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Abstract
The primordium of the exoskeleton of an insect is epithelial tissue with characteristic patterns of folds. As the insect devel-
ops from larva to pupa, the spreading of these folds produces the three-dimensional shape of the exoskeleton of the insect. 
It is known that the three-dimensional exoskeleton shape has already been encoded in characteristic patterns of folds in 
the primordium; however, a description of how the epithelial tissue forms with the characteristic patterns of folds remains 
elusive. The present paper suggests a possible mechanism for the formation of the folding pattern. During the primordium 
development, because of the epithelial tissue is surrounded by other tissues, cell proliferation proceeds within a confined 
geometry. To elucidate the mechanics of the folding of the epithelial tissue in the confined geometry, we employ a three-
dimensional vertex model that expresses tissue deformations based on cell mechanical behaviors and apply the model to 
examine the effects of cell divisions and the confined geometry on epithelial folding. Our simulation results suggest that the 
orientation of the axis of cell division is sufficient to cause different folding patterns in silico and that the restraint of out-
of-plane deformation due to the confined geometry determines the interspacing of the folds.

Keywords  Epithelial tissue folding · Imaginal primordia development · Multicellular dynamics simulations

1  Introduction

Holometabolous insects undergo a remarkable change 
in surface shape as they grow from larvae to pupae. The 
mechanism enabling this change is hidden in the structure of 
imaginal primordia in the larval body. The imaginal primor-
dium comprises epithelial monolayer tissues that are highly 
folded in a compact manner. Upon the onset of pupation, 
these folds spread out to form the three-dimensional (3D) 
shape of the exoskeletal body including appendages of the 
insect, such as legs and horns.

Folds of epithelial tissue are not limited to the imaginal 
primordium but are also found in organs of vertebrates, such 
as brains (Tallinen and Biggins 2015), oviducts (Koyama 

et al. 2016), and intestines (Hannezo et al. 2011; Krajnc 
and Ziherl 2015). Tangential expansion of gray matter 
constrained by white matter is important to the formation 
of brain folds (Tallinen and Biggins 2015; Tallinen et al. 
2016). Intestinal villi are formed by cell proliferation in a 
monolayer constrained by the underlying stroma. Such a 
constrained growth of tissue results in compression of the 
tissue that leads to a mechanical instability such as buckling. 
Folded shapes are observed in the typical patterns of engi-
neering materials that have buckled (Chan and Crosby 2006; 
Guvendiren et al. 2010). Buckling is therefore anticipated 
to be a mechanism of folding epithelial tissues from the 
mechanical viewpoint. In fact, the tissue folding mentioned 
above has been explained by mechanical instability arising 
from constrained tissue growth (Drasdo 2000; Hannezo et al. 
2011; Krajnc and Ziherl 2015; Tallinen and Biggins 2015; 
Tallinen et al. 2016).

Although there is potentially a mechanism of folding 
epithelial tissues that is common to insects and vertebrate 
organs, the main difference between the primordium and 
vertebrate organs is the function of the folded structure. The 
epithelial tissue of the primordium is premised to unfold to 
establish 3D exoskeletal shapes at a subsequent stage while 
vertebrate organs are designed to remain folded for their 
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functionality. Therefore, the folded structure of the imaginal 
primordium is not the final form of development. There is 
thus one more mechanism hidden in the structure of imagi-
nal primordia in the larval body that establishes the final 3D 
shape from the primordium.

To reveal the mechanism of encoding the final 3D shape 
in the primordium, the relationship between the 3D shape of 
the pupa and primordia has been clarified in experiments in 
which the beetle horn primordium of Trypoxylus dichotomus 
has been extracted and observed to spread out using several 
methods (Matsuda et al. 2017). Those experimental results 
show that there are characteristic folding patterns, such as 
labyrinth, stripe, and concentric patterns, and revealed what 
part of the 3D surface shape of the horn is encoded in these 
characteristic patterns. In addition, because of the imaginal 
primordia of the Drosophila leg (Morata 2001) and the tip 
of the beetle horn (Matsuda et al. 2017) have similar (con-
centric) patterns, there might be a robustness of the relation-
ship between folding patterns and their 3D shapes. However, 
it is not well understood how these folding patterns of the 
primordia form in the larval body.

