal brain pathology, but with widespread 

dysfunction of distributed brain networks (4–6). However, to date, few of these findings have 

been translated to clinical settings. At least two factors may contribute to this lack of 

translation. First, group comparisons do not capture the heterogeneity of phenomenological 

characteristics present across any given disorder. For example, individuals with 

schizophrenia can present with variable symptoms including delusions, hallucinations, 

disorganized behavior, and/or anhedonia. Individuals with depression may exhibit symptoms 

from anxiety to diminished reward sensitivity (7). Children with Tourette syndrome (TS) 

exhibit varied motor and vocal tics and frequently demonstrate comorbidity with ADHD and 

OCD (8). It is not surprising that findings from group studies do not adequately account for 

any individual’s unique characteristics. Second, many neuroimaging techniques are noisy 

and exhibit low reliability in single individuals, limiting the ability to capture neural 

characteristics related to individual heterogeneity. Thus, new approaches are needed to 

measure brain function reliably in individuals.

In this review, we highlight insights that neuroimaging methods can provide about systems-

level brain function in health and disease. We then review recent efforts from our 

laboratories and others to develop individualized (“precision”) applications of fMRI using 

extended data acquisition strategies that can provide reliable and stable individual measures 

of brain organization. We close by discussing the practical application of precision fMRI in 

translational settings.

Measuring functional neuroanatomy with fMRI correlations

Human brain function is organized at many spatial scales, from local circuits to cortical 

columns, brain areas, and large-scale systems (9). The systems (10–14) and areal (15, 16) 
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organization of human brains can be characterized noninvasively using functional 

connectivity MRI. Functional connectivity (FC) refers to temporal correlations in fMRI 

activity between different regions, which can be measured during experimental tasks or as 

spontaneous activity patterns during the resting-state (in the absence of task instructions). 

Resting-state methods have the advantage of not requiring patients to complete a task, which 

may prove challenging for patients and provide added burdens in administration for clinical 

centers. Despite the lack of experimental constraint, resting-state correlations demonstrate 

rich systematic patterns, with functionally-related regions showing high correlations to each 

other (“within system”), and lower correlations to regions in other systems. Indeed, resting-

state fMRI has been used to define systems throughout the brain (11, 13, 17–20). These 

patterns are robust, with independent studies converging on similar descriptions of group-

averaged system organization of the human brain (11, 13) (Figure 1A). Moreover, validation 

of FC patterns has been established through convergent evidence from other neural measures 

(21), lesion approaches (22, 23), and behavior (24). At a finer scale, FC can also be used to 

parcellate the brain into regions that approximate functional areas and map onto differences 

in task function (15, 16, 25).

FC approaches can be used to measure differences in brain systems between neurotypical 

controls and diverse neuropsychiatric populations, such as in schizophrenia (5, 26), 

depression (27), or TS (28, 29), and to identify commonalities across diagnostic boundaries 

(e.g.,(30–32)). Additionally, functional network mapping provides context for interpreting 

brain activity during tasks. Task results are often described using large, poorly-defined 

anatomical locations (e.g., “lateral prefrontal cortex”). With coincident FC, task results can 

instead be ascribed to specific functional systems (e.g., frontoparietal or cinguloopercular), 

refining our understanding of task mechanisms in healthy individuals (17, 33, 34) and youths 

with diverse psychiatric symptoms (35). Furthermore, FC facilitates complex systems 

approaches to understanding brain function (36), which can be used to identify brain hubs 

(37–40) that support task function (41–45) and are vulnerable to damage (46–48). Network 

approaches hold promise for providing concise descriptions of how complex systems like 

the brain change across the lifespan (49–51) and are disrupted in psychiatric disorders (52), 

and may help develop mechanistic theories for these alterations (52–54).

Towards clinical utility of functional connectivity

Thus, FC has strong potential for clinical applications (55), including in the use of network 

mapping to enhance neurosurgical planning (56–60), providing systems-level biomarkers to 

identify at-risk individuals (61–63), sub-typing patients with diverse etiologies (32, 64), and 

identifying targets for treatment (e.g., with TMS) (55, 65, 66). However, despite a 20+ year 

history, FC techniques have yet to become widely used clinically. This observation raises the 

question of why clinical implementation has stalled.

