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ABSTRACT The three-dimensional (3D) organization of chromatin, on the length scale of a few genes, is crucial in determining
the functional state—accessibility and amount of gene expression—of the chromatin. Recent advances in chromosome confor-
mation capture experiments provide partial information on the chromatin organization in a cell population, namely the contact
count between any segment pairs, but not on the interaction strength that leads to these contact counts. However, given the
contact matrix, determining the complete 3D organization of the whole chromatin polymer is an inverse problem. In this work,
a novel inverse Brownian dynamics method based on a coarse-grained bead-spring chain model has been proposed to compute
the optimal interaction strengths between different segments of chromatin such that the experimentally measured contact count
probability constraints are satisfied. Applying this method to the a-globin gene locus in two different cell types, we predict the 3D
organizations corresponding to active and repressed states of chromatin at the locus. We show that the average distance be-
tween any two segments of the region has a broad distribution and cannot be computed as a simple inverse relation based on the
contact probability alone. The results presented for multiple normalization methods suggest that all measurable quantities may
crucially depend on the nature of normalization. We argue that by experimentally measuring predicted quantities, one may infer
the appropriate form of normalization.
SIGNIFICANCE Chromosome conformation capture experiments such as 5C and Hi-C provide information on the
contact counts between different segments of chromatin, but not the interaction strengths that lead to these counts. Here, a
methodology is proposed by which this inverse problem can be solved, namely, given the contact probabilities between all
segment pairs, what is the pairwise interaction strength that leads to this value? With the knowledge of pairwise
interactions determined in this manner, it is then possible to evaluate the three-dimensional organization of chromatin and
to determine the true relationship between contact probabilities and spatial distances.
INTRODUCTION

Even though all the cells in multicellular organisms have the
same DNA sequence, they function differently based on the
cell type. For example, the phenotype of a skin cell is signif-
icantly different from that of a neuronal cell (1,2). One of
the important factors for this variation is hypothesized to
be the three-dimensional (3D) organization of DNA inside
the cell nucleus and its variability from cell type to cell
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type (3–6). Although findings of the recent chromosome
configuration capture experiments (3C, 4C, 5C, Hi-C)
(7–10) lend credence to this hypothesis, the outcomes of
these experiments are frozen snapshots of a sparse set of
points along DNA that do not give a complete understanding
of the 3D organization of the genome. In this work, a meth-
odology based on a coarse-grained polymer model for DNA
is proposed that enables the unraveling of its spatiotemporal
organization, which is consistent with experimentally
observed contact maps.

The complex folding of meter-long DNA into micro-
meter-sized chromosome, with topologically associated do-
mains and contact domains, has been revealed at a few kb
resolution by state-of-the-art Hi-C experiments (11–16).
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More insight into the role played by the 3D organization of
the genome in the functioning of a cell on the length scale of
genes is provided by 3C and 5C experiments (17). Essen-
tially, all these chromatin conformation capture experiments
lead to information on the count of contacts between any
pair of segments along the DNA chain backbone, repre-
sented in the form of contact (‘‘heat’’) maps.

Several attempts have been made to understand the 3D or-
ganization of the genome using a variety of techniques
developed previously to understand the statics and dynamics
of polymers (18–31). Early models focused on understand-
ing the nonequilibrium nature of chromatin organization
and the polymer physics behind large-scale packaging
(26–28). Subsequent studies that focus on reconstructing
the 3D structure from the contact maps are predominantly
based on assuming that there is a direct correlation between
the magnitude of the contact count and the spatial distance
between the relevant pairs (32–38). These investigations
have led to important insights about the 3D consequences
of differences present in the contact maps, such as the
spatial organization of ON and OFF states of certain genes.
However, all these efforts have certain limitations. As
mentioned above, nearly all the computational studies
convert contact counts obtained from Hi-C experiments
into spatial distances using a predecided formula. That
means, given a contact count matrix, such methods do not
predict the distances between different chromatin segments;
rather they take the distance values as inputs, based on
certain assumptions. They then use conventional Monte
Carlo (or equivalent) methods to find steady-state configura-
tions of the chromatin, given a distance map between
different DNA segment pairs. In other words, the existing
models consider this as a ‘‘forward’’ problem of computing
equilibrium configurations of chromatin as a consequence
of assuming certain spatial distance between bead pairs.
However, the problem of computing 3D configurations of
a chromatin polymer, given a contact map, is not a ‘‘for-
ward’’ problem, but rather an ‘‘inverse’’ problem (39). The
question is, given a contact map, what are the optimal inter-
actions between different segments of chromatin such that
the experimentally seen contact map emerges? To the best
of our knowledge, no study exists that solves chromatin con-
figurations of genes considering it as an inverse problem.
Another shortcoming is that the experimentally obtained
contact counts are not converted to ‘‘absolute’’ contact prob-
abilities. Some of the existing methods remove various sys-
tematic biases and convert the contact counts to relative
contact probabilities. Some of these techniques are iterative
correction and eigenvector decomposition (ICE) (40),
sequential component normalization (41), Knight-Ruiz
(42), chromoR (43), multiHiCcompare (44), and HiCNorm
(45). In this work, we examine the existing ICE normaliza-
tion method and compare it with a method processed here
based on a simple process of converting contact counts to
contact probabilities though a parameter representing the
2194 Biophysical Journal 118, 2193–2208, May 5, 2020
ensemble size. We show that the structural properties of
the gene loci depend on the precise values of contact prob-
abilities. It should also be noted that all prior efforts are
based on Monte Carlo methods, and hence, they cannot pre-
dict the dynamics of chromatin—they only obtain informa-
tion on static configurations of the genome.

In summary, although current models have made impor-
tant progress in constructing 3D structure from the contact
maps, they suffer from one or more of the following
shortcomings:

1) an a priori assumption regarding the probability of
contact between pairs of segments and their spatial
distances;

2) the introduction of harmonic springs between interacting
pairs that implies an attractive force between these pairs
that does not decay with distance, but rather increases;

3) the use of simulation methods that are limited to
providing information on static configurations;

4) considering the problem of computing 3D configurations
as a ‘‘forward’’ problem, with no attempt to determine
the interaction strengths between segment pairs that
lead to 3D structures that are consistent with observed
contact maps;

5) the failure to obtain an accurate representation of dy-
namic behavior by failing to include hydrodynamic in-
teractions (46) between segment pairs.

In this work, a methodology is introduced that ad-
dresses all these shortcomings. Chromatin on the length
scale of a gene is represented by a coarse-grained bead-
spring chain polymer model with a potential of interaction
between pairs of beads that can be tuned to accommodate
varying strengths of interaction. A Brownian dynamics
simulation algorithm, which includes hydrodynamic inter-
actions and an iterative scheme based on inverse Monte
Carlo, is developed that enables the generation of 3D con-
figurations that are consistent with the contact maps. This
methodology is then applied to obtain the static 3D con-
figurations from 5C contact maps of the a-globin gene lo-
cus, both in the ON and OFF states of the gene. Further,
because hydrodynamic interactions are taken into ac-
count, the approach has the potential to examine the dy-
namic transitions between the ON and OFF states. In
our work, however, because the focus is on reproducing
heatmaps and generating 3D configurations (which are
both static properties), dynamic properties have not been
considered.

