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Abstract
Exposure to mercury is one of the major global health concerns due to its stability, bioaccumulation and high toxicity. Therefore,
the present study was conducted to assess the mean mercury level in hair and breast milk (BM) of Iranian lactating mothers
(ILMs) through meta-analysis technique. We conducted a systematic literature search in online electronic databases included
main domestic databases (SID, Magiran, Iran medex, Medlib and ISC) and international databases (Embase, Scopus and
PubMed) for studies published between 2000 up 2018. Each process of research and evaluation of articles based on inclusion
and exclusion criteria is done by two researchers, individually. From10 studies entered to meta-analysis process including 556
ILM, the mean hair mercury level (HML) and meanmilk mercury level (MML) was estimated to be 0.15 μg/g (95 CI: 0.11–0.19,
I2: 47.6%, P: 0.028) and 0.51 μg/l (95 CI: 0.28–0.74, I2: 1.9%, P: 0.421), respectively. In this meta-analysis, the mean HML and
mean MML were estimated to be lower than the standard of World Health Organization (WHO). Although the mean mercury
level in hair and BM of ILMs was lower than the WHO standard, but due to toxicity and serious concern of health, management
and Periodic monitor are recommended in different cities of the country for evaluate the mercury levels in hair and BM of ILMs
and to estimate the infant’s exposure.
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Abbreviations
WHO World Health Organization
MML milk mercury level
HML hair mercury level
SD standard deviation
HBM human Breast Milk
BM Breast Milk
ILMs Iranian lactating mothers

Introduction

Metals are abundant in everywhere on Earth’s crust, but ex-
posure to some metal pollutants such as arsenic, Lead (Pb),
mercury (Hg) and cadmium (Cd) are dangerous and carcino-
genic to humans even at very low concentrations [1]. Among
the harmful metals to humans, mercury is the as most toxic
element known after arsenic and lead, that situated in third
rank of pollutants with highest priority by the National
Priorities List of the Agency for Toxic Substances and
Disease Registry (ATSDR) [2].

Mercury is one of the heavy metals found in water, soil and
air that widely enter the environment from through natural and
anthropogenic sources [3, 4]. Natural releases of mercury into
environment enter through natural sources including the
weathering of Hg-containing rocks, geothermal activities,
and volcanicity, while the most releases are associated to an-
thropogenic activities [5, 6].

Also, mercury releases from main sources of anthropogen-
ic is included of the mining, smelting, and production of iron
and non-ferrous metals, combustion of coal and other fossil
fuels, large-scale gold production, mine production of
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mercury, cement production, oil refining, contaminated sites,
waste of result from consumer products (landfill (mostly) and
waste incineration), chlor-alkali industry, Cremation (dental
amalgam) and etc. [3, 7].

The other potential sources for human exposure tomercury,
is including thermometers, sphygmomanometer, barometers,
incandescent lights and batteries and various commercial
products including skin creams, germicidal soaps, various
medications, teething powders, analgesics, vaccinations and
thimerosal (preservative in vaccines) [8].

In recent years, mercury pollution and dangers of it has be-
come a global concern which this topic has led to various con-
ventions such as minamata convention to manage it, the treaty
which dedicated purely to mercury. In accordance with article
19 of the Minamata convention, which its main aim is protect
the environment and human health, demands from member
countries of convention to endeavor and assess the effects of
mercury and its compounds on damageable populations such as
infants, children, pregnant and lactating women [9].

Mercury is one of the most dangerous environmental pol-
lutants due to environmental sustainability and bioaccumula-
tion in the food chain. Their three main forms are include of
elemental mercury (Hg0), inorganic mercury (Hg+2) and or-
ganic mercury (MeHg) [10]. All forms of mercury are ex-
tremely toxic and harmful to human health. Humans through
food, water, air and occupational exposure may be exposed to
mercury.

