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Abstract
The effects of network topologies on signal propagation are studied in noisy feedforward neural network in detail, where

the network topologies are modulated by changing both the in-degree and out-degree distributions of FFNs as identical,

uniform and exponential respectively. Stochastic resonance appeared in three FFNs when the same external stimuli and

noise are applied to the three different network topologies. It is found that optimal noise intensity decreases with the

increase of network’s layer index. Meanwhile, the Q index of FFN with identical distribution is higher than that of the other

two FFNs, indicating that the synchronization between the neuronal firing activities and the external stimuli is more

obvious in FFN with identical distribution. The optimal parameter regions for the time cycle of external stimuli and the

noise intensity are found for three FFNs, in which the resonance is more easily induced when the parameters of stimuli are

set in this region. Furthermore, the relationship between the in-degree, the average membrane potential and the resonance

performance is studied at the neuronal level, where it is found that both the average membrane potentials and the Q indexes

of neurons in FFN with identical degree distribution is more consistent with each other than that of the other two FFNs due

to their network topologies. In summary, the simulations here indicate that the network topologies play essential roles in

affecting the signal propagation of FFNs.
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Introduction

Stimulus representation, interpretation, transformation and

transmission are the four key functions during the neural

encoding and decoding processes (Aertsen et al. 1996;

Zhou and Yu 2018). There are amounts of studies trying to

exploring the neural mechanism underlying the four pro-

cesses and plenty of results have been found (Dai et al.

2015; Yuan et al. 2016; Zhao et al. 2016; Mizraji and Lin

2017; Kim and Lim 2018; Malagarriga et al. 2019). One of

the most attracting phenomena in neural systems is

stochastic resonance (SR), which is considered as a pos-

sible way participating in the propagation of neural infor-

mation (Li et al. 2007; Guo 2011; Wang et al. 2012). It is

found that the transmission of neural signal can not only be

helped by noise with suitable intensity, but also be inhib-

ited by noise at a certain intensity (e.g., the inverse

stochastic resonance, ISR) (Yu et al. 2001; Uzuntarla et al.

2013; Qin et al. 2014; Uzuntarla et al. 2017a; Zhao et al.

2017; Yao and Ma 2018). Recently, a double ISR phe-

nomenon induced by dynamic synaptic currents is observed

in the Hodgkin-Huxley neuron model (Uzuntarla et al.

2017b). Due to the importance of ISR in signal propaga-

tion, a general theoretical framework that can be used to

explain the ISR in natural systems is carried out, where it

stated that the occurrence of ISR requires one
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metastable minimum with higher activity and the other

global minimum with the lowest activity (Torres et al.

2020). As noise is inevitable in neural systems, different

kinds of noises are used to represent the physiological

disturbance in neural systems during the both the theoret-

ical and experimental investigations. For example, by

applying a time varying electric field and a Gaussian noise

to a hippocampal slice from mammalian brain, Gluckman

et al. (1996) found that resonance could be observed as a

response of the neuronal network. Based on a scale-free

network, Perc M. verified that the Gaussian noise can

optimally assist the whole network to resonance with the

network’s pacemaker (Perc 2008). Li et al. (2009) found

that the Gaussian noise can enhance the propagation of

weak signal in a self-organization network, and the evolved

network can further increase the efficiency of signal

propagation. Besides the effects of Gaussian white noise,

the non-Gaussian noise is attracting attentions recently,

which shows similar effects with that of Gaussian white

noise on the detection or propagation process of weak

signal (Guo 2011; Yao et al. 2017; Zhao et al. 2019).

Therefore, these studies indicate that the effects of noise

should be considered during the model simulation, which

may make the results more abundant and meaningful.

Recently, the effects of network structure on signal

propagation in neural networks become one of the most

focused points due to its essential role in affecting the

signal propagation in neural systems. Multilayer FFN,

which contains multi-groups of neurons with convergent-

divergent connections between adjacent groups, is usually

used to study the propagation of neural signal (Guo and Li

2009; Kumar et al. 2010). FFN has reproduced many

physiological phenomena due to its structure that neural

information is propagated from one layer to the next layer.

As the two main ways for the transmission of neural

information in neural systems, both the rate coding and

temporal coding are found in FFNs (Kumar et al. 2008).