The outline of the study is as follows. The key govern-
ing equations of the model and the simulation algorithm
are summarized in Polymer Model. In IBD, the inverse
Brownian dynamics (IBD) method is introduced in a gen-
eral context. The validation of the proposed approach with
the help of a prototype is presented in Validation of the
IBD Method with a Prototype. The coarse-graining pro-
cedure used here is described in The Coarse-Graining
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Procedure. Resolution of the issue of determining the con-
tact probabilities from contact counts is proposed in Con-
version of Contact Counts to Contact Probabilities: The
Normalization Problem. Results for the static 3D configu-
rations of a-globin locus are discussed in 3D Configura-
tion of the a-Globin Gene Locus, and the relationship
between spatial distances and contact probabilities is high-
lighted in 3D Spatial Distances and Contact Probabilities.
The principal conclusions of this work are summarized in
Conclusions.
METHODS

Chromosome conformation capture experiments such as 5C and Hi-C pro-

vide information about the contact counts between different segments of

chromatin, but not the interaction strengths that lead to these counts.

Here, we propose a methodology by which this inverse problem can be

solved, namely, given the contact probabilities between all segment pairs,

what is the pairwise interaction strength that leads to this value? Addition-

ally, the fact that experiments only give contact counts and not probabilities

needs to be dealt with. In Polymer Model, we first provide the principal

governing equations and the details of the interactions. In IBD, we describe

the IBD algorithm by which the interaction strengths εmn can be estimated

given the set of contact probabilities pmn.
Polymer model

To compute the 3D organization of the genome, the chromatin is coarse

grained into a bead-spring chain of N beads connected by N � 1 springs.

The chain configuration is specified by the set of position vectors of the

beads rm (m ¼ 1, 2, ., N). For simulation purposes, all distances are

made dimensionless by using the characteristic length scale l0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ks

p
arising from the ratio of thermal energy—where kB is the Boltz-

mann constant and T is the temperature—and the spring constant ks.

Throughout this manuscript, the asterisk superscript is used to indicate

dimensionless quantities (r�m ¼ rm/l0). The adjacent beads in the polymer

chain are bonded via a Fraenkel spring, with a nondimensional spring po-

tential Us�
m between bead m and (m þ 1), given by

Us�
m ¼ 1

2

h�
r�mþ1 � r�m

�
� r�0

i2
; (1)

where ðr�mþ1 �r�mÞ is the nondimensional distance between beads m and m þ
1 and r�0 is the dimensionless natural length of the Fraenkel spring. To

mimic protein-mediated interactions between different parts of the chro-

matin polymer, it is necessary to introduce a potential energy function.

Typically, this is achieved with a Lennard-Jones (LJ) potential or with har-

monic spring interactions (39). However, in this study, the following nondi-

mensional Soddemann-Duenweg-Kremer (SDK) (47) potential is

introduced between any two nonadjacent beads m and n,
USDK�
mn ¼

8>>>>>>><>>>>>>>:

4
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s�

r�mn
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s�

r�mn
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�
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�
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Here, r�mn ¼ ðr�m �r�n Þ is the nondimensional distance between beads m and n,

εmn is an independent parameter to control the bead-bead attractive interac-

tion strength between beads m and n, and 21/6s* represents the minima of

the potential where USDK�
mn ¼ εmn. The SDK potential has the following ad-

vantages compared to the LJ potential: 1) the repulsive part of the SDK po-

tential (r�mn % 21/6s*) representing steric hindrance remains unaffected by

the choice of the parameter εmn, and 2) protein-mediated interactions in

chromatin are like effective ‘‘bonds’’ formed and broken with a finite range

of interaction. Unlike the LJ potential, the SDK potential has a finite attrac-

tive range—the SDK potential energy smoothly reaches zero at the cutoff

radius, r�c , whose value is set by the choice of two parameters a and b.

The parameters a and b are determined by applying the two boundary con-

ditions, namely,USDK
mn ¼ 0 at r�mn ¼ r�c andU

SDK
mn ¼�εmn at r

�
mn ¼ 21/6s*. The

appropriate choice of the cutoff radius r�c has been investigated extensively

in a recent study (48), and it has been shown that a value of r�c ¼ 1.82s*

leads to an accurate prediction of the static properties of a polymer

chain in poor, theta, and good solvents. The same value is adopted in this

study.

Given a set of values εmn and an initial configuration of the bead-spring

chain, the time evolution of the configurations of the polymer chain is eval-

uated using Brownian dynamics simulations (49), which is a numerical

method for solving the following Euler finite difference representation of

the stochastic differential equation for the bead position vectors,

r�mðt� þDt�Þ ¼ r�mðt�Þ þ
Dt�

4

XN
n¼ 1

Dmn ,
�
Fs�

n þFSDK�
n

�
þ 1ffiffiffi

2
p

XN
n¼ 1

Bmn ,DWn: (3)

Here, t* ¼ t/l0 is the dimensionless time, with l0 ¼ z/4ks being the

characteristic timescale, in which z ¼ 6pha is the Stokes friction coef-

ficient of a spherical bead, h is the solvent viscosity, and a is the bead

radius. Fs�
n and FSDK�

n are the nondimensional spring and interaction

forces computed from the respective potential energy functions provided

in Eqs. 1 and 2. DWn is a nondimensional Wiener process with mean

zero and variance Dt*, and Bmn is a nondimensional tensor whose pres-

ence leads to multiplicative noise (49). Its evaluation requires the

decomposition of the diffusion tensor Dmn defined as Dmn ¼ dmnd þ
Umn, where dmn is the Kronecker delta, d is the unit tensor, and Umn ¼
Uðr�m �r�nÞ is the hydrodynamic interaction tensor. Defining the matrices

D and B as block matrices consisting of N � N blocks each having di-

mensions of 3 � 3, with the (m, n)-th block of D containing the compo-

nents of the diffusion tensor Dmn and the corresponding block of B being

equal to Bmn, the decomposition rule for obtaining B can be expressed as

B,Bt ¼ D. The hydrodynamic tensor U is assumed to be given by the

Rotne-Prager-Yamakawa tensor

Uðr�Þ ¼ U1dþ U2

r�r�

r�2
; (4)
þ 1

4

#
� εmn; r�mn%21=6s�
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Here, the hydrodynamic interaction parameter h* is the dimen-

sionless bead radius in the bead-spring chain model and is defined by

h* ¼ a/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkBT=ks

p
.

Because we are interested in the 3D organization of chromatin, we use a

number of different static properties to describe the shape of the equilibrium

chain. The radius of gyration of the chain Rg h
ffiffiffiffiffiffiffiffiffi
hR2

gi
q

, where hR2
gi is

defined by D
R2
g

E
¼ �

l21
�þ �l22�þ �l23�; (5)

with l21, l
2
2, and l

2
3 being the eigenvalues of the gyration tensor G (arranged

in ascending order), with

G ¼ 1

2N2
b

XNb

m¼ 1

XNb

n¼ 1

rmnrmn: (6)

Note that G, l21, l
2
2, and l

2
3 are calculated for each trajectory in the simu-

lation before the ensemble averages are evaluated. The asymmetry in equi-

librium chain shape has been studied previously in terms of various

functions defined in terms of the eigenvalues of the gyration tensor

(50–56). Apart from l21, l
2
2, and l23 themselves, we have examined the

following shape functions: the asphericity (B), the acylindricity (C), the de-

gree of prolateness (S), and the shape anisotropy (k2), as defined in Table 1.

