
BACTERIAL AND FUNGAL PATHOGENESIS - RESEARCH PAPER

Prevalence of PspA families and pilus islets among Streptococcus
pneumoniae colonizing children before and after universal use
of pneumococcal conjugate vaccines in Brazil

Patricia Alice Knupp-Pereira1,2 & Nayara Torres Cardoso Marques2 & Lúcia Martins Teixeira3 &

Helvécio Cardoso Corrêa Póvoa1 & Felipe Piedade Gonçalves Neves2

Received: 26 July 2019 /Accepted: 15 October 2019
# Sociedade Brasileira de Microbiologia 2019

Abstract
In 2010, the 10-valent (PCV10) and 13-valent (PCV13) pneumococcal conjugate vaccines were introduced in Brazil to immunize
children, resulting in serotype replacement. We analyzed 253 carriage isolates recovered from children aged <6 years in Brazil,
including 124 and 129 isolates from the pre-PCV10/13 (December 2009–July 2010) and post-PCV10/13 (September–December
2014) periods, respectively, to investigate the prevalence of PspA families and pilus islets, potential vaccine candidates. Serotypes
and resistance profiles were previously characterized.We used PCR to type PspA families (Fam1-3) and pilus islets (PI-1 and PI-2).
We identified the PspA family of 130 (51.4%) isolates. PspA families 1, 2, and 3 were identified in 12.2%, 38.7%, and 0.4% of the
isolates, respectively. Eighteen (58.1%) Fam1 isolates were serogroup 6. Nine (81.8%) of 11 serotype 14 isolates were Fam2. Fam1
isolates resistant to penicillin (50%), erythromycin (43.7%), clindamycin (31.2%), and chloramphenicol (6.2%) were only found
after PCV10/13 introduction. Resistance among Fam2 isolates was higher in the post-PCV10/13 period to erythromycin (1.8% vs.
18.6%), clindamycin (0 vs. 13.9%), and tetracycline (10.9% vs. 16.3%). PI-I was detected in 42 (16.6%) isolates. Fourteen (56%) of
25 serotype 15B/C and nine (81.8%) of 11 serotype 14 isolates had PI-1 (p < 0.01). Eight (3.2%) isolates had PI-2, and six (75%)
were serogroup 19. Five (2%) serogroup 19 isolates had both PI-1 and PI-2. We found associations between serogroups/serotypes,
PspA families, and pilus islets, but distribution of PspA families and pilus islets was similar in both periods. After universal
vaccination, we observed higher antimicrobial resistance frequencies, regardless PspA or pilus types.
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Introduction

Streptococcus pneumoniae causes severe diseases, such as
community-acquired pneumonia (CAP), bacteremia, and
meningitis [1]. In 2015, about 393,000 children < 5 years

old died of pneumococcal pneumonia in 195 countries [2].
In Brazil, CAP represented the third leading cause of mortality
between 1990 and 2015 among all age groups [3]. For pneu-
mococcal meningitis, the average mortality rate was around
30% between 2010 and 2018 [4].

The capsule is the target of all pneumococcal vaccines cur-
rently available, including the 23-valent polysaccharide vac-
cine (PPV23), as well as the 7-valent (PCV7), 10-valent
(PCV10), and 13-valent (PCV13) conjugate vaccines [5].
However, more than 90 pneumococcal capsular serotypes
have already been described [6]. In addition, the PPV23 is
not recommended for children under 2 years old, due to the
poor immunogenicity of the polysaccharide antigens [7].

The widespread use of pneumococcal conjugate vaccines
(PCV) among children resulted in the serotype replacement
phenomenon in both colonization and diseases [8]. Capsule-
unrelated vaccine targets are, therefore, urgently required. The
pneumococcal surface protein A (PspA) and pilus antigens
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have been considered potential vaccine candidates alone or in
combination with other antigens [9, 10]. To date, two types of
pilus have been described in pneumococcus, codified by two
different pilus islets (PI): PI-1 and PI-2 [11]. In turn, PspA is
almost universally distributed among pneumococci and is di-
vided into three families and six clades [12]; it presents high
immunogenicity and has been shown to protect against both
colonization and disease [13, 14].

In the early 2000s, the PCV7 was made available in Brazil
free of charge via National Immunization Program (NIP) only
for children at high risk for invasive pneumococcal diseases
(IPD). At the same time, private immunization clinics started
marketing PCV7 for childhood vaccination. Consequently,
only a small portion of the population was immunized with
PCV7 [15, 16]. In 2010, the PCV10 was introduced into the
Brazilian NIP for all children aged less than 5 years, and the
PCV13 replaced the PCV7 in private immunization clinics.
Here, we investigate the prevalence of PspA families and pilus
islets among pneumococcal carriage isolates recovered from
children before and after universal use of PCV, mostly
PCV10, in a major metropolitan area in Southeastern Brazil.