Mercury is the only metal that is liquid in its elemental
form. In this state, metal easily evaporates at room tempera-
ture and inhalation causes toxicity in humans. The elemental
form of mercury is soluble in lipid and readily enters the
bloodstream through the alveolus after inhalation, which in
this position, the results to bioaccumulation of mercury in
the renal cortex, liver, and especially the brain [11].

Inorganic mercury (mercurous and mercuric state) is
absorbed by the digestive system and in mercuric salts is more
soluble and toxic than elemental form [12]. the main source of
exposure whith inorganic mercury is a dental amalgam [13].

The forms of organic mercury include methyl mercury and
ethyl mercury. The most dangerous mercury form of organic is
dimethylmercurywhich is highly toxic. Themost usual form of
organic mercury is methyl mercury, which is often transformed
by microorganisms to other more toxic forms such as methyl
mercury in the water, soil and body tissue of creatures [14, 15].
Consuming food such as fish (or other seafoods) and vaccines
containing thimerosal are the most important sources of human
exposure whith organic mercury, which about 95% of it is
absorbed in the digestive system [16–18].

The toxic effects of mercury for humans are related to
many factors like the chemical form, dose and exposure rate
(quantity, frequency, and duration) [11, 19].

As mercury is potentially toxic, depending on its form, the
effects of exposure to mercury and its compounds from

natural and anthropogenic sources on humans it can cause
irreversible damage to the systems of Neurological
(Alzheimer, Erethism, Dementia, Parkinson, Schizophrenia)
[20–25], Renal [26–28], respiratory [29–31], immunological
[11, 32], Genetic and epigenetic Outcomes [33, 34],
Cardiovascular (Arrhythmi, Cardiomyopathy, Irregular pulse,
Chest pains) [35–38], and Reproductive Outcomes (Birth de-
fects, Impotency, Impair fertility) [39–41].

Exposures with mercury can be estimated by measuring
pollutant levels in various body tissues (such as hair, milk,
blood, urine, or nails). Measuring mercury levels in these tis-
sues can be well indicators for different types of mercury
exposures [10].

Exposure of women to toxical metals such as mercury dur-
ing the Pregnancy and Breastfeeding time, even at very low
doses, can have effects on fetal and infant growth [42]. During
pregnancy, mercury easily crosses the placenta, concentrates
in the fetus, and ultimately crosses the fetal blood–brain bar-
rier and it causes brain damage to the developing fetus [43].

It can also be transmitted after birth in the Breastfeeding
time to the mammary glands of the Iranian lactating mothers
(ILMs) [44].

human breast milk (HBM) of as the best source of nutrition
for infants, depending on the mother’s exposure, may contain
harmful contaminants such as mercury, so, the exposure to
mercury can be injurious effects on infants [45–47]. Once
mercury enters the hair, it will no longer returns to the blood-
stream and shows a relatively direct relationship with blood
mercury levels, so, hair is a good index for evaluating the
accumulation of mercury in the body and estimate long- term
exposure [48].

In order to perform a risk assessment, exposure results were
compared with guidelines of World Health Organization
(WHO) [10, 49, 50].

So, the investigation and measurement of this pollutant in
hair and Breast Milk (BM) of ILMs is very important to im-
prove the health of mothers and infants.

Various studies have examined the amount of mercury in
the hair and milk of ILMs [51, 52]. But, findings are incon-
sistent in this regard. Specifically, the results of this study can
be used to control global mercury pollution to evaluate the
effectiveness of the Minamata Convention.

Therefore, the present study was conducted to assess the
mean mercury level in hair and BM of ILMs through a sys-
tematic review and meta-analysis technique.

Materials and methods

Search strategy

We conducted a systematic search in online electronic data-
bases included main local databases (SID, Magiran, Iran
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medex,Medlib and ISC) and international databases (Embase,
Scopus and PubMed) for studies published (between 1
January 2000 up 31 December 2018) using the following
key terms: “heavy metals”, “mercury”, “human milk”, “breast
milk”, “Hair”, “mothers” and “Iran” to select related studies.
For online electronic databases of national, an equivalent of
Persian keywords was used.