The stochastic differential equation (Eq. 3) can be solved with a semi-im-

plicit predictor-corrector algorithm developed in Prabhakar and Prakash (57)

once all the parameters are specified. However, the strength of interaction

εmn between any two beads m and n is unknown a priori. Because they control

the static conformations of a chain, their values will be different depending on

whether the gene is in an ‘‘ON’’ or ‘‘OFF’’ state. Ultimately, the contact prob-
TABLE 1 Definitions of Shape Functions in Terms of

Eigenvalues of the Gyration Tensor G

Shape Function Definition

Asphericity (55,65) B ¼ hl23i � 1
2
½hl21iþhl22i� (7)

Acylindricity (55,65) C ¼ hl22i � hl21i (8)

Degree of prolateness (52,56,65) S ¼ hð3l21�I1Þð3l22�I1Þð3l23�I1Þi
hðI1Þ3i (9)

Relative shape anisotropy (52,55,56,65) k2 ¼ 1 � 3hI2ihI2
1
i (10)

Note that I1 ¼ l21 þ l22 þ l23 and I2 ¼ l21l
2
2 þ l22l

2
3 þ l23l

2
1 are invariants

of G.
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ability between any two segments on thegene isdeterminedby thevalues of εmn
for all pairs on the gene. The parameters that need to be specified for us to carry

out the simulations are 1) the hydrodynamic interaction parameter h*, 2) the

natural length of Fraenkel spring r�0 , 3) the SDK potential parameter s*, 4)

the characteristic length scale l0, and 5) the characteristic timescale l0. We

are not probing the dynamic properties of chromatin (46) in this work, so we

chose h*¼ 0. The natural physical length scale in the problem is the diameter

of the bead.We assume that chromatin of size 10 kbdetermines the length scale

inourmodel l0, andwecoarsegrain 10kbchromatin toonebead.Theother two

length parameters are determined as s* ¼ 1 and r�0 ¼ 1 such that two neigh-

boring beads are typically at a distance of the order of l0. All our length results

are presented in units of l0. The timescale in our problem is given by l0¼ z/4ks.

The timestep Dt* ¼ Dt/l0 is chosen to be 10
�3. This will decide the time in-

tervals inour simulation.However, becauseweareonlypresenting steady-state

quantities in this work, all the results are independent of time.

In our model, the distance between the neighboring beads fluctuates about

r0 with the value of order l0, which is the equilibrium length of the spring. For

the parameters chosen in this work, r05 l0 can be greater than s. This allows

the chain to cross itself to explore thewhole phase space faster. However, this

is a result of our choice of parameters values, andwecan also choose to have a

parameter that makes strand passage more difficult.

In the section below, we first describe the IBD algorithm by which the

interaction strengths εmn can be estimated given the set of contact probabil-

ities pmn. The issue of converting experimental contact counts to contact

probabilities is addressed in Conversion of Contact Counts to Contact Prob-

abilities: The Normalization Problem.
Inverse Brownian dynamics

In this investigation, awell-established standardmethod is utilized to optimize

the parameters of a model Hamiltonian such that it reproduces, as closely as

possible, the values of some externally given quantities (e.g., from experiment

or from other simulations). In the literature, the method is typically referred to

as ‘‘inverse Monte Carlo’’ (58–60). It is, however, completely independent of

the underlying sampling scheme, as long as the latter produces thermal aver-

ages in the canonical ensemble. We prefer to highlight the underlying Brow-

nian dynamics sampling of this study and hence refer to it here as the IBD

method. The method is best explained in general terms. It is assumed that

the system is described by a phase-space variable G and a model Hamiltonian

H(G). Another assumption is that the simulation produces the canonical

average of some observable, given by a phase-space function A(G):

hAi ¼
R
dG AðGÞ expð�bHðGÞÞR

dGexpð�bHðGÞÞ : (11)

Here, b ¼ 1/(kBT). On the other hand, we have a given ‘‘target’’ value At

(e.g., from experiment), which will typically differ from our simulation

result. We are now interested in the dependence of the Hamiltonian on

some coupling parameter J, and we wish to adjust J to bring hAi as close
to At as possible within the limitations of the Hamiltonian as such in general

and its dependence on J in particular. To do this, it is desirable to obtain in-

formation on 1) in which direction J should modified and 2) by what

amount (at least by order of magnitude). If the change of the coupling con-

stant, DJ, is small, we can write down a Taylor expansion around the value

J ¼ J0 at which we performed the simulation:

hAiðJ0 þDJÞ ¼ hAiðJ0Þ þ cDJ þ O
�
DJ2

�
; (12)

where the ‘‘generalized susceptibility’’ c is an abbreviation for the thermo-

dynamic derivative

c ¼ vhAi
vJ






J¼ J0

: (13)
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The crucial point is now that c can be directly sampled in the simulation

by making use of a standard fluctuation relation. Indeed, taking the deriva-

tive of Eq. 11 with respect to J, one finds directly

c ¼ b½hABi� hAihBi�; (14)

where B denotes another phase-space function, which is just the observable

conjugate to J:

BðGÞ ¼ � vHðGÞ
vJ

: (15)

In deriving Eq. 14, it is assumed that the phase-space function A(G)does

not depend on J, i.e., vA(G)/vJ ¼ 0. This is the case for most typical appli-

cations and certainly for this investigation.

The simplest way to do IBD, therefore, consists of 1) neglecting all

nonlinear terms in Eq. 12, 2) setting its left-hand side equal to At, 3) solving

for DJ, and 4) taking J0 þ DJ as a new and improved coupling parameter.

The entire process is then repeated with the updated coupling parameter. In

other words, Brownian dynamics simulations are carried out again, and the

difference between the updated simulation value and the reference value of

the observable is compared with the prescribed tolerance and checked to see

whether convergence has been achieved. If not, the coupling parameters are

updated once more until convergence has been achieved. The schematic

representation of the IBD algorithm described here is displayed as a flow-

chart in Fig. 1. To avoid overshoots, it is often advisable to not update J by

the full increment DJ that results from solving the linear equation, but

rather, only by DJ ¼ lDJ, where l is a damping factor with 0 < l < 1.

The iteration is terminated as soon as jhAi j � At does not decrease any

more, within some tolerance. One also has to stop as soon as c becomes

zero within the statistical resolution of the simulation (this is, however,

not a typical situation).

The method may be straightforwardly generalized to the case of several

observables Am and several coupling parameters Jn, where the number of

observables and the number of couplings may be different. The Taylor

expansion then reads

hAmiðJ0 þDJÞ ¼ hAmiðJ0Þ þ
X
n

cmn DJn þ O
�
DJ2

�
;

(16)
FIGURE 1 Flowchart for the inverse Brownian dynamics (IBD) method.