Material and methods

Bacterial isolates

We analyzed 253 pneumococcal carriage isolates, including
124 isolates obtained in the pre-PCV10/13 period (December
2009 to July 2010) and 129 isolates in the post-PCV10/13
period (September to December 2014). The isolates were re-
covered from nasopharynx of children under 6 years old in
Niterói City, a major metropolitan area of Rio de Janeiro,
Brazil. Isolates from the pre-PCV10/13 period were obtained
from children who attended two public childcare centers (n =
61) and the emergency room of one public hospital (n = 63).
The isolates recovered in the post-PCV10/13 period were ob-
tained from children attending one public clinic (n = 72) and
two private pediatric clinics (n = 57). All the isolates from the
pre-PCV10/13 period and 76 (59.9%) isolates from the post-
PCV10/13 period were recovered from children presenting
with symptoms, mostly associated with upper respiratory in-
fections, at the moment of the specimen collection. In the area
investigated, PCV10 and PCV13 became available in October
2010. Capsular types and resistance profiles to nine antimi-
crobial agents were previously determined [15, 16].

DNA preparation

DNA of all isolates were obtained by thermal lysis as previ-
ously described [17].

PspA typing

The identification of PspA families was performed by PCR
using primers previously described. We used the primer sets
LSM12/SKH63, LSM12/SKH52 [18, 19], and SKH41/
SKH42 [20] to identify families 1 (Fam1), 2 (Fam2), and 3
(Fam3), respectively. Primers LSM12/SKH2 were used to de-
tect all PspA families [12, 18].

Detection and typing of pilus islets

We used the primers pQE30C5/pQE30C3 [21] and
sipA_up_F/sipA_do_R [22] to identify PI-1 and PI-2,
respectively.

Statistical analysis

We used the Fisher exact test to investigate association of
PspA families and types of pilus islets with serotypes, resis-
tance profile, and isolation period. We used tools available in
https://www.graphpad.com/quickcalcs/contingency1/.
Statistical significance was considered when p value was < 0.
05.

Ethical consideration

This study was approved by the Ethics Committee of the
U n i v e r s i d a d e F e d e r a l F l u m i n e n s e ( C AAE
26823614.2.0000.5243 and CAAE 26823614.2.0000.5243).

Results

PspA typing

All the 253 pneumococcal isolates had the PspA gene, and we
were able to determine the PspA family of 130 (51.3%) iso-
lates. Ninety-eight (38.7%), 31(12.2%), and one (0.4%) iso-
lates had the PspA families 2, 1, and 3, respectively. Of note,
nine (81.8%) of 11 serotype 14 isolates, seven (70%) of ten
serotype 17F isolates, and six (66.7%) of nine serotype 16F
isolates were Fam2. Figure 1 shows the correlation between
capsular types and PspA families.

Fifteen (48.4%) and 16 (51.6%) of 31 PspA Fam1 isolates
were recovered from children in the pre- and post-PCV10/13
periods, respectively, corresponding to 12.1% and 12.4% of
the total isolates from each period. For PspA Fam2, we de-
tected 55 (56.1%) isolates in the pre-PCV10/13 period and 43
(43.9%) in the post-PCV10/13 period, corresponding to
44.3% and 33.3% of the total isolates of each period, respec-
tively. The single PspA Fam3 isolate is non-encapsulated and
was obtained in the post-PCV10/13 period.
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In general, non-susceptibility frequencies to the majority of
the antimicrobial agents tested were higher among isolates
recovered after PCV10/13 introduction, regardless the PspA
family (Fig. 2). The single PspA Fam3 isolate was non-
susceptible to penicillin and intermediate to tetracycline.
None of the isolates was resistant to levofloxacin, rifampicin,
and vancomycin.

Prevalence and types of pilus islets

We detected pilus islets in 45 (17.8%) isolates. The PI-1 was
found in 42 (16.6%) isolates. Of them, 15 (35.7%) isolates
were classified as serotype 15B/C; nine (21.4%) as serotype
14; six (14.3%) as serotype 19F; four (9.5%) as serotype 19A;
three (7.1%) as serotype 35B; and only one (2.4% each) as

serotypes 4, 15A/F, 16F, 23A or 6C/D. Fourteen (56%) of 25
serotype 15B/C isolates (p < 0.01) and nine (81.8%) of 11
serotype 14 isolates had the PI-1 (p < 0.01).