For a measure to be clinically useful, it should be both reliable, such that repeated 

measurements produce the same result, and stable across contexts, such that it primarily 

reflects trait- rather than state-dependent effects. Additionally, it should show sensitivity to 

idiosyncratic features that may be clinically relevant. We suggest that new approaches are 
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needed to reach clinically-relevant reliability, stability, and sensitivity of FC at the 

individual-level.

Achieving single-subject reliability is not trivial. While group descriptions of functional 

networks are robust, most studies collect insufficient data (5–10 min.) to obtain reliable FC 

estimates in single individuals (67–71). Recent estimates suggest that at least 40 min. of 

low-motion fMRI data are needed to achieve high reliability (test-retest r>0.9) across the full 

connectome (69, 70) (Figure 2A). While some networks may achieve reliability more 

quickly (e.g., the default-mode), most single connections show poor-to-fair reliability with < 

40 min. of data (67, 71) (see Supplemental Discussion). Derived FC measures require even 

more data (e.g., areal parcellations require >50 min. (72); measures of lag structure require 

>200 min. (73, 74)). Moreover, reliability of fMRI data usually is worse in non-cortical 

regions that are implicated in many psychiatric disorders (75–77). Current estimates suggest 

that 90 min. of data are needed to achieve high reliability of cerebellar FC (78) and >100 

min. are needed for the basal ganglia and thalamus (79). Notably, it may be possible to 

identify an individual within a large group – so-called “fingerprinting” approaches (80, 81)– 

using substantially less data (81). However, subject identification is not the same as 

individual-specific characterization of brain-based disease processes, which requires 

substantially more data and is the ultimate target for clinical utility.

A precision fMRI approach

The findings above motivate an alternative strategy for data acquisition. The core feature of 

this approach is to collect larger quantities of fMRI data in single individuals as opposed to 

smaller quantities of data averaged over groups. For convenience, we call this acquisition 

strategy “precision” fMRI (pfMRI), though other terms, including “deep” or “high-

sampling” have also been used. PfMRI data are frequently coupled with extensive 

phenotypic and behavioral measurements to aid in establishing validity. Moreover, pfMRI 

benefits from being combined with advanced analysis including dataset denoising, 

alignment, and network definition.

The MyConnectome dataset is one of the original demonstrations of the utility of pfMRI for 

functional network mapping*. For this dataset, Russ Poldrack scanned himself twice weekly 

for a year, and collected additional phenotypic variables regarding health, affect, genotype, 

gene expression, and metabolomics (90). This work established that even in a single person, 

classic network patterns are evident, but clear deviations from typical “group” organization 

are also observed (70). Importantly, despite modest day-to-day variability (perhaps 

associated with caffeine or arousal levels (70)), these network patterns were fundamentally 

stable over the course of the year (70, 91).

*While pfMRI has only recently been employed in the field of large-scale functional network mapping, the practice of extended data 
collection in single individuals has a long history in both behavioral psychophysics and visual field mapping with fMRI (82–84). 
Recently these methods have been extended to measuring responses to complex naturalistic stimuli (85–87). PfMRI also mirrors the 
tradition of monkey electrophysiology studies that typically collect large amounts of data from small samples of monkeys (often 1–3). 
While these samples are not large enough for statistical testing, their logic is that they serve as study replicates across samples: i.e., an 
effect can be more meaningful when seen within each individual in a small group than if it is only observable on average across a large 
population sample (88, 89). We argue that a similar logic applies to studies of brain network organization, especially in clinical 
settings where treatment is applied to individuals.
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The MyConnectome study inspired several related pfMRI projects (for examples see Table 

1, Supp. Table 1). Among these, the “Midnight Scan Club” (MSC) dataset collected >20 hrs. 

of fMRI data in each of 10 people (Figure 1B), including large amounts of task and resting-

state data. Initial reports from this dataset established that extended data acquisitions can be 

used to generate reliable individual descriptions of functional brain organization (69). 

Robust individual differences in FC were observed and these network variations 

corresponded to brain activations during tasks (69).