Here, p(ref) represents the reference contact probability matrix, and p(i) rep-

resents the contact probability matrix from simulations at iteration i. The

interaction strength between beads m and n is given by εmn. To see this figure

in color, go online.
where the matrix of susceptibilities is evaluated as a cross-correlation

matrix:

cmn ¼ b½hAmBni� hAmihBni�; (17)

with

BnðGÞ ¼ � vHðGÞ
vJn

: (18)

Typically, the matrix cmn will not be invertible (in general, it is not even

square). Therefore, one should treat the linear system of equations via a sin-

gular-value decomposition (SVD) and findDJ via the pseudoinverse (PI). In

practice, this means that one updates the couplings only in those directions

and by those amounts when one has a clear indication from the data that one

should do so, whereas all other components remain untouched. For details

on the concepts of SVD and PI, the reader may refer to Press et al. (61) and

Fill and Fishkind (62).

In this instance, the averages hAmi are the contact probabilities as pro-

duced by the simulations, whereas the target values are the corresponding

experimental values (discussed in greater detail below). The correspond-

ing phase-space functions can be written as indicator functions, which are

one in case of a contact and zero otherwise. The coupling parameters that

we wish to adjust are the well depths of the SDK attractive interactions,

which we allow to be different for each monomer pair. The IBD algo-

rithm discussed here in general terms is described in more detail in Sup-

porting Materials and Methods, Section S1 and applied to the specific

problem considered here, along with a discussion of the appropriate

SVD and PI.
RESULTS AND DISCUSSION

Validation of the IBD method with a prototype

To validate the IBD method, a prototype of a chromatin-
like polymer chain with artificially set interaction
strengths (εmn) was constructed. The data from this simu-
lated chain were used to test the IBD algorithm as
described below. The IBD algorithm was validated for
chains of length 10, 25, and 45 beads. Here, we discuss
the 45-bead chain case as a prototype. A few bead pairs
(mn) were connected arbitrarily with a prescribed value
of the well-depth ε

ðrefÞ
mn of the SDK potential. The nonzero

reference interaction strengths for the connected bead
pairs ε

ðrefÞ
mn are shown in Table 2; the remaining pairs

were considered to have no attractive interaction
(ε

ðrefÞ
mn ¼ 0). The bead-spring chain was simulated until it

reached equilibrium, which was quantified by computing
Rg as a function of time. A stationary state was observed
to be reached after eight Rouse relaxation times (63).
However, equilibration was continued for a further 15
Rouse relaxation times. After equilibration, an ensemble
of 105 polymer configurations was collected from 100 in-
dependent trajectories, from each of which 103 samples
were taken at intervals of 103 dimensionless time steps,
which correspond to roughly two to three Rouse relaxation
times. From this ensemble, the contact probability
p
ðrefÞ
mn ¼ hbpmni for each bead pair in the chain was

computed. Here, bpmn is an indicator function that is equal
Biophysical Journal 118, 2193–2208, May 5, 2020 2197



TABLE 2 Interaction Strengths εmn and Contact Probabilities pmn for Selected Bead Pairs (m, n) in a Bead-Spring Chain with 45 Beads

Initial State: SAW Polymer

Bead Pair Interaction Strength, εmn Contact Probability, pmn

Reference Recovered % Error Initial Reference Recovered % Error

3-13 7.00 6.70 4.29 0.0033 0.44 0.46 4.55

13-23 7.00 7.28 4.00 0.0036 0.51 0.49 3.92

23-33 7.00 7.08 1.14 0.0057 0.39 0.37 5.13

33-43 7.00 7.35 5.00 0.0041 0.62 0.59 4.84

8-18 7.00 6.94 0.86 0.0056 0.47 0.47 0.00

18-28 7.00 6.89 1.57 0.0052 0.31 0.32 3.23

28-38 7.00 7.16 2.29 0.0071 0.55 0.53 3.64

3-43 7.00 7.18 2.57 0.0002 0.22 0.22 0.00

Initial State: Collapsed Polymer

Bead Pair Interaction Strength, εmn Contact Probability, pmn

Reference Recovered % Error Initial Reference Recovered % Error

3-13 7.00 6.67 4.71 0.139 0.44 0.44 0.00

13-23 7.00 6.99 0.14 0.141 0.51 0.52 1.96

23-33 7.00 6.75 3.57 0.133 0.39 0.38 2.56

33-43 7.00 7.19 2.71 0.136 0.62 0.59 4.84

8-18 7.00 7.22 3.14 0.132 0.47 0.45 4.26

18-28 7.00 6.77 3.29 0.135 0.31 0.3 3.23

28-38 7.00 6.89 1.57 0.133 0.55 0.55 0.00

3-43 7.00 7.11 1.57 0.067 0.22 0.22 0.00

Values of these variables recovered using IBD are compared with those of the reference polymer chain, along with the percentage error between the

reference and recovered values. Initial εmn-values for all bead pairs were chosen to be 0 for the SAW polymer, whereas εmn ¼ 1 for all bead pairs in the

collapsed polymer.
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to 1 or 0 depending upon whether the mth and nth beads are
within the cutoff distance of SDK potential ðr�mn %r�c Þ or
not ðr�mn > r�c Þ. The reference contact probabilities p

ðrefÞ
mn

determined in this manner are shown in Fig. 2 b. In this
instance, although p

ðrefÞ
mn has been constructed by simu-

lating the bead-spring chain for the given values of ε
ðrefÞ
mn ,

in general it refers to the experimental contact
probabilities.

The IBD method was then applied to recover the refer-
ence contact probabilities p

ðrefÞ
mn , starting with an initial guess

of a self-avoiding walk in which ε
ð0Þ
mn ¼ 0, i.e., all the inter-

action strengths are set equal to zero. The contact probabil-
ity for the initial state of self-avoiding walk is shown in
Fig. 2 c. As illustrated in Fig. 1, at each iteration step i,
Brownian dynamics was performed for the given ε

ðiÞ
mn, and

an ensemble of 105 conformations were collected. To quan-
tify the difference between contact probabilities computed
from simulation at iteration i ðpðiÞmnÞ and reference contact
probabilities ðpðrefÞmn Þ, the root mean-squared deviation
(rmsd) E

ðiÞ
rmsd was calculated as

E
ðiÞ
rmsd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

NðN � 1Þ
X

1%m< n%N

�
p
ðiÞ
mn � p

ðrefÞ
mn

�2s
(19)
at each iteration. The error criteria E
ðiÞ
rmsd has been used pre-

viously in Meluzzi and Arya (39) and is adopted here. At
each iteration i, if the E

ðiÞ
rmsd value is greater than the preset
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tolerance limit (tol), the interaction strength parameters

ε
ðiþ1Þ
mn for the next iteration were calculated as given in Eq.

