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Abstract
Studies in animal models of autism spectrum disorders (ASD) suggest atypical early neural activity is a core
vulnerability mechanism which alters functional connectivity and predisposes to dysmaturation of neural circuits.
However, underlying biological changes associated to ASD in humans remain unclear. Results from functional
connectivity studies of individuals diagnosed with ASD are highly heterogeneous, in part because of complex life-long
secondary and/or compensatory events. To minimize these confounds and examine primary vulnerability
mechanisms, we need to investigate very early brain development. Here, we tested the hypothesis that brain
functional connectivity is altered in neonates who are vulnerable to this condition due to a family history of ASD. We
acquired high temporal resolution multiband resting state functional magnetic resonance imaging (fMRI) in newborn
infants with and without a first-degree relative with ASD. Differences in local functional connectivity were quantified
using regional homogeneity (ReHo) analysis and long-range connectivity was assessed using distance correlation
analysis. Neonates who have a first-degree relative with ASD had significantly higher ReHo within multiple resting
state networks in comparison to age matched controls; there were no differences in long range connectivity. Atypical
local functional activity may constitute a biomarker of vulnerability, that might precede disruptions in long range
connectivity reported in older individuals diagnosed with ASD.

Introduction
Autism spectrum disorders (ASD) are increasingly

common, with current prevalence estimated to be 1 in 59
children1. Infants with a family history of ASD are known
to have greater vulnerability to developing ASD compared
to infants without family history. The higher likelihood is
estimated to be 2-fold for cousins, 4.8-fold for half siblings

and between 9.3- and 17-fold for full siblings2,3. This
increased but variable likelihood may be explained
because the underlying etiology comprises a highly het-
erogeneous interaction of genes and the environment,
within every individual4–6. In addition, ongoing genetic
and environmental mechanisms cause secondary and/or
compensatory changes in the brain across the lifespan.
Such complexity may explain why the results of studies
exploring pathophysiology in individuals with a diagnosis
of ASD are often contradictory or inconclusive. It suggests
that what is inherited or acquired in ASD is not fixed, but
may better be conceptualized as a “vulnerability” to brain
dysmaturation7. In line with this, we now know that, even
as early as toddlerhood, parental intervention can alter the
developmental trajectory of infants with family history of
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ASD8,9. Therefore, to truly understand the biology of
ASD, we must start by examining how family history
might make the brain vulnerable to dysmaturation, before
postnatal events cloud the interpretation of results.
Evidence from small rodent models suggests that the

pathophysiological consequences of genetic (and/or
environmental) risks for ASD are present from very early
in development and include atypical synaptic mechanisms
and altered neural activity10–14. These preclinical studies
consistently report an increase in spontaneous synchro-
nous activity in the brain of rodents carrying risk genes for
ASD around what would be the equivalent time of birth in
humans15. This aberrant activity is first seen in the pri-
mary sensory cortices12 and then later involves higher
order regions such as the prefrontal lobe13. As early
synchronous activity in local circuits is thought to be an
essential step in the establishment of functional con-
nectivity which helps to shape the topography of brain
networks16,17, its disruption could potentially have far-
reaching consequences for brain development. However,
no-one has tested whether vulnerability to ASD due to
family history is associated with aberrant activity patterns
in the perinatal time window as suggested by results from
studies of early brain development in rodents carrying risk
genes for ASD.
Dynamic changes in the blood oxygen level dependent

(BOLD) signal during functional magnetic resonance
imaging (fMRI) permits assessment of neural activity
across the whole brain at both a local and systems-wide
level in humans. Using these methods, individuals with a
diagnosis of ASD have been reported to have both under
and over connectivity in diverse local networks, as well as
in long-range between network connections [see ref. 18 for
a review]. Although these studies have been important in
revealing a central role for functional dysconnectivity in
ASD, untangling primary mechanisms from secondary
consequences of living with ASD, has not been possible.
This is of particular relevance as in contrast to the
aforementioned studies in individuals with an established
diagnosis of ASD, the use of functional connectivity to
understand typical and atypical early brain development is
a much newer endeavor19. Recent studies of functional
connectivity in typically developing infants show that
connectivity between voxels increases in the somatosen-
sory cortex from 30 to 40 weeks PMA20 and long range
connectivity between distal regions of the brain increases
later, from 4 to 9 months postnatally21. However, it is
unknown how local and long-range connectivity matures
in the perinatal window in neonates with a family history
of ASD, and therefore at higher likelihood of atypical
development compared to peers without a family history.
Here, we used fMRI to explore the pathophysiological