In terms of the development of primordia, because of 
imaginal primordia are surrounded by other tissues, such 
as the peripodial membrane (Beira and Paro 2016; Milner 
et al. 1984), cell proliferation proceeds within a confined 
geometry. The tissue deformation driven by cell proliferation 
is thus restrained by the surrounding tissue. Observations of 
the imaginal primordium of the wings of Drosophila have 
revealed that cells proliferate with a certain orientation of 
cell division (Mao et al. 2011, 2013). The regulation of the 
orientation of cell division is the planar cell polarity signal-
ing pathway. In Drosophila, planar cell polarity molecules 
such as dachsous molecules function as global direction 
cues. In response to the dachsous gradient, Dachs, an atypi-
cal myosin, is localized in a planar-polarized manner. Dachs 
controls the long axis of the cell shape on the apical side and 
thus regulates the orientation of cell division (Mao et al. 
2011). Mutation of the dachsous gene results in a wing of 
Drosophila that is shorter and wider than that of the wild 
type (Baena-López et al. 2005). However, it has been con-
firmed that randomization of the axis of cell division does 
not appreciably affect the adult form of Drosophila (Zhou 
et al. 2019). In growing beetle horn primordia, the global 
shape of the horn primordia is mushroom like, with dense 
local furrows. The global shape is affected in the dachsous-
gene knocked-down beetle, in which the direction of cell 
division has been altered randomly, while dense local fur-
rows are not appreciably affected (Adachi et al. 2018). The 
exact role of the orientation of cell divisions is therefore not 
clear in vivo.

During the last decade, mathematical models for the com-
putational simulation of epithelial tissue mechanics have 
been well established (Hannezo et al. 2011; Heisenberg 

and Bellaïche 2013; Honda et al. 2004, 2008; Okuda et al. 
2013a, b; Takeda et al. 2019) and applied to test hypotheses 
motivated by biological experiments (Amar and Jia 2013; 
Eiraku et al. 2011; Fletcher et al. 2014; Inoue et al. 2016, 
2017; Okamoto et al. 2013). To suggest a possible role of 
cell proliferation with a certain orientation of cell division 
in the confined geometry, we examine whether the above 
mechanical effects are sufficient to form a proper pattern of 
folds in silico. We here employ a 3D vertex model (Okuda 
et al. 2013a) that considers the behavior of an individual 
cell to express epithelial tissue deformations driven by the 
activity of each cell. Using the model, we perform com-
puter simulations for several orientations of cell division and 
magnitudes of the restraint of tissue deformation to examine 
effects of the orientation of cell division and confined geom-
etry on the formation of folding patterns.

2 � Three‑dimensional vertex model 
expressing multicellular dynamics

The 3D vertex model expresses the shape of a cell as a poly-
hedron comprising vertices and edges. The tissue is repre-
sented as an aggregate of multiple cells (Fig. 1a, b), where 
the vertices and edges of each cell are shared with neighbor-
ing cells. The vertices and edges thus constitute a network 
that represents the entire shape of the tissue (Fig. 1c, d).

The equation of motion of vertex i with position vector 
�i at time t is

where � is the friction coefficient and �i is the mean velocity 
vector of vertex i. To satisfy the Galilean invariance of the 
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Fig. 1   Shapes of a epithelial tissue and b cells respectively modeled 
as c a network and d polyhedrons using the 3D vertex model
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equation of motion, the friction force expressed in Eq. (1) is 
calculated on a local inertial frame. In the 3D vertex model, 
vertex i is directly connected to four adjacent vertices by 
edges. Indexing the directly connected vertices as j(i), the 
mean velocity vector is defined as

Assuming that all vertices have the same friction coefficient, 
Eqs. (1) and (2) are derived from the previous 3D vertex 
model (Okuda et al. 2015).