S11. To avoid the overshoot in interaction strength ε
ðiþ1Þ
mn ,

the range of ε
ðiþ1Þ
mn was constrained to [0, 10]. For the inves-

tigated polymer chain with 45 beads, the IBD algorithm

converges (E
ðiÞ
rmsd < tol) in �50 iterations, and prefmn was

recovered. The error Ermsd for each iteration is shown in
Fig. 2 a, and the recovered contact probability matrix is
shown in Fig. 2 d. The recovered contact probability values
along with the optimized interaction strengths εmn are shown
in Table 2. The error in the recovered contact probabilities
and interaction strengths is less than 5%, proving the reli-
ability of the IBD method. The largest contact probabilities
are for those bead pairs for which values of the interaction
strength were chosen a priori, as given in Table 2. However,
the existence of these interactions leads to the existence of
contact probabilities pmn between all bead pairs m and n.
The IBD algorithm was applied to not just the specified
bead pairs but to recover all contact probabilities pmn for
all possible pairs. The errors are given in Table 2 only for
the specified values because they are the largest. To check
the robustness of the IBD algorithm, the same reference
contact probability of the prototype was recovered from
an entirely different initial configuration of a collapsed

chain in which ε
ð0Þ
mn ¼ 1 for all the bead pairs m and n. The

initial contact probability matrix of the collapsed chain is
shown in Fig. 2 e, and the recovered contact probability



FIGURE 2 Validation of the IBD method with a prototype bead-spring chain with 45 beads. (a) Root mean-square deviation Ermsd (Eq. 19) as a function of

iteration number showing convergence of the IBD method is given. (b) A reference contact probability matrix is shown. Two different initial states have been

considered for testing IBD convergence: (c) initial contact probability for the self-avoiding walk (SAW) in which no bead pairs have attractive interaction and

(d) recovered contact probability matrix through IBD starting from the SAW state. Similarly, (e) initial contact probability for the collapsed state in which all

bead pairs have attractive interaction, ε¼ 1, and (f) recovered contact probability matrix through IBD starting with the collapsed state are shown. The abscissa

and ordinate represent the bead number along the polymer chain. The color represents the contact probability between the beads m and n (see color bar). To

see this figure in color, go online.

Chromatin Configurations from Heat Maps
matrix starting from the collapsed chain is shown in Fig. 2 f.
The recovered contact probability values along with the
optimized interaction strengths εmn for a few bead pairs
are shown in Table 2. Thus, even starting from a very
different configuration, the IBD algorithm converges to
the target contact probability matrix, establishing the power
of the method. For the sake of completeness, the difference
between the reference and recovered contact probability
matrices is presented in Supporting Materials and Methods,
Section S2, along with a discussion of the pathways by
which the polymer chain converges from different initial
configurations (swollen or collapsed) to the final reference
Biophysical Journal 118, 2193–2208, May 5, 2020 2199
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state. Having validated the IBD algorithm, the next section
applies this technique to experimentally obtained contact
probabilities of a chromatin on the length scale of a gene.
The coarse-graining procedure

To study the 3D organization of a gene region, the a-globin
gene locus (ENCODE region ENm008) is chosen for which
Baù et al. (36) have experimentally determined the contact
counts using the 5C technique. This is a 500-kb-long region
on human chromosome 16 containing the a-globin gene and
a few other genes such as LUC7L. Because 5C data do not
interrogate the contact counts between all feasible 10 kb
segment pairs, many elements in the heat map have no infor-
mation. This is in contrast with typical Hi-C experiments, in
which information on all possible contact pairs is obtained.
In principle, this method can be applied to Hi-C data; how-
ever, in this instance, we chose the 5C data because they
have sufficiently good resolution.

For simulation purpose, the a-globin locus is coarse
grained to a bead-spring chain of 50 beads. That is, the
experimental 5C data (contact count matrix of size 70 �
70) for the EMn008 region was converted to a contact count
matrix of size 50 � 50. The coarse-graining procedure is as
follows: 500 kb of the gene locus was divided into 50 beads,
each comprising 10 kb equal-sized fragments. The midpoint
of each restriction fragment was located and was assigned to
the corresponding bead in the coarse-grained polymer.
There are cases where two or more restriction fragments
(each of size less than 10 kb) get mapped to the same
bead. For example, consider restriction fragments r1 and
r2 being mapped on to a single coarse-grained bead m and
fragments r3 and r4 being mapped on to another bead n.
The contact counts of the coarse-grained bead pair Cmn

can then be computed in at least three different ways,
namely independent, dependent, and average coarse-grain-
ing procedures, as described below.

� Independent coarse graining: Take the sum of all contact
counts for the four restriction fragment combinations
(Cmn ¼ Cr1r3 þ Cr1r4 þ Cr2r3 þ Cr2r4)—i.e., assume that
all contacts occur independently of each other; in other
words, not more than one of the contact pairs occurs in
the same cell.

� Dependent coarse graining: Take the maximal contact
count among all four restriction fragment combinations
(Cmn ¼ maxfCr1r3; Cr1r4; Cr2r3; Cr2r4g). This assumes that
whenever the pairs having small contact counts are in
contact, the pair with the largest contact count is also in
contact. These are the two extreme cases, and the reality
could be somewhere in between.

� Average coarse graining: The third option is then to
choose some such intermediate value. Here, we use the
approximation that the coarse-grained contact count is
equal to the average of the two extreme contact counts
2200 Biophysical Journal 118, 2193–2208, May 5, 2020
mentioned earlier, namely Cmn ¼ 1
2
½ðCr1r3 þ Cr1r4 þ

Cr2r3 þ Cr2r4Þ þ maxfCr1r3;Cr1r4;Cr2r3;Cr2r4g�.
Conversion of contact counts to contact
probabilities: The normalization problem

The contact counts obtained from the chromosome confor-
mation capture experiments are not normalized. That is,
the contact count values can vary from experiment to exper-
iment, and the total number of contacts is not quantified.
These data cannot be compared across cell lines or across
different experimental sets. Although several normalization
techniques exist, the ICE method is one of the more widely
used techniques, in which through an iterative process,
biases are removed, and equal ‘‘visibility’’ is provided to
each bin or segment of the polymer. The resulting contact
count matrix is a normalized matrix in which

P
m

Cmn ¼ 1.

Although the existing normalization techniques help in
removing biases, they still only give relative contact proba-
bilities and not the absolute values. To accurately predict the
distance between any two segments in chromatin, it is essen-
tial to know their absolute contact probabilities. Because the
total number of genome equivalent (number of cells) cannot
be estimated in a chromosome conformation capture exper-
iment, the calculation of absolute contact probability from
the contact count is highly challenging. A simple technique
to normalize these counts is described here. The contact
count matrix can be normalized by imposing the following
constraint, namely that the sum of times any segment pairs
(m, n) are in contact ðCc

mnÞ and the number of times they are

not in contact ðCnc
mnÞ must be equal to the total number of

samples Ns. This is true for all bead pairs, i.e., Cc
mn þ

Cnc
mn ¼ Ns for all mn. Because only Cc

mn is known, two

limiting values of Ns are estimated using the following sce-
narios. In one scenario, it is assumed that for the segment
pairs (m, n) that have the largest contact count in the matrix,
m and n are always in contact in all cells. In other words,
Cnc
mn ¼ 0; in this case, Ns is simply equal to the largest

element of the contact count matrix. Because this is the
smallest value of Ns possible, it is denoted by
ðCc

mnÞmax ¼ Nmin. The other scenario estimates the sample

size from the row m for which the sum over all contact

counts is the largest, i.e., Ns ¼ maximum of

�P
n

Cc
mn

	
.