Study criteria

Inclusion criteria

The inclusion criteria for studies entered in the meta-analysis
process were as follows: 1) the studies of published to Persian
and English languages; 2) studies conducted inside Iran; 3)
samples containing the mean mercury concentration in hair
and BM of ILMs and 4) article of published from 1 January
2000 up 31 December 2018.

Exclusion criteria

The Exclusion criteria were as follows: 1) Articles written in a
language other than Persian or English; 2) studies conducted
outside Iran; 3) samples containing of non- ILMs or pregnant
women; 4) samples containing of mean concentration the oth-
er heavy metals (Except of mercury) in hair and BM of ILMs;
5) Studies that did not report mean and standard deviation; and
6) articles that unavailability of information. Also articles that
did not have a cross-sectional design or conducted on animals
were excluded.

Selecting studies

We reviewed the results of all the studies, and excluded
some articles after reviewing based on the titles and ab-
stracts. Two reviewers independently carried out the liter-
ature search and evaluation of the searched articles based
on the inclusion and exclusion criteria. The search strategy
and review processes in present study are in accordance
with guidelines of Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [53].
In the present study, articles qualified for further analyses
were collected with initial screening of identified titles or
abstracts. Eligible studies were screened against predefined
inclusion and exclusion criteria. Then, full text of studies
was reviewed to determine of these two referees indepen-
dently. After accurate review of studies, differences were
resolved with consensus or if needed by a third reviewer.

The details and flow diagram of literature review process is
given in Fig. 1.

Data extraction and selection

The extracted data were as follows: name of first author, pub-
lication year, study place (province and city), sample size,
study design, mean of mercury concentration level with stan-
dard deviation (SD), analytical technique and age range.

Quality assessment and risk of Bias

The quality of all studies were assessed by Modified
Newcastle-Ottawa Scale for cross sectional studies [54]. A
score of >7 on the NOS scale for each study, was considered
to have a low risk of bias and an excellent methodological
domain. Finally, the articles were categorized as low, moder-
ate and high.

Meta-analysis

After data extraction, STATAversion 15.0 (Stata Corporation,
College Station, TX, USA) was used for meta-analysis. Mean
and SD were reported for eligible papers. A Cochran Q test
was conducted to assess heterogeneity and an I2 statistic was
calculated to estimate the percentage of total variation
resulting from between-study variation [55]. Low, moderate
or high degrees of heterogeneity were approximated by I2

values of 25%, 50% and 75%, respectively. Heterogeneity
was assessed by subgrouping the time of measures, and study
population. Publication bias was assessed by Egger and
Begg’s test with a significance level of 0.10. In addition, we
planned to plot funnel plots if we encountered more than 10
studies for each forest plot; however, the number of studies
was not found to be adequate for such plotting.

Results

Search results and studies description

The primary literature searches showed 619 articles, which in
databases of Embase, Scopus, PubMed and other databases
identified 320, 48, 221 and 31 articles, respectively. After
removing duplicates, a total of 605 articles were residual for
review. Then, 605 articles were excluded after identification
based on titles, abstracts and full-text. Totally, 11 main studies
were eligibility for inclusion and exclusion criteria (5 studies
dealt with the mercury level in hair of ILMs and six studies
dealt with mercury level in BM of mothers). Finally, 10 eligi-
ble studies (Hair: Five study, Milk: Five study/ conducted
from 2000 to 2018 in 15 of Iran cities) entered the meta-
analysis process. The sample size for studies on hair and milk,
were 279 and 277, respectively.
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One study [56] reported mean mercury level (3.48 μg/L) in
BM of ILMs, but do not entered the meta-analysis process due
to the lack report of SD (Fig. 1).

The detail data collected from the final included studies and
samples specifications are shown in Table 1.

Generally, from 10 studies entered to meta-analysis pro-
cess, mothers age range in done studies on hair and BM of
ILMs were 17 to 36 years and 16 to 38 years, respectively.

The lowest and highest number of hair and HBM samples
in meta-analysis process, varied from 6 to 93 samples and 37
to 82 samples, respectively. Overall, the risk of bias in primary
studies was low (Table 1).