signatures of early life vulnerability to ASD. Newborn
infants were categorized into two groups, with family

history of ASD (FAM+) and without family history of
ASD (FAM−). Participants in the FAM+ group had a
first-degree relative with ASD, and therefore were at a
higher likelihood of atypical development, while neonates
in the FAM− group had no first-degree relatives with
ASD. We studied the synchronicity/local functional con-
nectivity of emerging brain networks using ‘Regional
Homogeneity’ (ReHo) analysis22; as this approach has
been shown to be sensitive to differences in short-range
functional activity in older children and adults with
ASD23–25. We then calculated long-range functional
connectivity between 92 distinct brain regions using dis-
tance correlations26. Based on the preclinical literature
and current knowledge about typical functional con-
nectivity development23,24, we hypothesized that syn-
chronous activity/local connectivity would be higher in
the FAM+ than FAM− group. We also hypothesized that
because long-range connectivity has yet to begin to
mature at this age24, there would be no group differences
on this measure.

Material and methods
A total of 33 newborn babies with a first degree relative

with ASD were recruited as part of the EU-AIMS Brain
Imaging in Babies (BiBs) study approved by the South
London, National Research Ethics Committee. A detailed
medical and psychiatric history was taken from the
mother of each potential participant, as well as a com-
prehensive screen to exclude major maternal medical
conditions during pregnancy or delivery complications
affecting infant health. After applying strict criteria to
exclude fsMRI data corrupted by head motion during
acquisition (further details in Data processing section) and
cases with incidental intracerebral findings, the final study
group consisted of 20 FAM+. 20 age matched controls
(FAM−) without any family history for neurodevselop-
mental disorders or any other incidental findings were
selected from the entirely independent developing human
connectome project (dHCP) cohort. The characteristics of
the sample are described in detail in Table 1. Further
demographic details about maternal depression scores,
maternal age, maternal years of education, maternal body
mass index and baby’s birth weight are provided in Sup-
plementary Figure 1. Shapiro–Wilk test confirmed all
demographic variables were normally distributed in both
groups, however we report median and range because of
the small sample size. Within the final dataset for analysis,
of the FAM+ group, 16 had a first degree relative with
ASD and 4 had a first degree relative with both ASD and
ADHD. All infants in the final sample had a normal
appearance on structural MR images (as reported by a
Neonatal Neuroradiologist) and did not have a history of
birth asphyxia or significant clinical difficulties in the
neonatal period.
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Data acquisition
Written informed consent was taken from the parents

of all participants prior to data acquisition on scan date.
All scans were acquired with the same protocol on the 3T
MRI scanner in the clinical research facility located at the
Neonatal Intensive Care Unit at St Thomas’ Hospital,
London. High temporal resolution resting state fMRI data
was acquired in a 3T Philips Achieva scanner (Best, NL)
with a custom made 32 channel neonatal head coil and
imaging system (Rapid GmbH, Riedstadt DE)27, using a
multi-slice echo planar imaging (EPI) sequence with
multiband (MB) excitation (MB factor 9) and parameters;
TR: 392 msec, TE: 38 msec, spatial resolution: 2.15 mm
isotropic, total time: 15 min 1.6 s (2300 volumes)28. High-
resolution T1 and T2 weighted images were acquired for
registration and clinical reporting purposes. All data was
acquired during natural sleep following feeding. Infants
were wrapped still and securely using a vacuum-evacuated
mattress (Med-Vac, CFI Medical Solutions, Fenton, MI,
USA) and hearing protection was applied (molded dental
putty (President Putty, Coltene Whaledent, Mahwah, NJ,
USA) in addition to adhesive earmuffs (MiniMuffs, Natus
Medical, Inc., San Carlos, CA, USA)).