This assumes that m is always in contact with only one other
segment in a cell and there is no situation when it is not in
contact with any segment. This case is denoted as Nmax.
However, in a real system, there might be situations in
which segment m is not in contact with any of the remaining
segments. In such a case, Ns could be greater than Nmax. We
have investigated this question in the context of simulations,
in which we know the exact ensemble size and can
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normalize the contact count matrix with the exact ensemble
size, i.e., Ns. From this analysis, it was observed that there
are very few samples in which the bead m is not in contact
with any of the remaining beads. It supports our hypothesis
that Nmax could be considered to be the upper limit in esti-
mating the ensemble size Ns. Because the precise value of
Ns is not known in experiments, Ns is varied as a parameter
from Nmin to Nmax. To systematically vary Ns, for conve-
nience, a parameter Nf is defined,

Nf ¼ Ns � Nmin

Nmax � Nmin

; (20)

in the range of [0, 1]. Clearly, Nf ¼ 0 implies Ns ¼ Nmin,
which is the lower bound for Ns, and Nf ¼ 1 implies Ns ¼
Nmax, which is the upper bound. The contact probabilities
at various Nf-values are calculated as pmn ¼ (Cc
mn/Ns) where

Ns ¼ Nmin þ Nf(Nmax � Nmin).
For several values of Nf, the contact count matrices are

normalized, and IBD is carried out to obtain the optimal
interaction strengths between the bead pairs. Fig. 3, a
and b show the normalized contact probabilities at Nf ¼ 0
for cell lines K562 (ON state) and GM12878 (OFF state),
respectively (reference contact probabilities), when they
are coarse grained to 50 segments of length 10 kb each as
per the procedure described above, and the corresponding
recovered contact probability matrices for both the cell lines
from simulation are shown in Fig. 3, c and d. The corre-
sponding optimized interaction energies (εmn) are plotted
in Fig. 3, e and f. The values range approximately from
0 to 3kBT. Given that typical contact probability numbers
are very small, the optimized energies are just above thermal
FIGURE 3 Comparison of the reference normal-

ized contact probabilities (CPs) (a and b) with the

recovered CPs (c and d), obtained with the IBD

method for K562 and GM12878, respectively, at

Nf ¼ 0. The value of interaction strength parameter

εmn is shown for the (e) K562 (ON state) and (f)

GM12878 (OFF state) cell lines, respectively, at

the converged state. To see this figure in color, go

online.
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energy and are comparable to interaction energies of certain
proteins. Exact values of the interaction parameters have
been given in Tables S1 and S2 for the GM12878 and
K562 cell lines, respectively.

To compare the normalization method introduced in this
work with the normalization procedure that is commonly
used, namely the ICE technique, we have also carried out
the IBD procedure on an ICE-normalized matrix. More de-
tails of the ICE method that has been used here are given in
the Supporting Materials and Methods, Section S3. The
ICE-normalized contact matrix and the corresponding
recovered matrix through IBD for both the cell line K562
and GM12878 are shown in Fig. S3. Clearly, the IBD
method also recovers the contact probability matrix ob-
tained with the ICE normalization. As will be discussed in
further detail below, the normalization method has a signif-
icant effect on all the structural properties that have been
evaluated in the current work.

The spatial extent of the chromatin polymer, as quantified
by the square radius of gyration R2

g, for different values of Nf

is presented in Fig. 4. In the case of the cell line in which the
gene is ON (K562), the increase in R2

g for small values of Nf

is relatively less prominent and becomes nearly independent
of Nf as Nf approaches one. It is clear that contact probabil-
ities decrease with increasing Nf because Ns increases with
Nf. It is consequently expected that with sufficiently large
FIGURE 4 Spatial extension of the polymer chain quantified by the

radius of gyration, R2
g, computed at various values of the normalization

parameter Nf (see Eq. 20 for definition), for both K562 (ON state) and

GM12878 (OFF state) cell lines. All three coarse-graining techniques,

i.e., dependent, independent, and average, have been used. The black

dashed line represents the value of R2
g for a chain executing SAW statistics.

Blue and red lines indicate the Rg for ICE-normalized ON and OFF state,

respectively. Error bars represent a statistical uncertainty of one standard er-

ror of the mean. To see this figure in color, go online.
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Nf, R
2
g should approach the value for a self-avoiding walk.

We have simulated a self-avoiding walk using the SDK po-
tential with εmn ¼ 0; this represents a purely repulsive poten-
tial, and the result is shown as a black dashed line in Fig. 4.
In the cell line in which the gene is OFF (GM12878), the
value of R2

g increases relatively rapidly for small values of
Nf and reaches a nearly constant value for Nf T 0.4. How-
ever, the limiting value is significantly smaller than that of
a self-avoiding walk. This suggests that some significant in-
teractions are still present among the bead pairs, even for Nf

approaching 1. The influence of the different coarse-grain-
ing procedures was examined, and it was found that the
value of R2

g from all three coarse-graining procedures agreed
with each other within error bars (as seen from the data at
Nf ¼ 0, 0.2, and 0.5 for both cell lines). This suggests that
at least as far as R2

g is concerned, the choice of coarse-grain-
ing method is not vitally important.

However, the IBD results for ICE-normalized reference
contact probability predicts a very different value for Rg

of the ON state (blue line) and OFF state (red line). As
can been seen, the R2

g for ON state using ICE normalization
is close to the R2

g obtained here for OFF state at Nf¼ 0. Inter-
estingly this similarity is observed for many of the proper-
ties considered here, as will be discussed in more detail
below.
3D configuration of the a-globin gene locus

Shape functions

Because chromatin folded in three dimensions can have
spatial organization that is beyond simple spherically sym-
metric packing, various nonglobular 3D shape properties
(as described in Polymer Model) have been analyzed here.

Eigenvalues of the radius of gyration tensor for polymer
chains are usually reported in terms of ratios, either between
individual eigenvalues or with the mean-square radius of gy-
ration. For a chain with a spherically symmetric shape about
the center of mass, we expect hl2i i=hR2

gi ¼ 1/3 for i ¼ 1, 2, 3
and hl2i i=hl2j i ¼ 1 for all combinations i and j. For chain
shapes with tetrahedral or greater symmetry, the asphericity
B ¼ 0, otherwise B > 0. For chain shapes with cylindrical
symmetry, the acylindricity C ¼ 0, otherwise C > 0. With
regard to the degree of prolateness, its sign determines
whether chain shapes are preponderantly oblate (S ˛
[�0.2, 0]) or prolate (S ˛ [0, 2]). The relative anisotropy
(k2), on the other hand, lies between 0 (for spheres) and 1
(for rods).