The right-hand side of Eq. (1) represents a force acting on 
vertex i derived from the total energy function U, which rep-
resents the mechanical properties and morphogenetic events 
of the cells. U is expressed as

where 
∑cell

jc
 indicates a summation over all cells. The energy 

function U includes the cell volume elastic energy uv
jc
 , cell 

surface elastic energy us
jc
 , cell height elastic energy uh

jc
 , 

restraint energy with respect to out-of-plane deformation ur
jc
 , 

and self-collision energy usc . Mathematical expressions for 
these energy functions are
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Equations (4–6) are derived from a 3D vertex model of epi-
thelial cells (Inoue et al. 2016, 2017). The volume vjc , sur-
face area sjc , and height hjc of the jc th cell are represented 
as variables. The superscript eq used for several variables 
in Eqs. (4–6) refers to the value in the stress-free state. The 
constants kv , ks , and kh are, respectively, the volume elastic-
ity, surface elasticity, and height elasticity. The cell height 
is defined as the distance between the centroid of the apical 
face and that of the basal face of the cell.

The restraint of out-of-plane deformation is introduced in 
terms of the harmonic potential ur

jc
 that is responsible for the 

restoring force acting on the jc th cell with respect to its out-
of-plane displacement, zjc , along the z-axis. The mathemati-
cal form of ur

jc
 is the same as that introduced in (Brau et al. 

2013), in which a small out-of-plane displacement of a thin 
sheet is considered. We assume that growing tissue is in 
contact with the surrounding tissue on the apical side. We 
thus use the out-of-plane displacement of the centroid of the 
apical face of the jc th cell, za

jc
 , as zjc . Because the restraint 

energy is defined for the unit area (Brau et al. 2013), the total 
restraint energy for the cell is obtained by multiplying by the 
apical surface area. This is why the restraint coefficient is 
expressed as the product of the restraint constant, kr , and the 
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Table 1   Model constants Symbol Value Descriptions

k
v 20 Volume elasticity
k
s 0.256 Area elasticity
k
h 0.1 Height elasticity
k
r 0.0–1.6 × 10−2 Restraint constant
k
sc 40 Self-collision energy constant
v
eq 1.0 Cell volume at stress free state
s
eq

2veq∕heq + 2

�

2
√

3veqheq
Cell surface area (hexagonal prism) at stress free state

h
eq 1.0 Cell height at stress free state

� 1.0 Collision threshold distance
�cc 1000 Mean cell cycle time
�cc 10 Standard deviation of the cell cycle time
� 0.25 Friction coefficient of vertex
�t 2.0 × 10−4 Time step size for numerical integration of Eq. (1)
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surface area of the apical face of the jc th cell, sa
jc
 . The self-

collision energy usc is introduced to prevent simulated tissue 
from penetrating in the direction of collision using a penalty-
based method (Tang et al. 2012), where ksc , lin , and � are the 
self-collision energy constant, distance between vertices i 
and n, and threshold distance of the collision, respectively.

All model constants are listed in Table 1. Here, to focus 
on folded structures created by cell proliferation, we ignore 
the asymmetry of physical properties dependent on epi-
thelial polarity and assume a flat, homogeneous, epithelial 
monolayer sheet (Fig. 2) for the initial condition. The size 
of the sheet is 37.22 × 42.98 corresponding to 40 × 40 cells 
arranged in a regular hexagonal lattice in the x − y plane 
under initial conditions. Although we have not performed 
a pre-simulation for equilibration of the system, the initial 
conditions have been confirmed to be stable in a planar and 

hexagonal packing of the columnar cells (animation shown 
in Supplementary Material 1). The apical surface of the 
sheet is set to face to the +z direction. Periodic boundary 
conditions are adopted for x and y directions. To express 
cell proliferation, we employ a polyhedron-division model 
(Okuda et al. 2013b), where the timing of cell division is 
determined by a mean cell cycle time �cc and standard devia-
tion �cc.