There are also studies about the optimal network parame-

ters of FFNs for the transmission of neural signal, including

the influence of neuronal heterogeneity and cell size, the

effects of the linkage probability and synaptic strength

between neurons (Reyes 2003; Masuda and Kori 2007;

Ozer et al. 2010; Qin et al. 2018a). However, most of them

are based on FFN with uniform linkage distribution

between the adjacent layers. Little attention is paid on the

effects of degree distribution on the transmission of neural

signal, especially when the external stimuli are applied to

the FFNs. Considering the real linkage between neurons,

different neurons should have distinct numbers of presy-

naptic neurons and postsynaptic neurons, which are not

identical for each neuron. In addition, there are many

studies verified the distinct effects of network structures

(e.g., the randomly connected network, scale-free network

and the ‘‘rich-club’’) on signal propagation (Deng et al.

2010; van den Heuvel and Sporns 2011; Mofakham et al.

2016; Kim and Lim 2019a). Therefore, it makes sense to

study the effects of network topologies on signal propa-

gation in FFNs by modulating both the in-degree distri-

bution and out-degree distribution of neurons as identical,

uniform and exponential distribution, which are similar

with degree distribution of the randomly connected net-

work, scale-free network and the recently ‘‘rich-hub’’

respectively.

In this study, we first established FFNs with three

topologies, i.e., the in-degree and the out-degree of three

FFNs are set differently as identical, uniform, and expo-

nential respectively. Then the transmission of the same

signal in three noisy FFNs is studied in detail. Finally, the

discussion and conclusion are given.

Model and method

FFN model

As shown in Fig. 1, the multi-layer FFN is utilized to

mimic the propagation of neural information between dif-

ferent neuron groups (Diesmann et al. 1999; Li and

Greenside 2006). Here, each layer of the FFN contains 200

FHN neurons, and there are not recurrent or feedback

couplings between neurons of different layers. Neurons in

each layer only receive synaptic currents from its previous

layer. The model of FFN is given in Eq. (1) as:

e
dxi;j

dt
¼ xi;j �

x3
i;j

3
� yi;j þ I

syn
i;j tð Þ

dyi;j

dt
¼ xi;j þ a� byi;j þ Iext tð Þ þ ni;j tð Þ

I
syn
i;j tð Þ ¼ �

XN
syn
i;j

k¼1

gsyna t � ti�1;k

� �
xi;j � Vsyn

� �

ð1Þ

Fig. 1 The network structure with linkage probability P between

layers. There are no connections between neurons in the same layer
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Here, the layer indices are i ¼ 1; 2; 3 . . .NL, and the neu-

ron indices in each layer are j ¼ 1; 2; 3 . . .N. xi;j and yi;j
represent the membrane potential and recovery variable of

neuron j in the layer i, and the total synaptic current of this

neuron is I
syn
i;j tð Þ. Iext tð Þ stands for the external stimuli added

to neurons, which has a form as Iext tð Þ ¼ A � sin 2p=Ts � tð Þ.
ni;j tð Þ represents the Gaussian white noise with zero mean

and power D (i.e., ni;j tð Þni;j t0ð Þ ¼ 2Dd t � t0ð Þ
� �

), which is

employed to simulate the physiological noise in neural

systems. In Eq. (1), a tð Þ ¼ t=sð Þe�t=s, where s represents

the time constant of synapses. Moreover, N
syn
i;j represents

the number of synaptic couplings from (i -1)th layer to jth

neuron in ith layer. gsyn ¼ 0:04 and s ¼ 0:2 are set for the

connection strength gsyn and time constant s, which are

large enough to propagate signal through FFNs. Vsyn rep-

resents the synaptic reversal potential, which can control

the kind of synapse. In this study, only excitatory synapses

are used where the synaptic reversal potential is set as

Vsyn ¼ 0 (Qin et al. 2011). In addition, parameter a is a

critical parameter that could substantially influence the

neuronal dynamics. When a � 0:69 (e ¼ 0:08 and

b ¼ 0:45), the Andronov-Hopf bifurcation occurs in FHN

neuron model. When a[ 0:69, the neuron can be excited

with external stimuli or synaptic currents. When a\0:69, a

stable periodic solution can be obtained from the neuron

system. To make the neurons be excitable, the parameters

for the neuronal model are set as e ¼ 0:08, a ¼ 0:75, and

b ¼ 0:45 (Qin et al. 2014). The connection probability P

between layers is set to 0.15, which means that there are

6000 synaptic connections between adjacent layers. In

addition, the summation of N
syn
i;j of the neurons in each

layer is identical for all three FFNs.