All these properties are investigated for Nf ¼ 0 and 1 and
for the ICE normalization and compared in the ON and OFF
states, as displayed in Table 3. It is clear that although the
chain is highly nonspherical in both states, it appears to be
slightly more spherical in the OFF than in the ON state.
The biggest difference is observed at Nf ¼ 0 between ON
and OFF states. As we approach Nf ¼ 1, the difference



TABLE 3 Various Shape Properties Based on the Eigenvalues

of Gyration Tensor G Are Defined Here for Nf ¼ 0, Nf ¼ 1, and

ICE-Normalized Contact Matrix for K562 and GM12878 Cell

Lines

Shape properties K562 (ON state) GM12878 (OFF state)

Nf ¼ 0 Nf ¼ 1 ICE Nf ¼ 0 Nf ¼ 1 ICE

hl21i=R2
g 0.058 0.057 0.078 0.081 0.066 0.083

hl22i=R2
g 0.164 0.175 0.189 0.201 0.177 0.195

hl23i=R2
g 0.778 0.768 0.732 0.718 0.757 0.722

hl22i=hl21i 2.828 3.054 2.417 2.479 2.703 2.357

hl23i=hl21i 13.412 13.422 9.356 8.874 11.563 8.727

B/R2
g 0.667 0.652 0.599 0.578 0.636 0.583

C/R2
g 0.106 0.118 0.111 0.120 0.112 0.112

S 0.913 0.816 0.988 0.772 0.926 0.867

k2 0.545 0.513 0.537 0.452 0.525 0.497

FIGURE 5 Comparison of the number density of beads along the major

axis of the radius of gyration tensor for various values of the normalization

parameter Nf (see Eq. 20 for definition): (a) ON and OFF states at Nf ¼ 0,

(b) the OFF state, and (c) the ON state for various values of Nf. To see this

figure in color, go online.
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between the ON and OFF states is not so significant. With
ICE, there is not much difference between the two states.
As previously observed with the radius of gyration, ICE
values are very close to the OFF state at Nf ¼ 0.

Density profiles

To get a different prospective on the 3D organization of the
gene, the density distribution about the center of mass was
considered. To do this, all polymer configurations were
aligned along the major axis of the radius of gyration tensor
G, each bead position was binned, and the number density
of beads along the major axis was computed. As displayed
in Fig. 5 a, in GM12878 (OFF state) cells, the number den-
sity shows a single peak at the center of mass position, sug-
gesting a symmetric organization around the center of mass
along the major axis. In the case of K562 (ON state) cells,
the number density is seen to have a double peak, implying
a bimodal distribution of polymer beads around the center of
mass along the major axis (Fig. 5 a), as suggested by earlier
3D models for the a-globin gene (36,38). With an increase
in Nf, a slight decrease in the number density at the core of
the a-globin gene in the OFF state is observed (Fig. 5 b), and
a decrease in extent of bimodality is observed in the
ON state (Fig. 5 c). However, the differences for different
Nf-values are less prominent at the peripheral regions of
the globule. Data comparing the density profiles for the
three coarse-graining techniques (dependent, independent,
and average) are provided in the Supporting Materials and
Methods, Section S4. It was observed that the coarse-grain-
ing procedure did not have any influence on the density
profiles.

We have also compared the density profile corresponding
to the ICE-normalized matrix, displayed in Fig. 5 a along
with Nf ¼ 0. With the ICE normalization, both states
(ON and OFF) show a single peak at the center of mass.
The bimodal nature of the ON state is no longer observed.
This is a clear prediction that distinguishes the ICE-normal-
ized result from the other results and can be tested in future
experiments.
Biophysical Journal 118, 2193–2208, May 5, 2020 2203
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3D conformations

To obtain a snapshot of the 3D structure of the a-globin gene
locus, 1000 different configurations from the ensemble were
aligned along its major axis and then superimposed on top of
each other, as displayed in Fig. 6, for both cell lines at
different values of Nf and with the ICE normalization.
Each dot represents a bead, and to make them visible,
they have been made transparent to some degree. Different
colors in the plot represent the bead number along the con-
tour length of the polymer chain. As indicated from the
shape functions and the density profiles, the snapshot shows
that the structure is highly nonspherical in both cases. In
particular, the K562 (ON state) cell line chromatin has a
more extended configuration, with slightly higher density
away from the center of mass. As can be seen in Fig. 6,
the snapshot for Nf ¼ 0 has some differences with snapshots
for larger Nf-values. The value of Nf was seen earlier to
affect average properties like R2

g (Fig. 4). The snapshots in
Fig. 6 show a similar behavior as Rg, reflecting the variation
for small Nf and saturation for larger Nf.
3D spatial distances and contact probabilities

The 3D conformation of the a-globin gene locus has been
investigated earlier (36,37). These studies differ from this
work in some important respects. Firstly, they assume that
the contact counts between any two pairs can be converted
to an equilibrium distance between those pairs through a
certain predetermined functional form. Secondly, instead
of optimizing the interaction strengths to recover the contact
counts, their simulations attempt to recover the equilibrium
distances that have been derived from contact matrices. It is
FIGURE 6 Snapshots of 3D configurations, obtained by aligning chains along

top of each other with transparency. Configurations at different values of the norm

K562 and GM12878. The color assigned to each marker (blue to yellow) repre

polymer chain. To see this figure in color, go online.
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not clear in these cases whether the experimentally observed
contact counts will be recovered by simulations. In this
work, no assumptions have been made about the relation-
ship between spatial distance and contact probability for
any pair of beads. On the contrary, in this case, we can
compute the spatial distances (dmn) that are consistent with
the contact probability matrix. Further, no configuration
from the ensemble is discarded.

The spatial distances calculated in our work for the con-
tact probabilities in the ON and OFF state are shown in
Fig. 7 a for K562 (ON state) and in Fig. 7 b for GM12878
(OFF state) cell lines. Each point in these figures represents
the ensemble-averaged 3D distance between a given pair of
beads (y axis) having a contact probability as indicated in
the x axis. As is immediately apparent, a wide range of
3D distances is possible, unlike what was assumed in earlier
studies. It appears that the average 3D distance is not just a
function of contact probability pmn (where the interaction be-
tween the beads plays a role) but is also a function of the dis-
tance along the contour between the beads (jm � nj)—the
color variation in Fig. 7, a and b indicates the influence of
contour length. The red lines in both figures are fitted power
laws to the data. In both cases, the exponents are close
to �1/4. But the interesting element here is the variability
(scatter) in the data, which shows that for a given contact
probability value, there can be multiple values of 3D dis-
tances with deviations of many units.

To understand this variability better, we bin the same data
and plot them as violin plots that display themean 3Ddistance
for a given small range of contact probabilities, as shown in
Fig. 8, a and b. It is clear that the distribution of points around
the mean is very diverse—bimodal in a few cases and with an
extended tail in many cases—suggesting that a simple
the major axis of the radius of gyration tensor and superimposing them on

alization parameter Nf (see Eq. 20 for definition) are displayed for cell lines

sents the bead number along the contour length (bead 1 to bead 50) of the



FIGURE 7 Dependence of mean 3D distances dmn on contact probabili-

ties pmn for (a) K562 (ON state) and (b) GM12878 (OFF state) cell lines,

respectively, for Nf ¼ 0. For the K562 (ON state) cell line, the contact prob-

abilities are bounded by power laws dmn f ptmn, where t varies from �1/20

(upper bound) to �1/4 (lower bound), as indicated by the green and

magenta dashed lines. Similarly, in the GM12878 (OFF state), t varies

from �1/12 to �3/10. The red line indicates the power law fitted to the

simulation data points. The black dashed line represents the analytical rela-

tion between the contact probability and a spatial distance for an ideal poly-

mer chain. To see this figure in color, go online.