3 � Results

3.1 � Folding pattern obtained for the orientation 
of cell division in a confined geometry

We perform 3D vertex simulations of epithelial tissue 
growth to examine whether tissue growth in a confined 
geometry produces a folded tissue structure. Simulation 
results in Fig. 3 show that the restraint of out-of-plane 
deformation results in a short interspacing of the folds 
(Fig. 3a, animation shown in Supplementary Material 2) 
as compared with the interspacing under the condition of 
no restraint (Fig. 3b, Suppl. Mov. 3).

We next investigate how the orientation of the cell divi-
sion axis affects the folded structure. We consider three ori-
entations of the cell division axis: the longitudinal direction 
of each cell shape, uniaxial direction in global coordinates, 
and radial direction toward the centroid of the tissue. The 
simulation results in Fig. 4 show that (a) random patterns of 
folds form for the longitudinal orientation (animation shown 
in Supplementary Material 2), (b) folds align in one direc-
tion like stripes for the uniaxial orientation (Suppl. Mov. 
4), and (c) folds form a concentric pattern for the radial ori-
entation of cell division (Suppl. Mov. 5). The interspacing 
of folds is almost the same regardless of the orientation of 
the axis of cell division (with detailed analysis presented in 

Fig. 2   Initial shape of the monolayer cell sheet. The x-axis and y-axis 
are defined on the plane of the initial sheet, and the z-axis is defined 
normal to the plane. Periodic boundary conditions are applied for x 
and y directions. Cells on the boundaries are not visualized

Fig. 3   Snapshots of epithe-
lial folding simulated under 
the conditions of a restraint 
of out-of-plane deforma-
tion ( kr = 1 × 10−3 ) and b no 
restraint of out-of-plane defor-
mation ( kr = 0 ). All snapshots 
show simulation results at time 
t = 0.5�cc
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the next section), suggesting that the orientation of the cell 
division axis plays a role in determining the pattern of folds.

3.2 � Length scale of folds determined 
by the restraint of out‑of‑plane deformation

We examine the effect of the restraint constant, kr , on the 
interspacing of folds to determine how the length scale of the 
folds is affected. The simulation results in Fig. 5 show that 
an increase in kr leads to shorter interspacing of the folds. 
To quantify the interspacing, we analyze the wavenumber, 

u, of the fold pattern using the Fourier transformation and 
obtain the mean wavenumber, u , as a weighted average of u 
using the Fourier coefficient.

Figure 6 shows the power law relationship between the 
mean wavenumber and restraint constant. All data points 
obey a unique power law regardless of the orientation of 
the axis of cell division, suggesting that interspacing of the 
folds can be determined by the restraint of the out-of-plane 
deformation due to the surrounds of the growing tissue.

The characteristic wavenumber of folds has been derived 
theoretically whereby the balance of normal forces under 

Fig. 4   Snapshots of epithelial folding simulated for three orientations of the cell division axis: a longest axis of each cell, b uniaxial direction 
(x-axis), and c radial axis ( kr = 1.0 × 10−3 ). All snapshots show simulation results at time t = 0.5�cc