Functional data pre-processing
Data pre-processing was carried out using a pipeline

specifically developed and optimized for sources of arti-
facts inherent to neonatal fMRI data, including uncon-
trolled head motion and developmental differences in
brain configuration and tissue contrast. Images were
processed using tools implemented in the FMRIB Sofware
Library (FSL)29. The framewise displacement with root-
mean square matrix calculation (FDRMS) of each volume

(from the sum in all directions of the rigid body motion
between consecutive volumes) was calculated for all 2300
acquired volumes. Acquired data was cropped to 1600
continuous volumes with the least amount of motion for
further analysis. Subjects with high framewise displace-
ment (FDRMS > 0.5 mm) in more than 80 volumes out of
1600 total volumes (5% of cropped dataset) were excluded
from analysis. The final dataset comprised 20 FAM+
infants and 20 FAM− infants. Independent component
analysis (ICA) as implemented in MELODIC (Model-free
FMRI analysis using Probabilistic Independent Compo-
nent Analysis [PICA, v3.0]) was used to identify signal
artifacts (motion, MB and cardiac / respiratory) and to
train a classification algorithm for automatic identification
of these sources of noise, which were then regressed out
from the data using the FSL FIX tool30,31. Next, we run
topup to estimate the warp embedding field distortions
caused by susceptibility artifacts32. We used this warp,
combined with each subject’s anatomical T2, to non-
linearly transform each subject’s functional data to a 41-
week-old neonatal template33 using FSL registration tools.

Functional data analysis
Pre-processed functional data in standard space was

used to run temporal concatenated group ICA with a
fixed dimensionality of 25 components34.
Voxel-wise regional homogeneity was assessed in native

space by calculating the Kendall coefficient of con-
cordance between the BOLD contrast time-series of a
given voxel with its 26 adjacent neighbors using AFNI
3dReHo tool35. The calculated Kendall’s Tau (τ) was then
converted to Pearson’s r (r= sin(πτ/2)) and transformed
into Fisher’s z-scores for standardizing the values across
the sample for statistical comparison36. ReHo data were
then warped into standard space using the same method
and warp that was used to register the functional data to
the 41-week-old neonatal template33.
Anatomical parcellation of each subject was based in the

neonatal version of AAL parcellation37,38 adapted to the
high-resolution dHCP neonatal template space39. The
parcellation was then adapted to the specific 41 week old
neonatal template used in this study33. Long-range func-
tional connectivity between the resulting 92 regions (90
cortical and subcortical regions together with right and
left cerebellum) was characterized using multivariate
distance correlation26.

Statistical analysis
General linear model and dual regression methods

implemented in FSL were used to identify group means
and test differences for each network identified with
group ICA.
Selected ICA networks were binarized (threshold p <

0.01) and used as masks to extract ReHo values of each

Table 1 FAM+ and FAM− group characteristics.

FAM+ (n= 20) FAM− (n= 20)

median range median range

Birth GA (weeks) 39.64 [34.43–41.14] 40.00 [34.14–42.00]

Birth weight (kg) 3.42 [2.80–4.20] 3.32 [1.57–4.25]

Birth head

circumference (cm)

33.50 [32.00–37.00] 34.50 [30.00–36.00]

Scan PMA (weeks) 42.36 [40.00–44.86] 42.36 [39.57–44.71]

Scan weight (kg) 4.20 [2.90–5.20] 3.55 [2.90–4.50]

Scan head

circumference (cm)

36.60 [34.00–39.00] 35.85 [34.00–37.60]

Male/Female 14/6 — 13/7 —

Gestational age (GA) at birth, weight in kilograms (kg) at birth, head
circumference in centimetres (cm) at birth, post menstrual age (PMA) at the
day of scan, weight in kilograms (kg) at the day of scan, head circumference (ci.)
in centimetres (cm) at the day of scan, and total of male and female subjects are
described for each group.
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network. Cohen’s d was used to compare ReHo values
between networks. Permutation testing as implemented in
FSL’s Randomize (v2.1)40 with false discovery rate (FDR)
correction for multiple comparisons was used to compare
regional homogeneity z-score maps and distance corre-
lation matrices between groups controlling for gestational
age at birth, PMA at scan, sex and motion outliers.