Seventeen (40.5%) of 42 PI-1 isolates were non-
susceptible to penicillin, eight (19%) were resistant to eryth-
romycin, and five (11.9% each) were resistant to clindamycin
and tetracycline. Furthermore, 26 (61.9%) and four (9.5%)
isolates were resistant and intermediate to sulfamethoxazole/
trimethoprim, respectively. Eight (19%) isolates were suscep-
tible to all antimicrobial agents tested. All nine serotype 14
isolates with PI-1 had the PspA Fam2 and eight (88.9%) of
them were non-susceptible to penicillin and resistant to sulfa-
methoxazole/trimethoprim.

Eight (3.2%) isolates had the PI-2. Six (75%) of them
belonged to serogroup 19, including three serotype 19A and

Fig. 1 Distribution of PspA
families among carriage isolates
according to the capsular types.
The single PspA Fam3 isolate
was non-typeable. NT non-
typeable
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three serotype 19F isolates. The remaining two (25%) isolates
were serotype 11A/D. Five (2%) isolates, including three se-
rotype 19A and two serotype 19F, harbored both the PI-1 and
PI-2.

Non-susceptibility to penicillin and resistance to erythro-
mycin, clindamycin, and tetracycline were found in three
(37.5%) of eight PI-2 isolates, all identified as serotype 19A.
In addition, six (75%) isolates, all serogroup 19, were non-
susceptible to sulfamethoxazole/trimethoprim. The two (25%)
serotype 11A/D isolates were susceptible to all antimicrobial
agents tested. Table 1 shows the correlation between PspA
families, pilus islets, and the isolation period.

Discussion

After universal childhood vaccination in Brazil with pneumo-
coccal conjugate vaccines, mostly PCV10, Fam2 remained
the prevalent PspA family among pneumococci recovered
from children’s nasopharynx, representing almost 40% of
the isolates. Pilus islets were found in about 20% of the iso-
lates, with the predominance of PI-1. PI-2, although less com-
mon, was strongly associated with serogroup 19, especially
with theMDR serotype 19A, that emerged in the post-PCV10/
13 period.

PspA Fam2 has been usually reported as the most common
type of PspA in many countries, such as China (120/171;

70.1%) [10], Canada (91/148; 61.5%), France (159/215;
73.9%), Spain (90/150; 60.0%), Sweden (39/67; 58.2%), the
USA (539/930; 57.9%) [20], and even in Brazil (81/183;
44.3%) [23]. However, studies in Australia (54/10; 54.0%)
and the UK (120/237; 50.6%) found Fam1 as the prevalent
one [20]. Family 3 is usually rare [10, 20, 23, 24], and, in the
present study, it was associated with a non-encapsulated
isolate.

Among PspA Fam1 isolates, the most common serotypes
were 6B and 6C/D. For PspA Fam2 isolates, we observed a
greater diversity of serotypes, but serotype 15B/C prevailed.
Of these serotypes, only 6B is covered by the PCV10, which
is available free of charge via the Brazilian Unified Health
System (SUS, Sistema Único de Saúde) for the pediatric popu-
lation. Serotype 6C, in turn, emerged in colonization and disease
in children and adults after the universal childhood use of
PCV10 in Brazil [16, 25, 26]. PCV13 appears to offer cross-
protection against serotype 6C due to its similarity to serotype
6A [27]. However, serotype 15B/C is only present in the VPP23
and has been associated with colonization and non-invasive dis-
eases in the pre- and post-PCV10/13 era [15, 16, 28].

We observed strong associations of serotypes 14, 17F, and
16F with PspA Fam2. Association of serotype 14 (78%) with
PspA Fam2 has been previously observed [29]. On the other
hand, we found no evident association of serotypes with PspA
Fam1. However, most (58%) Fam1 isolates belonged to
serogroup 6.

Fig. 2 Frequencies of isolates non-susceptible (resistant + intermediate) to antimicrobial agents according to the PspA family and the isolation period.
CHL chloramphenicol, CLI clindamycin, ERY erythromycin, PEN penicillin, TET tetracycline, SXT sulfamethoxazole/trimethoprim

Table 1 Frequency of PspA
families and pilus islet in
nasopharyngeal pneumococcal
isolates obtained in the pre- and
post-PCV10/13 periods.