Additional pfMRI datasets have made important contributions to our understanding of 

functional systems. For example, Braga and Buckner (92) used a four person pfMRI dataset 

to describe substructure within several networks that is too individually variable to easily 

delineate in group data. Noble et al. (71) identified brain regions that are more or less 

reliable with a given quantity of data, which is critical for designing studies focused on 

specific regions. Given the public availability of many of these datasets (Table 1), their 

contribution to the field will likely increase in future years.

Precision approaches quantify stability and variability in functional brain 

networks

In addition to reliability, clinical utility requires that measurements show stability across 

contexts. That is, a diagnostic measurement would ideally be influenced only by the 

conditions of interest (e.g., long-term disease status, individual traits) rather than by day-to-

day variation, ongoing states, or thoughts (e.g., whether the patient ate breakfast, if they 

were cold in the scanner room, if a technician was calm or abrupt, etc.). Thus, the stability of 

FC across different time-scales and contexts is important for its utility in psychiatric care.

The pfMRI design of the MSC is well-suited to examining this issue, as it contains data from 

multiple tasks spanning different cognitive domains collected in multiple individuals across 

multiple days (69). We used these data to identify cortical network patterns that were 

consistent across all measurements (static “group” effects) or that varied across individuals, 

days, or tasks (93). Our findings demonstrated that functional networks are largely stable, 

with shared group patterns as well as network features that were specific to individual 

subjects (Figure 2B).

Variations in FC from day-to-day and task-to-task were also observed, but these effects were 

relatively small in magnitude. Interestingly, task effects on FC were largely individually-

specific, rather than common across the group (93) (Figure 2B), consistent with previous 

studies showing subtle group-average task modulations of FC (45, 94) and added task-by-

individual interactions (95, 96). The individual-specificity nature of task influences on brain 

networks suggests that their study may especially benefit from the use of pfMRI. In addition 

to characterizing task and daily variation, we also used pfMRI to show that FC is stable over 

shorter time-scales (i.e. minutes). In this work, apparent within-session variability in FC was 

primarily driven by sampling error, acquisition artifacts (such as motion), and subject 

arousal during scans (97).
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The dominance of stable factors on FC was relatively consistent across spatial scales, from 

the full connectome, to single networks, regions, and even single connections (93). 

Subsequent work observed similar effects in subcortical and cerebellar regions (78, 79) with 

hints of increased individual variability (78) - an intriguing finding given evidence of 

variation within non-cortical structures in psychiatric disorders (75–77, 98–101).

Thus, FC techniques are well suited to measuring stable aspects of brain organization, 

including aberrant features that may underlie psychopathology. Moreover, these findings 

indicate a high sensitivity to individual differences in brain networks (see next section). 

Jointly, the strong reliability, stability over states, and sensitivity to individual differences 

seen with pfMRI methods make them strong candidates for clinical applications.

An emergent question is how FC varies across months and years. The MyConnectome 

dataset suggests that many aspects of FC are stable over a year (70, 91) (also seen for some 

networks over 3.5 years in the Kirby Weekly dataset (102)). However, new studies are 

needed to determine to what extent these patterns persist throughout the lifespan, from early 

infancy into aging, and whether they can be altered with prolonged or profound life 

experiences.

Characteristics of individual variation in brain networks

Individual FC differences (69, 80, 81, 103–106) have been identified at multiple scales, 

ranging from differences in brain-wide network organization (e.g., network “efficiency” 

(69)) to punctate regions that vary across individuals (70, 91, 103, 104). One open question 

is whether these disparate spatial scales measure related aspects of individual variation (e.g., 

variation in FC of a single region may cause apparent variation in brain-wide efficiency). 

Interestingly, in the MSC dataset different individuals are highlighted as ‘atypical’ 

depending on the scale of analysis: e.g., Gordon (69) found that brain-wide efficiency was 

significantly lower for subjects MSC02 and MSC06 relative to the group, but Seitzman (91) 

found that MSC02 and MSC06 sorted into different sub-groups based on regional variations, 

and Gratton (93) found that MSC01 was most different from the group in task and rest FC. 

An important question for future work is whether individual differences in FC reflect 

differences in the spatial organization of networks/areas or differences in the magnitude of 

functional correlations within a static spatial structure (e.g., (107, 108)).