Results
Resting state networks
The topography of resting state networks (RSN) was

characterized using probabilistic independent component
analysis (ICA)34. Group independent component analysis
revealed twelve distinct networks which corresponded
with previously identified RSNs41,42. The somatosensory/
motor (paracentral), motor, somatosensory, auditory,
lateral visual, mid visual, left and right posterior temporal
(temporo-parietal), default mode network (DMN), Frontal
(anterior fronto-parietal), parietal (posterior fronto-par-
ietal) and retrosplenial networks that were observed for
the entire group are represented in Fig. 1. Dual regression
analysis revealed no differences between groups in the
spatial distribution of the RSNs.

Network regional homogeneity
The median ReHo value for each RSN was calculated

for each subject. We observed no significant differences
between groups for the median ReHo values. Across all

subjects, ReHo median values in the somatosensory/
motor (paracentral) network were significantly higher
than any other network, with the greatest difference
observed in comparison to the DMN (d= 2.1, corrected p
< 0.01). Somatosensory and Motor networks also showed
significantly higher ReHo in comparison to the Auditory,
Posterior Temporal right and left, Frontal, DMN and
retrosplenial networks, with greatest differences observed
relative to the DMN (d= 1.34, corrected p < 0.01). Mid
Visual network showed significantly higher ReHo relative
to the posterior temporal network left and right (d= 0.9,
corrected p < 0.01) and the Frontal network showed
higher ReHo compared to the DMN (d= 0.8, corrected p
< 0.01) (see Fig. 2).

Within network short-range functional connectivity
A voxel-wise non-parametric two sample unpaired

T- test of the Fisher’s z-scores (with age at birth, age at
scan and gender as covariates and with false discovery
rate correction, p < FAM−0.001) demonstrated ReHo
values were significantly higher in the FAM+ group
compared to the FAM−. These differences were loca-
ted within the somatosensory/motor (paracentral),
lateral visual, mid visual, auditory, posterior temporal
left, frontal, parietal, DMN and retrosplenial networks.
There were no networks where the FAM+ group had
significantly lower ReHo values than the FAM− group
(see Fig. 3). The T-statistic maps threshold between

Fig. 1 Resting State Networks in the Neonatal Brain. Coronal, axial and sagittal examples of 12 independent components extracted with
probabilistic ICA are overlaid on a neonatal term-equivalent template. The spatial representation of the RSN was threshold to a z-statistic between 3
and 10. The 12 ICA networks depicted correspond to somatosensory/motor (paracentral), motor, somatosensory, auditory, lateral visual, mid visual,
left and right posterior temporal (temporo-parietal), default mode network (DMN), Frontal (anterior fronto-parietal), Parietal (posterior fronto-parietal)
and retrosplenial RSNs.
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t= 2.6 and t= 5 for each of the nine networks with
significantly different ReHo values are provided in
Supplementary Figure 2.
Additional analysis retaining only the infants that were

born at term equivalent age and excluding the infants that
were born at preterm equivalent age showed the same
significant differences between the FAM+ and FAM−
subjects. There was no material difference in findings
aside from the observation that the spatial extent of sig-
nificant clusters was qualitatively larger; all results were in
the same regions.

Long-range functional connectivity
For both groups, we observe a tendency towards higher

DC values between central regions parieto-parietal, par-
ietal and frontal regions, particularly the prefrontal and
orbitofrontal areas, as well as between parietal and sup-
plementary motor cortex. There were no significant dif-
ferences in DC values for any of the ROI pairs between
the 2 groups (see Fig. 4).

Discussion
A peak in synchronous activity in brain circuits

maturing in the perinatal period is a fundamental feature
of neural circuit development17,43. Here, we used a com-
bination of high temporal resolution fMRI, an optimized
age-specific image processing pipeline, ReHo analysis and
ICA, as well as distance correlations analysis, to char-
acterize short- and long-range functional connectivity in
resting state networks in human infants shortly after birth.
We show that newborn infants with family history of
ASD, have higher local connectivity levels than control
infants, but no difference in long range connectivity. The
highest values of ReHo were found in the sensory net-
works of both groups, which are known to mature during
this perinatal period.