Mean mercury level in hair and BM of ILMs

The mean of mercury was obtained to be 0.15 μg/g (95 CI:
0.11–0.19, I2: 47.6%, P: 0.028) and 0.51 μg/l (95 CI: 0.28–
0.74, I2: 1.9%, P: 0.421) in hair and BM of ILMs, respectively
(Fig. 2).

Since the confidence interval (CI) of the test not includes
zero (Egger’s Test: t = 1.24, p = 0.0001, CI 95% = 0.73 to

1.75), significant bias occurred in the publication of the results
(Fig. 3).

According to guideline ofWHO, for hair and BM of ILMs,
four and five studies had lover mercury levels than the limit
declared by WHO, respectively.

Based on Table 1, the lowest and highest the mean of mer-
cury level in hair related 0.11 μg/g and 4.2 μg/g, respectively.
Also, the lowest and highest mean of mercury in HBM report-
ed 0.12 μg/l 7.57 μg/l, respectively.

Also, to better highlight of mercury levels in hair and BM
of ILMs according to WHO standard, the map of spatial dis-
tribution of mean mercury concentrations was generated by
using a Geographic Information System (Fig. 4).

Analytical methods and results reporting

Generally, milk samples of ILMs were collected manually
(one study with pump) and then stored in polyethylene (4
study) and polypropylene (one study) containers. Also, the
retention temperature of the samples was in range -18 °C to
20 °C.

Fig. 1 PRISMA flow diagram for selecting studies of systematic review
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Also, hair samples in all studies were collected from scalp
area of ILMs. The amount of hair needed was for mercury
analysis in four study 1 g and in one study about 2–5 g. In
all studies, hair samples were cut with stainless steel scissors
and then stored in labeled plastic bags.

In the selected studies, meanmercury levels in hair and BM
of ILMs were reported in two types of units, μg/L and μg/g,
respectively.

The BM mercury content of ILMs was obtained in
three studies by Advanced Mercury Analyzer- Single-

Table 1 The detail of literature studies in hair and BM of lactating mothers (2000–2018)

Study/ Year Place
(Province)

Place
(City)

Sample
Size

Study Type Mean of
Mercury Level
(Mean ± SD /
Rang)

Analytical
Technique

NOS
Score

Hair (μg/g)

Khammar et al. [57],
2017

Sistan and Baluchestan Zahedan 40 Cross-sectional 1.81 ± 0.54
(0.67–3)

HR-CS-AAS 7

Okati et al. [58], 2012 Mazandaran Nowshahr, Nur
and Sari

93 Cross-sectional 3.55 ± 2.52
(0.08–8.97)

AMA-S-PAAS 8

Okati et al. [58], 2012 Mazandaran Nowshahr 27 Cross-sectional 4.2 ± 2.77
(0.13–8.97)

AMA-S-PAAS 8

Okati et al. [58], 2012 Mazandaran Nur 39 Cross-sectional 3.3 ± 2.53
(0.08–8.45)

AMA-S-PAAS 8

Okati et al. [58], 2012 Mazandaran Sari 27 Cross-sectional 3.27 ± 2.19
(0.11–7.42)

AMA-S-PAAS 8

Savabieasfahani et al.
[59], 2012

Tehran Tehran 6 Cross-sectional 0.19 ± 0.12 ICP-MS 6

Ghasempouri et al. [60],
2012

Mazandaran 5 Regions 70 Cross-sectional 0.19 ± 0.09
(0.06–0.43)

AMA-S-PAAS 8

Ghasempouri et al. [60],
2012

Mazandaran Nowshahr 10 Cross-sectional 0.29 ± 0.08
(0.18–0.40)

AMA-S-PAAS 8

Ghasempouri et al. [60],
2012

Mazandaran Nur 8 Cross-sectional 0.24 ± 0.12
(0.12–0.43)