FIGURE 8 Violin plots that display the probability distribution of mean

3D distances for selected ranges of contact probabilities in (a) the K562

(ON state) cell lines and (b) the GM12878 (OFF state) cell lines for

Nf ¼ 0. To see this figure in color, go online.
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functional formbetween themean 3Ddistance and the contact
probability may not be feasible. It must be reiterated here that
many previous studies have assumed power-law relations such
as dmnf ptmn can be used, with exponents t¼ �1 (32,33) and
t¼�1/2 (35), independent of jm� nj. Some groups have also
assumed exponential (34) and logarithmic decay of distance
with probability (36). As shown above, the results reported
here do not support the usage of such simple functional forms.
However, for an ideal chain, we know that contact probability
p f s�3/2 and the average 3D distance scales as d f s1/2,
where s is the contour length between any two polymer beads.
Combining these two, we get df p�1/3. This is shown by the
black dashed line in Fig. 7. Clearly, the relation betweenmean
3D distance and the contact probability is significantly more
complex than for a simple ideal chain. The relationship and
its variability for Nf ¼ 1 and ICE normalization are discussed
in the Supporting Materials and Methods. In these instances,
as well, the mean 3D distance is observed to be a function of
both the contact probability and contour distance jm � nj.
CONCLUSIONS

The 3D organization of chromatin based on publicly avail-
able chromatin conformation capture experimental data
has been investigated. Unlike many existing models, our
Biophysical Journal 118, 2193–2208, May 5, 2020 2205
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work treats this as an inverse problem in which interactions
between different chromatin segments are computed such
that the experimentally known contact probabilities are re-
produced. A polymer model and an IBD algorithm have
been developed for this problem that have the following ad-
vantages: 1) they do not assume any a priori relation be-
tween spatial distance and contact probability, 2) they
optimize the interaction strength between the monomers
of the polymer chain to reproduce the target contact proba-
bility, and 3) because hydrodynamics interactions are
included, they are capable of investigating the dynamics
of the chromatin polymer.

The main results of this work are as follows: 1) the IBD
method was validated for a bead-spring chain comprising
of 45 beads. It was observed that IBD reproduced the con-
tact probability and the interaction strength (within 5% of
error), reflecting its reliability. 2) Three different coarse-
graining procedures—independent, dependent, and
average—were used to map between the experimental and
coarse-grained contact matrices. For the gene locus studied
in this work (a-globin gene), no significant differences be-
tween the three cases was observed, both for the gene exten-
sion and the density profile. 3) A procedure for normalizing
the contact count matrix was introduced with a parameter Nf

varying from 0 to 1 that reflected the two different extreme
scenarios for estimating the sample size. For GM12878
(OFF state), the gene extension increases rapidly initially
with increasing Nf, whereas for K562 (ON state), on the
other hand (which is already in an extended state), there is
a very little scope for further extension with increasing Nf.
4) We also simulated the K562 and GM12878 cell line
data with ICE normalization. Structural properties such as
shape properties, density profile, and 3D configuration
show a significant difference between ICE and other
normalization technique. 5) Because there is a relationship
between the normalization method (value of Nf or ICE)
and physically measured properties such as the radius of gy-
ration, it is conceivable that the appropriate normalization
method can be inferred from experiments such as FISH,
ChIP-Seq, etc. 6) The structural properties of the a-globin
gene locus were investigated in terms of shape functions,
bead number density distributions, and 3D snapshots. In
the ON state (K562), a-globin appears to lack any promi-
nent interactions and exists in an extended structure,
whereas in the case of GM12878 (OFF state), the gene ap-
pears to be in a folded state. This is also consistent with the-
ory because in the ON state (K562), the transcription factors
need to access the gene, whereas the structural status of the
OFF state (GM12878) should be to avert the transcription
factor, resulting in gene silencing. 7) The density profile
along the major axis of the radius of gyration tensor also
supports the extended structure in cell line K562 (ON state)
and a sharp cluster of monomers at the core of GM12878
(OFF state). 8) The dependency of spatial distance on con-
tact probability has been investigated, and it is shown that
2206 Biophysical Journal 118, 2193–2208, May 5, 2020
the usage of simple functional relationships may not be
realistic. 9) No bimodal nature was observed in the density
profile of ON state with ICE normalization. Both ON and
OFF states show a single peak at the center of mass, indi-
cating a collapsed globule.

Most of the results in this work are predictions that may
be tested in suitably designed experiments. We predict
that the spatial segmental distance is not only dependent
on the contact probability but also on the segment length
along the contour. One of the ways to test our prediction
is to perform 3D FISH on segment pairs having the same
contact probability but different segment lengths. A differ-
ence in distance obtained from the FISH experiment will
validate the predictions made in this work. Shape properties
and density profiles of the a-globin locus are also predicted
and can be tested using techniques like super-resolution
microscopy and electron microscopy. We require these
additional experiments to determine the appropriate normal-
ization. Our work predicts that 3D distances, shape proper-
ties, density profile, etc. will depend on the precise nature of
normalization. Hence, the appropriate normalization meth-
odology may be determined by comparing our results with
future experiments that measure these quantities.

One of the concerns regarding our work could be that this
study simulates only a short segment. However, most of the
biologically relevant processes happen on the length scale of
a gene (or a few genes). Hence, it is essential to zoom in and
study the organization and dynamics of short segments.
Given that chromatin is organized into small local domains
(topologically associated/chromatin domains) having only
local interactions predominantly, it may be reasonable to
analyze one locus or domain at a time. The IBD algorithm
can also be used to study the static and dynamics properties
of the whole genome by considering a longer polymer chain.
Several sampling techniques can be utilized to sample the
phase space efficiently, such as parallel tempering tech-
niques (64). This method can be used to check the validity
of the simplest model for a given contact probability matrix.
In other words, if a model does not converge to the desired
probabilities even after proper sampling, it implies that the
model (as represented by the Hamiltonian or the included
physics) may require modification, and a more sophisticated
model may be required. For instance, we have chosen the
simplest model that can reproduce the experimentally
observed contact probability map. A lack of convergence
(even after proper sampling) may imply the need for adding
additional physics into the model. For example, certain far-
away contacts may require the addition of nonequilibrium
processes like loop extrusion. Because we use Brownian dy-
namics, our model can be extended to incorporate such
nonequilibrium processes.

Because the model has dynamics with hydrodynamics in-
teractions built in, it has the potential to be used to address
problems in the future involving dynamics of the 3D chro-
matin polymer between different chromatin states.
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Currently, in this model, only chromatin configuration cap-
ture data have been considered. However, the model may be
extended to incorporate more data (histone modification
data, ChIP-Seq data of certain proteins) and address chro-
matin organization on the length scale of genes in more
detail. Recent experiments suggest that 3D chromatin orga-
nization is driven by two different dynamic processes,
namely phase separation and loop extrusion. Because our
model is capable of studying dynamics, the model may be
extended to investigate the interplay between different dy-
namic processes in determining chromatin organization.
With the capability of analyzing the 3D configuration along
with chromatin dynamics, IBD can complement experi-
mental research and also provide deeper and more useful in-
sights based on the same.
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