To study the effects of network topologies on signal

propagation, FFNs with three degree distributions for

neuron couplings are constructed by setting the connec-

tions between neurons. In detail, the total number of

incoming connections for each layer in the three FFN

topologies is set the same, but the in-degree and out-degree

distributions of the neurons in each layer differ as identical,

uniform or exponential distributions. The uniform distri-

bution is defined with numbers drawn from the standard

uniform distribution on the interval [0, 2 * P * N], where

N is the number of neurons in one layer (here, N ¼ 200,

P ¼ 0:15). Thus, the maximum in-degree of a neuron

allowed in the uniform distribution is 60. The third in-

degree distribution of neurons used here is drawn from the

exponential distribution with a probability density function

as f cð Þ ¼ ke�kc, and mean of E cð Þ ¼ 1=k, where k is set as

1= P � Nð Þ.

Q Index

To evaluate the effects of topologies on SR in the FFNs,

the Fourier coefficient Q is calculated as a function of the

average membrane potential of neurons in one layer of the

network. The Q index is frequently used to evaluate the

transport of the information in the neural network, which is

a compact tool with the form as follows (Gammaitoni et al.

1998; Deng et al. 2010)

Qsin ¼ x
2np

Z 2pn=x

0

2X tð Þ sin xtð Þdt;

Qcos ¼
x

2np

Z 2pn=x

0

2X tð Þ cos xtð Þdt;

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

sin þ Q2
cos

q
;

ð2Þ

Here, X(t) is the average membrane potential of neurons

in one layer. n represents the number of periods, and

x ¼ 2p=Ts, where Ts is the time cycle of the weak signal

IExt(t). A big Q value indicates that there is a better phase

synchronization between the average membrane potential

and the input signal. Besides, the Qj index is also calculated

for each neuron in the network, which has the form as

Qj; sin ¼ x
2np

Z 2pn=x

0

2Xj tð Þ sin xtð Þdt;

Qj; cos ¼
x

2np

Z 2pn=x

0

2Xj tð Þ cos xtð Þdt;

Qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

j; sin þ Q2
j; cos

q
;

ð3Þ

In Eq. (3), Xj(t) represents the mean value of the membrane

potential of neuron j in a certain layer, and Qj is the Fourier

coefficient of this neuron. Other parameters used in this

paper are given in each case.

Results

Propagation of firing patterns in three FFNs

The effects of the network topologies and noise intensities

on firing patterns of neurons are investigated based on three

FFNs, i.e., the distributions of in-degree and out-degree of

three FFNs are identical, uniform and exponential from up

to bottom as shown in Fig. 2. When the noise intensity is

lower, the firings of neurons in three FFNs are sparse and

irregular (Fig. 2a d, g). With the increase of the noise

intensity, the firing times of neurons are increased and

become regular (Fig. 2b, e, h). Several firing trains are

formed and transmitted successfully through layers in

FFNs with uniform and exponential distributions, but there

is not firing train in FFN with identical distribution. When
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the noise intensity is increased further, much more firing

trains are formed and transmitted through layers, which

indicates the important role of noise in the signal trans-

mission (Fig. 2c, f, i). Meanwhile, it also displays the

distinct effects of three topologies on the propagation of

neural information in FFNs.

Effects of degree distribution on signal
propagation in three FFNs

To study the effects of degree distribution on signal

propagation through layers, Q index is calculated for each

layer of three FFNs (Fig. 3). Bell-shaped curve is found for

different layers of three FFNs, which indicate the appear-

ance of SR. Meanwhile, it can be noticed that the optimal

noise intensity for each layer is decreased with the increase

of layer index, which means SR is more easily appeared at

the latter layers. This should be related with the amplifi-

cation effect of FFN, where the neuronal activities in the

latter layers of the network become stronger and can easily

be resonated with each other. It is also found that the

changes and the distributions of Q indexes of different

layers for three topologies are similar when the connection

probability is set as P = 0.15 (Fig. 3a–c). When the con-

nection probability between neurons is increased (Fig. 3d–

f), the phase synchronization between the average mem-

brane potential of the layers and the input signal is also

enhanced for the latter layers. Meanwhile, the optimal

noise intensities for different layers of three FFN topolo-

gies are decreased. This is reasonable that increased con-

nectivity probability leads to the increase of firing activities

of neurons, which further facilitates the resonance between

neurons and the input signal. Moreover, it can be found that

the maximal Q indexes in latter layers of FFN with

Fig. 2 Raster plots of the spike trains for three representative layers in

FFNs with three topologies as identical (a–c), uniform (d–f) and

exponential (g–i) respectively. a Noise intensity D = 10-4; b
D = 10-3.7; c D = 10-3.4; d D = 10-4; e D = 10-3.7; f D = 10-3.4;