Fig. 5   Snapshots of epithelial folding simulated under the condi-
tions of a kr = 6.25 × 10−5 , b kr = 5 × 10−4 , c kr = 1 × 10−3 , d 
k
r = 2 × 10−3 , e kr = 4 × 10−3 , and f kr = 8 × 10−3 . The orientation of 

cell division is along the longest axis of each cell. All snapshots show 
simulation results at time t = 0.5�cc
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uniaxially compressed sheet registing on a soft substrate 
is considered (Brau et al. 2013). In the theory (Cerda and 
Mahadevan 2003; Brau et  al. 2013), assuming that the 
bending stiffness of the tissue and the restraint constant are 
independent of the size of deformation, the power exponent 
could be 0.25, while the power exponent is approximately 
0.20 in our simulations. Because of the restraint constant in 
our simulation is independent of the size of deformation, 
we speculate that a discrepancy between the exponent in 
simulation and that in theoretical prediction is due to dis-
creetness originating from the cell size. Because of the tis-
sue bending will not be realized on a length scale shorter 
than the cell width, the wavenumber is upper bounded by 
the corresponding wavenumber of the cell width. In fact, 
applying least-squares fitting to data in the small wavenum-
ber range ( ̄u ≤ 10 ), we obtained the power exponent of 0.25 
(Appendix).

In addition to the discreetness originating from the cell 
size, because of the bending stiffness of the tissue is not 
given directly in the simulation but induced by the combi-
nation of the energy functions of the cell, there is the pos-
sibility that the bending stiffness effectively depends on the 
wavenumber of the deformation. To explain the power expo-
nent of 0.20 in this simulation using the theory (Brau et al. 
2013), it is speculated that the bending stiffness is propor-
tional to the wavenumber if we consider the independence 
of the restraint constant on the wavenumber. It is future work 
to use a 3D vertex model to derive the mechanical properties 
of the tissue from cell energy functions.

4 � Discussion

We showed that the orientation of cell division and the 
restraint of out-of-plane deformation are respectively suf-
ficient to cause the characteristic pattern and interspacing 
of folds in silico. The three patterns of folds obtained in 
this study coincide with the characteristic pattern of folds 
observed in beetle horns (Matsuda et al. 2017). The con-
centric pattern of folds is also found in the imaginal disk 
of Drosophila legs (Beira and Paro 2016; Schubiger et al. 
2012).

However, we do not insist that the mechanism proposed 
in this study is the only mechanism determining the folding 
pattern. The actual beetle horn is cylindrical and there is 
thus a possibility that there is a mechanical difference in the 
ease of forming folds in the direction of the cylinder axis and 
in the circumferential direction. In fact, curvature-inducing 
wrinkles have been pointed out in stiff thin film on curved 
soft substrates (Stoop et al. 2015), and a similar mechanism 
might be available for actual beetles.

Although the global shape of the beetle horn primordia 
is affected in the dachsous-gene knocked-down beetle, in 
which the direction of cell division has been altered ran-
domly, dense local furrows are not appreciably affected 
(Adachi et al. 2018). In the development of beetle primordia, 
actin accumulation, indicating apical constrictions of cells, 
has been observed at the position of a future furrow even 
before the local furrow forms, suggesting pre-patterning for 
the fine furrow pattern (Adachi et al. 2018).

Furthermore, it has been confirmed that perturbation of 
the axis of cell division does not appreciably affect the adult 
form of Drosophila (Zhou et al. 2019). Although a spatial 
pattern of actomyosin accumulation at a supracellular scale 
has not been reported for Drosophila primordia develop-
ment, the spatial pattern of actomyosin accumulation or a 
still unknown mechanism may be considered for the pri-
mordia development of such small-sized bodies and tips of 
appendages. We speculate that there are at least two mecha-
nisms that determine global and local folding patterns. The 
relationship between the spatial pattern of apical constriction 
and the 3D shape of deformed tissues has been investigated 
using a 3D vertex model (Inoue et al. 2017) and there are 
thus future opportunities to combine the present model with 
the pattern of apical constriction and to apply the model to 
clarify how these two mechanisms do or do not crosstalk.