Recent reports have observed that individuals demonstrate localized regions of distinct FC 

relative to the group (70, 91). We term these “network variants” (Figure 3). Network variants 

occur most frequently in association cortex (e.g., parts of the frontoparietal, default mode, 

and cinguloopercular systems) and appear in two general forms: border shifts between 

networks (e.g., the default network enlarges, encroaching on classically frontoparietal 

regions) and ectopic intrusions (e.g., an isolated area in the frontoparietal network shows 

altered FC, such that it connects to the default network). Despite their low correspondence to 

the “average” architecture, network variants are common. Indeed, in preliminary 

investigations (70, 91) across datasets (109), we found network variants in every individual. 

These findings suggest that the average brain is not a veridical representation of any 

individual person.
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Network variants have a number of systematic trait-like properties (91) that suggest they 

may be good candidate clinical targets. They are stable across scans (reaching r>0.8 with 

>40 min. of data). Moreover, like other phenotypic traits such as eye-color, blood type, or 

personality, individuals can be grouped based on their characteristic patterns of network 

variants. Two sub-groups were identified across multiple datasets: one with variants more 

associated with the default-mode network and another with variants more associated with 

goal-directed control and sensorimotor processing systems (81). These findings suggest that 

network variants may relate to individual differences in complex goal-directed functions 

subserved by these networks (17, 110–113) - functions known to vary in the typical 

population (114) and implicated across a range of disorders including depression (27, 64, 

115, 116), schizophrenia (103–105), and TS (28, 117).

Despite the nascent state of pfMRI studies, there is preliminary convergent evidence that 

validates the connection between these individual differences and differences in brain 

function (e.g., (80, 107, 108, 118–121)). For example, network variants re-assigned to the 

default-mode showed de-activations during tasks– much like canonical default-mode 

locations – even when found within cortical territories that are classically identified with 

task-activated networks (e.g. frontoparietal) (91). Thus, network variants may represent 

locations with shifted functions, leading to altered network correlations. Other findings have 

also suggested that individual-specific FC – defined at rest – overlaps well with task-related 

brain activations (118, 119, 121). Further preliminary validation of individualized FC 

measures comes from their successful guidance of TMS (e.g., (66, 122)) and by comparison 

with structural brain measures (e.g., overlap between FC variations and variations in myelin 

density in (69)).

Moreover, individual differences in network organization also appear to relate to behavioral 

variation (80, 107, 108). In the sub-groups described above, differences in network variants 

were associated with small differences in quality of life and drug use (91). Similarly, Smith 

(120) suggests that FC differences link to a “positive-negative mode” of behavioral variation. 

One important question to address in future research will be which variations in brain system 

organization have critical consequences on behavior and which reflect degenerate solutions 

to carrying out the same behavioral function.

Looking forward: pfMRI and psychiatry

Thus far, pfMRI approaches have primarily examined small, homogenous cohorts (Table 1). 

These datasets have highlighted the reliability of FC measurements, in the spirit of recent 

movements in psychology and psychiatry to increase reproducibility in research (123–125). 

This work has already provided important preliminary results regarding sources of variance 

and stability of FC techniques. Critically, the large amounts of data per subject in pfMRI 

approaches allow for observations to be verified reliably at the level of individuals (even in 

clinical samples (126)), which is the level most pertinent for clinical applications. It is this 

feature that makes pfMRI a compelling platform to address outstanding challenges in 

psychiatry.
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One such challenge has been in understanding differences between the ‘normal’ and 

pathologic brain, which have so far been obscured in group format studies. Group studies 

typically find modest differences in FC across a range of comparisons: between tasks (45, 

94), across states of consciousness (127), over development (128), and across major 

neurological and psychiatric disorders (30, 129, 130). One question is whether pfMRI 

approaches that take advantage of both group commonalities and individually specific 

features may be more sensitive to detecting heterogeneous differences, especially those 

relevant to clinical work. Early reports support this conjecture, as pfMRI approaches have 

demonstrated enhanced sensitivity not only to individual differences, but also to task-state 

effects (93), and clinical symptoms (126).