g D = 10-4; h D = 10-3.7; i D = 10-3.4. The connection probability

between neurons is set as P = 0.2. The input signal here has the form

as Iext tð Þ ¼ A sin 2p=Ts � tð Þ, where A = 0.08 and Ts= 5 (Qin et al.

2014)
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identical topology are higher than the other FFN topolo-

gies. This should be related with the different topologies of

three FFNs, where neurons in FFN with identical degree

distribution are easier to be synchronization with each

other than neurons in other two FFN topologies. It should

be stated that the firing patterns of the FFNs are almost

stable in the 10th layer, therefore we just calculate the

Q index to this layer.

Effects of the noise intensity and stimuli
frequency on signal propagation in three FFNs

To be clearer with the effects of degree distribution on

signal propagation in FFNs, Q is calculated as a function of

both the noise intensity D and the time cycle Ts of input

signal (Fig. 4), which can find the overall resonance per-

formance corresponding to different parameters and the

most optimal parameters for three FFNs. It is interesting

that there appears an optimal region (the area with white

and yellow color) where the phase synchronization

between the activities of neuron and the input signal are

strongest. Increasing the connection probability between

neurons adds the number of synapses between layers of

three FFNs, which further enhances the information

propagation between layers and elevates the performance

of SR (from Fig. 4a–c to d–f). In addition, it is found that

the distributions of Q indexes for three FFNs are similar,

but the maximal Q value for FFN with identical distribu-

tion is larger than that of FFNs with uniform and expo-

nential distribution. This indicates the key effects of

topologies on the propagation of input signal, where neu-

rons in FFN with identical distribution are easier to be

resonated with each other than the other two FFNs. The

parameter distribution here also helps us to choose the

suitable parameters for comparing the resonance perfor-

mance between three FFNs.

Relationship between the membrane potential
and resonance performance for different
neurons

To explore the corresponding relationship between the

firing activity of each neuron and its in-degree, the average

membrane potential and the Q index for each neuron are

calculated for three FFNs, which can display the inner

changes of the network at neuronal level. The parameters

of neurons and the external input signal for three FFNs are

set the same so that the network topology is the only one

Fig. 3 Linear response Q as a function of noise intensity for different

layers of FFNs with identical distribution (a ,d), uniform distribution

(b, e) and exponential distribution (c, f) respectively. a P = 0.15;

b P = 0.15; c P = 0.15; d P = 0.3; e P = 0.3; f P = 0.3. The input

signal is set the same as A = 0.08 and Ts= 5 for a–f
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variation here. They are chosen from the bright region in

Fig. 4 above, which are set as noise intensity D = 10-3,

and input signal with A = 0.08 and time cycle Ts = 4. The

results are shown in Figs. 5 and 6 below.