PspA family Pre-PCV10/13 (n = 124) Post-PCV10/13 (n = 129*)

Fam1
(n = 15)

Fam2
(n = 55)

ND
(n = 54)

Fam1
(n = 16)

Fam2
(n = 43)

ND
(n = 69)

PI-1 1 (6.7%) 17 (30.9%) 3 (5.5%) 0 6 (13.9%) 10 (14.5%)

PI-2 0 0 1 (1.9%) 0 2 (4.7%) 0

PI-1 + 2 1 (6.7%) 0 1 (1.9%) 0 1 (2.3%) 2 (2.9%)

a The single PspA Fam3 isolate did not present any pilus islet

ND not determined
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There was no significant variation in the prevalence of
PspA families according to the isolation period. This suggests
pneumococcal conjugate vaccines had little or no influence on
the distribution of PspA families. This finding can be largely
explained by the fact that these vaccines are based on capsular
polysaccharides, and, in general, we found no strong associa-
tion of PspA families with specific serotypes. Additionally,
antimicrobial resistance seems to be more associated with
PspA Fam1 isolates, since 16% of Fam1 and 38% of Fam2
isolates were susceptible to all the antimicrobial agents tested.
However, regardless the PspA family, higher non-
susceptibility frequencies were observed among isolates ob-
tained in the post-PCV10/13 period.

Epidemiological studies on the distribution of pilus islets in
pneumococci are still uncommon. In a study conducted with
invasive isolates recovered from adults in Portugal before the
introduction of PCV13, PI-1 and PI-2 made up about 10% and
20% of the isolates, respectively [30]. Here, PI-1 was more
frequent. These data may indicate a more important role of PI-
2 in the invasive process of the pathogen.

Indeed, in the present study, the association between PI-2
and serogroup 19 isolates, including serotypes 19A and 19F,
was evident. Of note, 19F was an important serotype associ-
ated with IPD in the pre-PCV10/13 period. After universal
vaccination in Brazil, mostly with PCV10, serotype 19F be-
came rare, but serotype 19A emerged as a major cause of IPD
among all age groups [26, 31]. Similar findings had been
observed in high-income countries after the introduction of
PCV7 and before its replacement by PCV13 [32, 33]. This
fact becomes even more worrying due to the strong associa-
tion of serotype 19A with multidrug resistance [26, 31–33].
Despite the low prevalence of pilus islets in the population
investigated, the inclusion of the PI-2 in a vaccine formulation
would theoretically prevent infections caused by the main
emerging serotype associated with multidrug resistance.
Additionally, the high frequency of antimicrobial-resistant
isolates carrying the PI-2 can be explained by its association
with serogroup 19, especially serotype 19A.

We also observed a strong association of serotypes 15B/C
and 14 with PI-1. We only detected serotype 14 isolates in the
pre-PCV10/13 period, but we did not observe significant var-
iation in the prevalence of pili regarding the isolation period.
A previous study found association of PI-2 with serotypes 1,
7F, 11A, 19A, and 19F in 1999, with a prevalence of 3.6%,
rising to 21% after the PCV7 introduction in the USA, due to
the expansion of serotypes 19A and 7F [22]. Another study in
the same country observed a significant reduction from 42.8 to
21.3% in the occurrence of PI-1-related genes following
PCV7 introduction [21].

Isolates carrying only PI-1 or PI-1 plus PI-2 showed similar
frequencies of non-susceptibility to penicillin (approximately
40%) and sulfamethoxazole/trimethoprim (approximately
60%), while those with only PI-2 had a higher frequency of

resistance to erythromycin, clindamycin, and tetracycline.
Approximately 42% of the PI-1 isolates were non-
susceptible to penicillin and about half of them was resistant
to erythromycin and multidrug resistant. Interestingly, corre-
lation between the presence of PI-1 and antimicrobial resis-
tance in clinical isolates from acute otitis media had already
been described in Israel [34]. It is noteworthy that serotype 14
isolates, a major cause of pneumococcal diseases in the pre-
PCV10/13 period, was associated with PspA Fam2, presence
of PI-1, and high frequency of non-susceptibility to penicillin
and sulfamethoxazole/trimethoprim.

The major limitation of the present study is the analysis of
isolates exclusively associated with colonization.
Additionally, we did not determine the clades of PspA fami-
lies. Comparisons with invasive isolates and the definition of
PspA clades would result in a more robust analysis.

In conclusion, we found associations between serogroups/
serotypes, PspA families, and pilus islets. We observed higher
resistance frequencies to antimicrobial agents, regardless PspA
or pilus types, after universal vaccination with pneumococcal
conjugate vaccines, mostly PCV10. Our data may help select
targets for new anti-pneumococcal vaccine formulations.
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