Mechanisms underpinning atypical local functional activity
In the mammalian brain, synchronous activity com-

mences around the equivalent period to mid-gestation in
humans. Mouse studies have found that spontaneous
activity is largely modulated by synaptic GABAergic44,45

and glutamatergic signaling46,47. In mice, highly syn-
chronous oscillations slowly disappear as inhibitory
properties mature48. The shift of GABA from excitatory
to inhibitory is essential for experience dependent
mechanisms to commence and foster further maturation
of neural networks49. This process occurs in the mouse
somatosensory and visual cortex within the first two
weeks of postnatal life (equivalent to the last seven weeks
of human fetal development)50,51; but the transition
occurs later in higher order regions such as the frontal
lobe52. Although the timing of these events in the human
brain is uncertain, recent post mortem studies in humans
suggest a similar profile as GABAergic interneurons do
not migrate to the frontal lobe until the first 5 to 7 months
after birth53. Given the critical role for many ASD genes in
the regulation of synaptic mechanisms54,55, we suggest
that genetic risks for ASD in the FAM+ group contribute
to anomalies in local activity/functional connectivity
patterns observed in this cohort. Evidence suggests
genetic regulatory processes of diverse origin appear dis-
rupted in ASD consistently affecting neuronal activity56,57.

Implications for brain development in childhood
Structure and Function
The abnormalities observed in our FAM+ group at

birth are in line with atypical connectivity reported in
older children and adults with a diagnosis of ASD.
ReHo differences in ASD are highly heterogeneous
across different developmental stages, showing over-
connectivity earlier on followed by under-
connectivity24,25,58. The widely varied maturational

Fig. 2 Within RSN local functional connectivity. The median of each subject for the somatosensory/motor (ss_mot), motor, somatosensory (ss),
auditory, mid visual (mid_vis), lateral visual (lat_vis), left (p_temp_l) and right posterior temporal (p_temp_r), the default mode network (DMN),
Frontal (anterior fronto-parietal), Parietal (posterior fronto-parietal) and retrosplenial RSNs is represented in a data point within a boxplot for each RSN.
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Fig. 3 Local functional connectivity differences between FAM+ and FAM− sample. The binarized mask of each resting state network (lilac) is
overlaid on a T2 weighted 42 PMA week template. The results of a non-parametric t-test comparing ReHo Fisher z-scores between groups are
depicted in red-yellow. The somatosensory/motor, lateral visual, mid visual, auditory, left posterior temporal, parietal, frontal, DMN and retrosplenial
RSNs showed extensive clusters of significantly higher ReHo in the FAM+ sample after false discovery rate (FDR) correction.
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trajectories in individuals with ASD23,59,60 may reflect
heterogeneity that is established in early development,
which is then influenced by on-going environmental
exposures and/or compensatory mechanisms across
the life-span.

Cognition and Behavior
Early anatomical and functional alterations in lower-

order brain networks also fit with atypicalities in visual,
auditory and tactile information processing in older
individuals with ASD61; and now recognized in DSM-562.
These, unusual sensory features are now thought to
appear in advance of ‘higher-order’ clinical abnormalities.
Infants with family history of ASD at 3 months have been
reported to have a higher prevalence of unusual sensory
behaviors63 and at 9 months they have enhanced visual
search which predicts autistic symptom severity at
24 months64. Similarly, toddlers with ASD who are clas-
sified as ‘sensory reactive’, have less mature language
abilities65. It is therefore plausible that the atypical activity
patterns observed in ‘lower-order’ networks within our
FAM+ sample might represent and ‘imbalance’ in the
sequence and/or trajectory of lower and higher-order skill
development.
However, although differences in sensory regions

were prominent, differences did involve other net-
works. Thus, it is possible that this activity profile
could be a generalized characteristic which acts across
the whole-brain of neonates with a family history of
neurodevelopmental disorders but is most evident in
sensory behaviors because these are developing at the
time of examination.

Building blocks of long-range functional activity
The strong alterations in local connectivity in the FAM+

group contrast with the absence of any significant differ-
ences in long-range connectivity between the FAM+ and
FAM− groups. Functional integration between distant
regions is known to mature during the first postnatal year
in typically developing infants21. Thus, disruptions to local
activity whether experience dependent in sensory regions
or spontaneously driven in higher order regions might
precede atypical interaction with other brain regions later
in development66, causing what has been termed a
“developmental disconnection”67. Consistent with this,
pioneering studies of young infants with family history of
ASD have used functional data to explore network
dynamics and have shown that reduced network efficiency
at 6 months is associated with ASD like traits at
24 months68. A similar study in older infants found that
higher functional connectivity between distal regions was
linked with repetitive behavior at 24 months69. Taken
together, our results indicate atypical local connectivity
may precede the long-range connectivity anomalies
associated with ASD that appear later in life and suggests
a potential vulnerability mechanism which predisposes to
the patterns observed in older age groups.