It can be found that the average membrane potential Xj

of individual neurons in FFNs of uniform and exponent

distribution is increasing with their in-degree obviously in

layer 2 (Fig. 5a). For neurons in FFN with identical dis-

tribution, their average membrane potentials in layer 2 are

distributed in a relatively smaller range (almost

- 0.84 * - 0.90) than the average membrane potentials

of neurons in other two FFNs. With the increase of the

layer index (i.e., layers 6 and 10), the average membrane

potentials of neurons in FFNs with uniform and exponen-

tial distributions are easier to attain the maximal value,

then the average membrane potentials show a relatively

decrease with the increase of in-degree. Meanwhile, the

distribution range of average membrane potentials for

neurons in high layers of FFN with identical distribution

becomes smaller than that in layer 2. To be clear with the

corresponding relationship between the resonance perfor-

mance of neurons and their in-degree, Qj of each neuron for

three topologies are shown in Fig. 5b. It can be easily

found that the variation trends of Qj for neurons in three

topologies are similar with that of their average membrane

potentials, where the Qj index in higher layers (i.e., layer 6

and 10) first increases with their in-degree and then

decreases. The results here for three FFNs should be clo-

sely related with their topologies. When the in-degree

distribution is identical for each neuron, the same number

of synaptic connections makes the firing activities of dif-

ferent neurons become similar. For the firing activities of

neurons in the other two FFNs, their in-degree distributions

play main roles in the changes of firing activities and res-

onance performance in the initial layer (layer 2). Then, the

amplification effects of FFNs take part in the propagation

of weak signal in higher layers, which increases the number

of neurons that have relatively high Xj. When the con-

nection probability between neurons is increased, the

average membrane potentials of neurons become quickly to

be maximal and then Qj decreases more obvious (com-

paring Fig. 5c, d with a, b). The increased connection

probability leads to the increase of in-degree for most of

neurons, thus increasing the amount of currents imposed on

the postsynaptic neurons. But what leads to the decline for

both the Xj and Qj of neurons with large in-degree ([ 20) is

still unclear.

To be clear with this phenomenon, the firing waveforms

of neurons with different in-degree in 10th layer are shown

in Fig. 6. Neurons with three typical in-degree are selected

Fig. 4 Q as a function of noise intensity D and period Ts of input

signal in FFNs with different connection probabilities. a P = 0.15,

identical distribution; b P = 0.15, uniform distribution; c P = 0.15,

exponential distribution; d P = 0.3, identical distribution; e P = 0.3,

uniform distribution; f P = 0.3, exponential distribution. The input

signal is set as A = 0.08
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to show the effects of in-degree of neuron on their firing

waveforms. As the in-degree is the same for neurons in

FFN of identical distribution, three neurons selected ran-

domly in the 10th layer display similar waveforms with

each other (Fig. 6a–c). Meanwhile, it can be easily found

that the three neurons show good synchronization between

their firing waveforms and the input signal. Neurons with

different in-degree (10, 20 and 60) are selected from FFNs

with uniform or exponential distribution respectively,

which are distributed in the low, medium and high range of

in-degree. For neurons with small in-degree (i.e., in-de-

gree = 10), the phase synchronization between the firing of

neuron and the input signal is worse than that of neurons in

FFN with identical distribution. With the increase of in-

degree, the phase synchronization between neurons and

their firing waveforms become better. When the in-degree

of neurons is further increased, the peak values of firing

waveforms of neurons are decreased and the negative

values in the trough of waveforms are not changed, which

lead to the decrease of Xj and Qj index. It can also be found

that the changing trends of synchronization between the

firing waveforms of neurons and the input signal in FFN of

exponential distribution are similar with that in FFN of

uniform distribution.

Therefore, it is clear in Fig. 5 that the neurons with

suitable in-degree (i.e., about 20) can resonate well with

the input signal as their Qj indexes are large. When the in-

degree of neurons is further increased, the redundant input

currents reduces the Xj of these neurons, thus, the reso-

nance between the average membrane potentials and the

input signal is also decreased.

Discussion and conclusion

Throughout this study, it is verified that the network

topology can influence the signal propagation in noisy

FFNs. In each layer of FFNs, the Q index firstly increases

Fig. 5 The average membrane potential of neurons in 10th layer (Xj)

and responseQj of each neuron versus the in-degree of neurons for three

topologies. Points in three colors (Black, blue and red) indicate the three

topologies (identical, uniform and exponent) respectively. a P = 0.15;

b P = 0.15; c P = 0.3; d P = 0.3. The black cycle in figures are used to

mark the location of average membrane potential and Qj of neurons in

FFN with identical distribution. The input signal is set as A = 0.08,

Ts= 4, and the noise intensity is set as D = 10-3. (Color figure online)
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with the increase of noise intensity, then it decreases when

the noise intensity is increased further, indicating the

appearance of SR. The amplification effects of FFN also

plays an important role in affecting the signal propagation,

where SR is much stronger in latter layers than in the

previous layers as the maximal Q values are increased

obviously (Fig. 3). Meanwhile, optimal parameter regions

for the appearance of SR are found for three FFNs (Fig. 4).

When the noise intensity and the signal frequency are set

near this parameter region, SR can be easily induced.

Increasing the connection probability between neurons also

enhances the SR performance, which is similar with the

previous studies (Qin et al. 2014; Zhao et al. 2017). In

addition, it is found that the network topology can influ-

ence the firing waveforms of neurons, which further affect

the SR performance (Fig. 5).