A second, related, challenge in psychiatry is to create tools for accurate diagnosis and 

prognosis of clinical features at the individual level. While pfMRI has yet to be used widely 

in clinical populations, initial accounts have suggested that high-data approaches can 

increase the association between fMRI measures and behavior in the neurotypical population 

(80, 107, 108, 120). We are aware of only one study to date to apply pfMRI to a clinical 

population (126). In that study, ~3.5 hrs. of MRI data were collected from 26 veterans with 

varying history of TBI and PTSD. Interestingly, FC mediated observed associations between 

TBI and PTSD symptoms. However, this relationship was only evident with large amounts 

of data; analyses using only 10 min. of data per subject were non-significant. Two other 

recent papers further highlight advantages of individualized analysis techniques in 

psychiatric datasets (although with lower amounts of per-subject data (131, 132)). In Wang 

(131), fMRI data were gathered from 158 participants diagnosed with schizophrenia, 

schizoaffective disorder, or bipolar disorder. FC derived from individually-specific regions 

significantly predicted symptom levels, while models using group regions performed 

consistently worse. Similarly, in participants with OCD, Brennan (132) found that brain 

networks modeled using individually-defined regions outperformed group-defined regions in 

predicting symptoms, and that individualized FC changes predicted treatment-based 

improvements. These findings highlight the added utility of individualized approaches to FC 

in psychiatry. Beyond post-hoc diagnosis, it is worth investigating whether pfMRI 

approaches will prove sensitive to risk factors for psychiatric disorders and disease 

progression, which would greatly enhance the utility of imaging in clinical management.

A third area of psychiatry that pfMRI can help to address are interventions that rely on 

subject-specific targeting of pathology. The spatially localized nature of many individual 

differences in FC (91, 103, 107, 108) means they may serve as patient-specific targets for 

stimulation-based interventions with TMS or DBS. While stimulation-based interventions 

can be effective, they suffer from variable patient responses (e.g. (133, 134)), which have 

been attributed to stimulation targeting procedures that do not respect individual variations 

in structural (135, 136) or functional (65, 137) neuroanatomy. Indeed, individual variability 

in FC of dorsolateral prefrontal cortex has been related to variation of TMS treatment 

efficacy in depression (66). Moreover, a recent pfMRI study of the sub-cortex showed that 

regions with consistent FC across individuals overlap with DBS stimulation sites that have 

shown more consistent treatment response, while DBS sites with known variability in 

response overlap with regions that exhibit variable FC (79). Use of pfMRI to identify 
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individual-specific targets for brain stimulation thus has significant potential for improving 

treatment response rates (138).

A fourth challenge is to improve tracking of treatment efficacy and long-term remission. The 

multi-session nature of pfMRI allows researchers to determine how FC measurements vary 

over different time-scales. Thus far, evidence suggests that FC is stable across multiple 

sessions and even year-long periods, as long as sufficient data are collected per measurement 

to achieve high reliability (93). As such, pfMRI may be more sensitive to trait-like features 

that predict disease status or risk (e.g., whether a person has or will develop depression) than 

those that are associated with fluctuating behavior (e.g., current sad mood). However, pfMRI 

may also prove a more reliable baseline from which to expose rapid or profound changes in 

FC linked to treatment response to a pharmacologic or behavioral therapy. For example, 

lower-data but individualized FC approaches can predict changing OCD symptoms after 

intervention (132).

Feasibility of pfMRI in Clinical Samples

While pfMRI has many useful properties, the feasibility and cost of collecting extended 

datasets in patients are commonly cited as barriers to its use. Moreover, psychopathology is 

prevalent across the lifespan, and collecting pfMRI data from children and elderly adults 

may compound feasibility concerns. Such concerns can be addressed in a number of ways.