AMA-S-PAAS 8

Ghasempouri et al. [60],
2012

Mazandaran Chamestan 17 Cross-sectional 0.14 ± 0.09
(0.08–0.42)

AMA-S-PAAS 8

Ghasempouri et al. [60],
2012

Mazandaran Village of Nur 13 Cross-sectional 0.16 ± 0.04
(0.08–0.24)

AMA-S-PAAS 8

Ghasempouri et al. [60],
2012

Mazandaran Village of
Nowshahr

22 Cross-sectional 0.11 ± 0.03
(0.06–0.38)

AMA-S-PAAS 8

Okati et al. [61], 2010 Mazandaran Mazandaran 70 Cross-sectional 0.19 ± 0.09
(0.06–0.43)

AMA-S-PAAS 7

Milk (μg/L)

Bahmani and Maleki
[56], 2018

Kurdistan Sanandaj 100 Cross-sectional 3.48
(0.9–3.56)

ICP-MS 7

Khammar et al. [57],
2017

Sistan and Baluchestan Zahedan 40 Cross-sectional 1.23 ± 0.306
(0.21–1.7)

HR-CS-AAS 7

Okati et al. [62], 2013 Mazandaran Amol and Sari 82 Cross-sectional 0.43 ± 0.55
(0–2.45)

AMA-S-PAAS 8

Okati et al. [62], 2013 Mazandaran Amol 38 Cross-sectional 0.37 ± 0.15 AMA-S-PAAS 8

Okati et al. [62], 2013 Mazandaran Sari 44 Cross-sectional 0.50 ± 0.71 AMA-S-PAAS 8

Goudarzi et al. [63],
2013

Isfahan Isfahan 37 Cross-sectional 0.92 ± 0.54
(0–2.07)

CV-AAS 6

Norouzi et al. [64], 2012 Isfahan Lenjan 38 Cross-sectional 7.57 ± 1.08 AMA-S-PAAS 8

Dahmardeh Behrooz
et al. [65], 2012

Tehran, Mazandaran and
East Azerbaijan

Tehran, Noushahr
and Tabriz

80 Cross-sectional 0.39 ± 0.1
(ND* - 5.86)

AMA-S-PAAS 7

Dahmardeh Behrooz
et al. [65], 2012

Tehran Tehran 34 Cross-sectional 0.12 ± 0.06
(ND* - 1.73)

AMA-S-PAAS 7

Dahmardeh Behrooz
et al. [65], 2012

Mazandaran Noushahr 18 Cross-sectional 0.15 ± 0.06
(ND* - 1.21)

AMA-S-PAAS 7

Dahmardeh Behrooz
et al. [65], 2012

East Azerbaijan Tabriz 28 Cross-sectional 0.86 ± 0.26
(0.02–5.86)

AMA-S-PAAS 7

ND* : Not detectable
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Purpose Atomic Absorption Spectrometer (AMA-S-
PAAS); however, the one study used the Cold Vapor
Atomic Absorption Spectroscopy (CV-AAS). Also, two
other studies used the mass spectrometry Inductive
Coupled Plasma (ICP-MS) and High-Resolution-
Continuum Source Atomic Absorption Spectroscopy
(HR-CS-AAS).

The hair mercury content of ILMs was obtained in three
studies by Advanced Mercury Analyzer- Single-Purpose
Atomic Absorption Spectrometer (AMA-S-PAAS). Also,
two other studies used the mass spectrometry Inductive
Coupled Plasma (ICP-MS) and High-Resolution-
Continuum Source Atomic Absorption Spectroscopy (HR-
CS-AAS), respectively.

Meta-regression

The Meta regression was used to detect association be-
tween independent variables (age and years of publica-
tion) and dependent variable (mean of mercury in hair
and BM). Results of Meta regression show that the mean
of mercy in BM of ILMs did not have association with
age (coefficient: 0.035, P: 0.980, 95% CI: −10.61, 10.68)
and years of publication (coefficient: -0.025, P: 0.921,
95% CI: −58.73, 58.75). Also results of Meta regression
show that the mean of mercury in hair did not have asso-
ciation with age (coefficient: 0.316, P: 0.672, 95% CI:
−17.41, 18.04) and years of publication (coefficient: -
0.268, P: 0.880, 95% CI: −83.67, 83.00).