Idiosyncratic activity patterns and outcome
Although we plan to follow the development of our

participants into early childhood, we emphasize that this
study was not designed to provide a predictive test of a
binary diagnostic outcome. Rather, the goal of this study
was to test a biological hypothesis regarding vulnerability
mechanisms for ASD. Although our findings arise from
groups defined by their differences in vulnerability, in this

Fig. 4 Long-range connectivity in the FAM+ and FAM− sample. The distance correlation between 92 anatomical regions of interest is depicted
for the FAM+ in the right and the FAM− in the left. Strongest correlations can be observed in yellow within the central and parietal regions.
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cross-sectional study, we cannot exclude the possibility
that the activity differences observed within the FAM+
group may reflect resilience rather than risk, as not all the
group will have developmental difficulties. To properly
address this issue, we require longitudinal studies and
going forward we plan to follow-up these infants to for-
mally assess if they later develop a neurodevelopmental
disorder. Future work will determine how connectivity
patterns change with age and we will take a dimensional
approach that captures future neurodevelopmental traits
(in addition to binary diagnostic outcomes). We suggest
that the results observed here describe an atypical
mechanism that features high local functional con-
nectivity in the perinatal period. That is, the neonatal
activity ‘finger-print’ across functional networks of an
individual with family history of ASD may eventually map
to an individual’s phenotype. This is important, as we
know from animal studies that altering the environment/
experience can shape the development of these networks.
We also know that altering the early human environment,
for example through parent intervention, can improve
outcomes in ASD8,9. Therefore, an individual’s functional
connectivity pattern may someday help to provide a
personalized set of targets to optimize outcomes in infants
vulnerable of developing neurodevelopmental disorders.

Limitations
Data were acquired in this study using a dedicated

neonatal MR imaging system27 and an optimized high
temporal resolution fMRI sequence and data analysis
pipeline. This allowed us to address specific challenges
inherent to neonatal fMRI studies and avoid sources of
potential bias in the analysis. Whilst it is known that
ReHo can be confounded by partial volume errors leading
to the inclusion of non-gray matter tissue25, we found
there were no significant differences in gray matter
volume between groups; and we were further able to
mitigate this effect through the relatively high spatial
resolution of our fMRI data (2.15 mm isotropic) and
through spatial normalization to an age-specific structural
atlas33.
As head motion during fMRI data acquisition is known

to cause signal artifact and significantly affect estimates of
functional connectivity70, we applied extremely strict data
exclusion criteria for head motion in this study: analyzing
only 1600 continuous volumes of the total 2300 acquired
in each dataset to ensure that absolute head displacement
was less than 0.5 mm for 95% of the data; and discarding
datasets entirely from infants where greater than 5% of the
acquired volumes were corrupted by FD > 0.5 mm.
Although the total duration of the available timeseries for
each infant to was therefore reduced to 10min 27 s, the
very high temporal resolution of the data ensured that our
ReHo measurements remained robust71. This high

sampling rate was also important as it allowed improved
removal of physiological noise which can be problematic
in neonatal fMRI data as infants have naturally higher
breathing and cardiac pulsation rates72.
As it was noted in the discussion, the lack of outcome

data makes it difficult to ascertain the association between
the observed findings with behavior later in infancy.
Future studies will aid to disentangle whether the repor-
ted atypical activity patterns in newborn infants are
associated to typical or atypical behavior.

Conclusions
We demonstrate for the first time that human neonates

with a family history of ASD have increased local func-
tional connectivity within RSNs. The observed con-
nectivity may contribute to early atypical behaviors
reported in some toddlers with a family history of ASD
and may precede differences in functional connectivity
seen in older individuals with ASD. Future studies will
examine how functional connectivity characteristics relate
to later cognitive development, whether elevated local
functional activity predicts individual outcomes in later
childhood and whether these can be modulated during
early development through interventional strategies.
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