In this study, the effect of confinement was introduced 
by the restraint of out-of-plane deformation on the apical 
side solely using Eq. (7). In addition to the apical side, it is 
possible to introduce the effect of confinement on the basal 
side, such as in the case of an extracellular matrix, using 
Eq. (7) and replacing the apical surface area term with a 
basal surface area term. However, the simulation results 
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shows the least-squares fitting line: log ū = 0.201 log kr + 3.76
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obtained when restraining both apical and basal sides coin-
cide with those obtained when restraining the apical side 
solely in terms of there being an effective restraint constant 
that is the sum of values for the restraint constants on api-
cal and basal sides (Appendix). With respect to introducing 
the effect of confinement, another possible model is tissue 
bounded by rigid walls on apical and basal sides. Because 
the rigid wall cannot be displaced or deformed, the inter-
space between the tissue and wall under initial conditions 
is an important parameter with which to determine tissue 
deformation. There is future opportunity to clarify how the 
interspace determines the tissue folding.
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Appendix: Confined tissue growth on apical 
and basal sides

In this study, we assumed that growing tissue is confined 
by the surrounding tissue on the apical side. We therefore 
examined whether tissue folding is different if the grow-
ing tissue is confined on apical and basal sides. Instead of 
Eq. (7), we applied the energy function

where we introduce the out-of-plane displacement of the 
basal face and basal surface area of the jc th cell as zb

jc
 and sb , 

respectively.
Figure 7 shows the relationship between the mean wave-

number of interspacing of folds and an effective restraint 
constant, kr

e
 , where kr

e
 is kr and 2kr for tissue confined on the 

apical side solely and tissue confined on both apical and 
basal sides, respectively. The results obtained using the api-
cal and basal constraints coincide with those obtained using 
the apical constraint solely in terms of kr

e
 . We explain this 

result in the following. The cell height is constant because 
of the cell height elastic energy given by Eq. (6). Therefore, 
the out-of-plane displacement of apical and basal centroids 

(9)ur
jc

(

hjc
)

=
1

2
krsa

jc
za
jc
2
+

1

2
krsb

jc
zb
jc
2
,

is the same as that of the cell centroid zjc = za
jc
= zb

jc
 . In the 

case of small out-of-plane deformation, we assume that the 
apical surface area is the same as that of the basal surface 
area sa = sb . Equation (9) thus reduces to

where kr
e
= 2kr for tissue confined on apical and basal sides. 

Simulations with the same value of kr
e
 provide the same 

result regardless of the confinement side.
In addition, by applying least-squares fitting in the case of 

small wavenumbers ( ̄u ≤ 10 ), we obtain a power exponent 
of 0.252. We therefore consider that the discrepancy in the 
power exponent between our simulation results and the theo-
retical prediction arises mainly from discreteness originating 
from the cell size.

References

Adachi H, Matsuda K, Niimi T et al (2018) Anisotropy of cell divi-
sion and epithelial sheet bending via apical constriction shape 
the complex folding pattern of beetle horn primordia. Mech Dev 
152:32–37. https​://doi.org/10.1016/j.mod.2018.06.003

Amar MB, Jia F (2013) Anisotropic growth shapes intestinal tissues 
during embryogenesis. PNAS 110:10525–10530. https​://doi.
org/10.1073/pnas.12173​91110​

Brau F, Damman P, Diamant H, Witten TA (2013) Wrinkle to fold tran-
sition: influence of the substrate response. Soft Matter 9:8177–
8186. https​://doi.org/10.1039/C3SM5​0655J​

(10)ur
jc

(

hjc
)

=
1

2
kr
e
sa
jc
z2
jc
,

 10

apical
apical & basal

Effective restraint constant
10-5 10-4 10-3 10-2 10-1

k r
e

M
ea

n 
w

av
en

um
be

r 
u

fitting line

Fig. 7   Relationship between the mean wavenumber and restraint con-
stant. The legend gives the confinement side. The effective restraint 
constant, kr

e
 , is the sum of the apical and basal restraint constants. 

The line shows the least-squares fitting line for small wavenumbers 
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