Fig. 2 Subgroup analysis Weighed mean of Mercury in Mother based on sample environment (Heir and Milk) in Iran
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Discussion

Successful management and implementation of the Minamata
Convention for protect human health and the environment

depends on the support of appropriate scientific research and
data.

Therefore, to enhance public health research, promote
health, population benefit and protection against mercury

a b

Fig. 4 The geographical distribution of mercury levels in hair (a) and BM (b) of ILMs accord ing to WHO standard

Fig. 3 Publication bias of weighted Mean of Mercury in mother in Iran (A: Milk, B: Hair)
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exposure, we need to have a general understanding of the
current situation for planning and formulating appropriate pol-
icies in the future.

In the current review study, to the best of our knowledge,
for the first time, we determined the mean mercury level in
hair and BM among ILMs population.

Hair and HBM are considered as two suitable bio-indicator
of mercury contamination for determination of human risk
factors in study of toxic metals.

According to Guideline ofWHO, the mercury level of 1.4–
1.7 μg/l and 2 μg/g were considered as “normal condition
levels” in BM of human [49, 50] and “Normal
Recommended Limit” in mother’s hair, respectively [10].

Mean of mercury level in milk was estimated to be 0.51μg/
l (95 CI: 0.28–0.74, I2: 1.9%, P: 0.421) for ILMs.

The results of present research indicated a low rate of mean
milk mercury level (MML) in ILMs compared with the WHO
standard. This is probably due to their low fish consumption
and their relatively low mercury levels.

In this meta-analysis, about 37% of the total samples size,
the mercury level in milk was reported to be higher than the
allowable limit of WHO [56, 64].

The most important risk factor for increasing mercury con-
centrations in BM is the consumption of mercury-
contaminated foods such as fish [10].

In the Bahmani and Maleki study [56] in Kurdistan, since
the use of dental amalgam by ILMs was negligible and there
was a significant correlation between the MML and fish con-
sumption, so the high MML may be due to high fish
consumption.

This is consistent with the results of other studies [48, 62,
66–68]. But in other studies there was no significant relation-
ship found between fish consumption and mercury concentra-
tion in BM [69–76].

Also, another risk factor for increasing mercury concentra-
tions in BM is exposure to mercury vapor via amalgam-filled
teeth during pregnancy and lactation.

Accordingly, in the study of Norouz et al. [64] in Esfahan,
The fish consumption was very low among mothers and there
was a significant positive correlation between MML and den-
tal amalgam, which probably the high MML may be due to it.
So that the mean milk mercury level in mothers with one to
three amalgam-filled teeth and mothers with four to eight
amalgam-filled teeth increased from 5.47 μg to 13.33 μg.

Other studies have reported levels above the WHO stan-
dard. This rate varies In different countries of the world: Italy
(2.6 μg/l) [75], Turkey (3.42 μg/l) [73], Turkey (25.8 μg/l)
[72], Brazil (5.7 μg/l) [77], Brazil (5.73 μg/l) [78], Brazil
(6.7 μg/l) [71], Brazil (59.41 μg/l) [79], Indonesia, Tanzania
and Zimbabwe (1.87 μg/l) [74], and Mexico (2.52 μg/l) [80].

The mean MML in ILMs varies in worldwide, which are
within the range of 0.008–59.41 μg/l [79, 81], which in pres-
ent study was within the range of 0.12–7.57 μg/l.

Various studies have considered different factors to be effec-
tive on mercury concentration. These factors include: sampling
location, sampling time, sampling method, lactation period, fat
content of milk, nutritional status and maternal exposure level
[10]. However, factors such as the method of analysis of samples
and contaminated samples may also influence the final results.