SR has been widely studied based on theoretical and

experimental methods. By modeling three bidirectional

coupled neurons, Li et al. (2007) found that the chemical

synapses are more efficient than the electrical coupling

(i.e., the linear coupling) for the transmission of signal that

is applied on partial neurons. There are also investigations

shown the enhancement effects of weak signal propagation

by heterogeneous aperiodic high-frequency disturbances

Fig. 6 Time series of membrane potential xi,j of single neurons for

different in-degree in three FFNs (identical, uniform and exponent)

respectively. FFN with identical in-degree distribution: a–c the

number of in-degree is the same as 30; FFN with identical in-degree

distribution: d the number of in-degree is 10; e the number of in-

degree is 20; f the number of in-degree is 60; g the number of in-

degree is 10; h the number of in-degree is 20; i the number of in-

degree is 60. P = 0.15. The input signal is set as A = 0.08, Ts= 4, and

the noise intensity is set as D = 10-3. Here, the displayed amplitude

of the input signal is enlarged 5 times to its real value
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based on different network structures, which includes the

regular network, the small-world network and the random

network (Deng et al. 2010). In addition, SR induced by

sine-wiener noise (SW-noise) is also studied systematically

in different network structures (Yao et al. 2018; Yao and

Ma 2018). However, the effects of network topologies on

SR are still unexplored, which are the main point of this

investigation. By studying the effects of degree distribu-

tions on signal propagation, it can help us understand the

mechanisms of signal propagation through FFNs with

different network topologies. The results here suggest that

the resonance phenomenon between the FFN with identical

degree distribution and the external stimuli is better than

other two FFNs. This should be related with the network

structure that each neuron has the same number of presy-

naptic neurons and can receive similar input currents,

which makes the firing activities of neurons be easier to

behave synchronously with each other (Qin et al. 2018a, b;

Zhao et al. 2018).

The results here should also be related with the

attracting neurological physiotherapy (e.g., the photic

stimulation; the transcranial electric stimulation, TES; and

the transcranial magnetic stimulation, TMS) in recent

years. Hannah et al. found that light-emitting diode (LED)

flicked at gamma frequency (40 Hz) could reduce the

concentration of amyloid-b(Ab) and Ab isoforms in a

mouse model of Alzheimer’s disease (AD) (Iaccarino et al.

2016). As the concentration of Ab is strongly related with

the severity level of AD, their results give a promising

prospect for the potential use of the neurological physio-

therapy. The TES and the TMS have also attracted many

researchers’ attention in these years, which include curing

psychiatric diseases (Fregni et al. 2007), elevating the

cognitive function (Thomson et al. 2015) and so on. The

effectiveness of the electrical stimuli on influencing the

firing activities of neurons have been verified by Bikson

et al. (2004) using a cluster of neurons. There are also

several research groups studied the influence of electrical

stimuli on neural activities with both the experimental and

modeling methods (Deans et al. 2007; Reato et al. 2010;

Qin et al. 2012; Kim and Lim 2017). Through this study, it

should be noticed that the stimuli position must be con-

sidered in detail before its application. Neurons with big in-

degree and out-degree will be active and act like a pace-

maker of the network that always gives stimulus to its

postsynaptic neurons, which may further influence the

activities of the network. Meanwhile, neurons with smaller

in-degree and out-degree often have little influence on the

activities of the network as it is often inactive and can

affect few neurons. For the brain regions of human, similar

phenomenon is also appeared where different brain regions

have different functions and linkages with other brain

regions. Therefore, considering the important role of the

independent brain functions and its linkages with other

brain regions, it is essential to optimally select the stimuli

position before the physical stimuli are applied. With an

optimal stimuli position, its modulation effects should be

more obvious.

In summary, the results here showed that the influence

of network topologies on SR. It also shed light on the usage

of the neurological physiotherapy, where the effects of

applied stimuli on the transmission of neural information

should be more effective when the stimuli are applied at

the suitable brain region. As the neurological physiother-

apy often needs multiple repetitive sessions to get an

optimal treatment, it should be significant to investigate the

mechanism of the neural plasticity (Li and Small 2010; Luz

and Shamir 2016; Kim and Lim 2018; Kim and Lim

2019a, b) underlying the use of physiotherapy in the future.
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