First, initial pfMRI studies have established that 30–45 minutes of low-artifact data may be 

sufficient to achieve good reliability for many cortical FC measures. In our initial 

investigations, we find that patient, pediatric, and elderly populations retain ~50–80% of 

data after motion denoising (29, 126, 129); thus, 45–90 min. of data collection would be 

needed to reach high reliability. While this is substantially more resting-state than is 

typically collected, this is not an unreasonable amount of scanning to ask of participants in 

general, as routine neurology assessments collect 2 hrs. of structural MRI. Clinicians may 

adjudicate whether the severity of psychiatric cases calls for similar scan investment (e.g., 

compare a relatively healthy patient with ADHD vs. a severely depressed patient with high 

suicide risk). Future methodological improvements may reduce the data needed to achieve 

reliable FC, though these may come at the cost of increased reliance on priors and decreased 

ability to observe divergent individual patterns (see Supplemental Discussion).

Second, since patient, pediatric, and elderly samples often exhibit increased head motion, 

additional strategies have been proposed to minimize motion and improve data quality (139). 

Our findings on FC stability suggest that data collection can effectively be split into several 

shorter runs within or across sessions to increase patient compliance. Indeed, breaking up 

data collection may even increase reliability levels (71), likely because of the autocorrelation 

structure of fMRI timeseries. Some have proposed combining task and rest to increase data 

quantities for FC (67), which could open up many current datasets for analysis. Care should 

be taken when mixing task and rest datasets, especially when effects of interest are small, 

but this may be an acceptable qualification for prediction/diagnosis (see Supplemental 

Discussion). Finally, data acquisition strategies such as movement feedback (140), on-line 
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head motion estimates (141), and head cases to minimize motion (142) provide promising 

strategies to improve data quality during collection, rather than through post-hoc denoising.

Thus, while pfMRI studies require additional data per participant, for many applications the 

benefits of this investment (dramatically increased reliability and sensitivity to individual 

features) may be well worth the cost. Two or three hours of scanning may be of relatively 

small concern to patients considering having a DBS device implanted, suicidal individuals 

suffering from treatment-resistant depression, or parents seeking improved treatment for 

their child. We contend that it is not enormously useful to spend money on cheaper measures 

that do not replicate well within or across individuals – either for clinical practice or to 

forward research knowledge. Rather, direct translational application of neuroimaging results 

may be better afforded by pfMRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Group and individual functional brain networks.
(A) Robust group-average functional networks (different colors) are observed across 

multiple studies using different methods. This group-average map was created by averaging 

data from the MSC subjects at rest. (B) Functional networks in individuals exhibit 

similarities to the group-average, but also pronounced individual differences. For example, 

note variations in the network organization of the dorsolateral prefrontal cortex (colors are 
matched to group-average labeling in A). A and B are based on data from (69).

Gratton et al. Page 18

Biol Psychiatry. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Reliability and stability of functional brain networks.
(A) Recent studies using precision fMRI methods have demonstrated that more than 40 min. 

of high-quality fMRI data are necessary to achieve high test-retest reliability of functional 

networks in the cortex (top: functional networks from a single individual across two split-

halves of the data; bottom: similarity of individual functional network measures across the 

connectome with increasing amounts of data). Even larger amounts of data may be needed 

to achieve high-reliability in non-cortical regions (78, 79). (B) Analysis of precision fMRI 

datasets allows for a decomposition of the sources of variance in functional networks. This 

work has shown that functional networks are dominated by stable factors, including common 

structure across groups and stable patterns of individual differences. Task-state makes 

modest contributions to FC that are largely individually specific, and daily variation is small 

with sufficient data. This is shown by examining how similar functional networks are from 

datasets that share group, individual, task, or session factors (or a combination). A is from 
(70), B is adapted from (93).
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Figure 3: Network variants.
Comparison of (A) group networks and (B) an individual from the MSC (MSC06, colors 

match Fig. 1). (C) Some locations exhibit low similarity to the group (a few examples are 

circled), which can be identified through vertex-wise spatial correlation; (D) we call these 

low-similarity locations network variants. (E) Variants may represent shifts of network 

borders (left) or isolated ectopic intrusions (right). We hypothesize that network variants are 

caused by stable factors that reprioritize the neural functions of cortical areas, causing shifts 

in the boundaries of cortical networks and ectopic intrusions. These altered prioritizations 

lead to changes in the dominant systems-level relationships of a region (e.g., increasing FC 

to relevant regions in alternate networks), causing these regions to appear as network 

variants. Thus, network variants may be related altered brain function during tasks and 

behavioral responses across individuals. See (91).
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