AlthoughMML are not the same in different countries, but
the results of this study are consistent with results from other
studies: Saudi Arabia (1.191 μg/l) [45], Korea (0.94 μg/l)
[82], Cyprus(0 ± 0.20 μg/l) [83], Saudi Arabia (0.970 μg/l)
[84], United Arab Emirates (0.008 μg/l) [81], Slovakia
(0.94 μg/l) [85], Austria (1.59 μg/l) [86], Japan (0.81 μg/l)
[87], Spain (0.53 μg/l) [68], Brazil (0.36 μg/l) [70], and
United Arab Emirates(0.115 μg/l) [88].

Chien et al. [89] In a study estimated that over 99% of
mercury exposure in infants was caused by BM. Therefore,
BM is a major source of mercury exposure for infants and its
consumption can cause serious harm to infants, including
nerve damage, immune problems, mental retardation, cerebral
palsy, motor disorders, visual impairment, speech and hearing
impairment [58, 89, 90].

The results showed that the mean hair mercury level
(HML) was estimated to be 0.15 μg/g (95 CI: 0.11–0.19, I2:
47.6%, P: 0.028) for ILMs.

Overall, the mean HML in ILMs was within the range of
0.11–4.2 μg/g. The results of this study showed that the mean
HML in ILMs compared with the allowable limit of WHO is
lower, which is probably due to their low fish consumptionو their
relatively low mercury levels and low amalgams consumption.

In accordance with guideline of WHO, in our study the
HML was higher than allowable limit [58].

In this study, there was a significant positive correlation
between HMLs and fish consumption as well as amalgam
use by ILMs. However, as the concentration of mercury in
the mothers without amalgam was also high in this study, this
was probably due to the high levels of mercury in the hair and
the main exposure of mothers to high fish consumption.

Although fish consumption is an effective factor in increas-
ing the mercury concentration in ILMs, the use of other
sources such as cosmetics or chemical shampoos can poten-
tially affect the amount of mercury in hair [91, 92].

Today, mercury-containing cosmetics such as bleach, skin-
lightening creams and other beauty products are widely used by
women worldwide. Therefore, it is important to provide infor-
mation on the dangers of this subject, especially for pregnant
and ILMs about the care and non-use of these substances [93].

On the other hand, there was no significant relationship
between the date of publication and the age of mothers with
the mean mercury level in this study, which suggests that there
may be other variables that have significant effect on mercury
levels in BM and hair.

Thus, although the mean HML of ILMs is not the same in
different countries, but the results of this study are consistent
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with studies in other countries, such as: Spain (1.22 μg/g)
[13], Slovakia (0.13 μg/g) [94], Germany (0.109 μg/g) [95],
17 European countries (0.1–1.486 μg/g) [96], and Slovenia
(0.377 μg/g) [97].

Limitation:
We observed the heterogeneity of mercury measurement

units between different studies in hair and BM of ILMs.
Therefore, their analysis was performed separately.

Also, another limitation of the study presented here is that
data are not totally representative of a country population.

In addition, exposure with mercury in other studies reporting
using biometrics such as blood, urine, nails were not contained
in our analysis because of the lack of study in this field.

Therefore, the results of the present study are an overview
of the information on mean mercury levels in hair and BM of
ILMs, and it doesn’t necessarily show the level of mercury
exposure in our country.

Conclusion

Mercury is one of the most dangerous environmental pollutants
due to environmental sustainability and bioaccumulation in the
food chain.Pregnant and ILMs exposure to mercury and subse-
quent infant exposure to BM is one of themost important health
concerns in the world due to its high toxicity. Exposure to this
substance by mothers and infants can cause serious harm to
them. In this study, studies conducted on mercury concentra-
tions in hair and BMof ILMswere reviewed. The concentration
values of these substances were also compared with WHO
standards. While the mean total mercury level in hair and BM
of ILMs was lower than the WHO standard, but due to the
toxicity and dangers of mercury exposure, management and
periodic monitoring of mercury levels in ILMs and newborns
in different cities in the country are essential. It is also important
to identify all potential risk factors for mercury exposure.
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