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Abstract
This study reports the optimization of milk-clotting protease production from Aspergillus oryzae DRDFS13 under solid-state
fermentation (SSF) in both one-variable-at-a-time and response surface methodology (RSM). The production and optimization of
milk-clotting protease obtained from Aspergillus oryzae DRDFS13 under solid-state fermentation (SSF) using different agro-
industrial wastes as solid substrates were studied. The agro-industrial wastes used included wheat bran, rice bran, pea bran, and
grass pea bran. The chemical composition of the best solid substrate was tested using standard methods. Others cultivation
parameters were studied, and the results showed that the optimum fermentation medium composed of wheat bran, casein (1%
w/w), and glucose (0.5%w/w) and the conditions for maximummilk-clotting protease production were at the moisture content of
55.0%, inoculum of 0.5*106 spores/mL, incubation temperature of 30 °C, pH of 6.0, and fermentation time of 5 days. The highest
milk-clotting activity was obtained from the crude enzyme extracted using 0.1 M NaCl and partial purification of the crude
enzyme using chilled acetone, and 80% (NH4)2SO4 increased the ratio of MCA/PA from 0.56 to 1.30 and 0.65, respectively.
Moreover, the highest MCA (137.58 U/mL) was obtained at a casein concentration of 0.5%, pH 4.0, and 25 °C, using RSM.
Thus, results from the present study showed that the optimization of milk-clotting protease production from A. oryzaeDRDFS 13
under SSF by both one-variable-at-a-time and RSM significantly increased the milk-clotting activity. This is the first report from a
fungus in the Ethiopian setting and a modest contribution to highlight the potential of harnessing microbial protease enzymes for
industrial applications.
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Introduction

Rennet (EC 3.4.23.4), is a complex enzyme traditionally ex-
tracted from slaughtered young calf and used for milk-

clotting. It contains a mixture of proteolytic enzymes such as
acid proteases (aspartic proteases) that are employed in cheese
maturation and production with its appropriate flavor and tex-
ture [1–3]. However, an increase in demand for global cheese
production coupled with a shortage in calf rennet production
and ethical issues necessitated a search for alternative rennet
substitutes from microorganisms [1].

These enzymes are extracted from mass cultured fungal
and bacterial sources that are widely used for cheese produc-
tion, and for not only cheese making but also for use as diges-
tive aids, beer clarifiers, protein modifiers, and microbial
milk-clotting enzymes constitute 33% of the total protease
utilization and largely replaced animal rennet for milk-
clotting [1, 4].

Microbial substitutes for rennet production earlier focused
on fungal substitutes such as Mucor and Endothia [5, 6].
However, the search for an ideal rennet continues for the pro-
duction of milk-clotting enzymes from a number of strains of
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fungi mainly from the genera Aspergillus, Penicillium,
Rhizopus , Mucor , Humicola , Thermoascus , and
Thermomyces [7, 8].

Aspergillus oryzae (A. oryzae) is one of the species known
for its capacity to secrete high levels of enzymes in their
growth environment [7]. It is a non-toxigenic strain, for it
lacks the genes responsible for aflatoxin production.
Consequently, it is recognized as a “Generally Recognized
as Safe (GRAS)” organism by the US Food and Drug
Administration. It has a long history of use in the production
of traditional fermented foods, and in the modern food indus-
try, due to its high-level production of proteolytic active en-
zymes [4, 9–11]. The fungus possesses more secretory pro-
teinase genes that function in acidic pH. It grows on cheap
agricultural by-products such as wheat bran, rice bran, and
bagasse. The enzyme secretion is initiated when the fungus
grows on substrates with low amino acids and sugar contents
since transport-related gene families are expressed to utilize
external nutrient resources for its growth [9, 12].

The production of enzymes by fungi, in general, is under-
taken using a time-tested, cost-effective method known as
solid-state fermentation (SSF). It is suitable for fungi growth
using agricultural by-products as substrates and requirement
of the less sterile environment and skill and recovery of con-
centrated and more stable enzymes than those obtained in
submerged fermentation [11].

It is established that the production of extracellular prote-
ases is affected by the composition of media and other factors,
such as temperature, pH, incubation time, and inoculum den-
sity [13]. About 30–40% of the production cost of a protease
enzyme is accounted for the cost of growth medium [13].
Therefore, the search for local and low-cost substrates, togeth-
er with optimization of cultivation conditions, is necessary to
significantly minimize the cost of enzyme production in the
context of traditional “one-variable-at-a-time” strategic oper-
ation in biotechnology.

Ethiopia is endowed with the highest number of cattle herd
in Africa [14]. Although the hitherto cheese production is
mainly contributed by household and cottage level produc-
tion, the ever-expanding dairy industries around the peri-
urban centers are importing rennet enzymes for cheese pro-
duction [15]. This necessitates the search for rennet substitutes
from fungi at a local level.

In this study, the production of extracellular milk-clotting
protease by locally isolated fungal species, Aspergillus oryzae
DRDFS 13, under solid-state fermentation (SSF) using cheap
agro-industrial by-product (wheat bran) was optimized. The
effects of several physicochemical and environmental factors
were investigated to select the optimal conditions that ensure
the best milk-clotting activity by application of “one-factor-at-
a-time” method. This is the first report of screening and opti-
mization for milk-clotting activity from a local isolate,
Aspergillus oryzae DRDFS 13, under solid-state fermentation

with potential for industrial application after subsequent
studies.

Materials and methods

Microorganism and growth conditions

The fungus was isolated from soil samples in Ethiopia and
identified as Aspergillus oryzae DRDFS13 using ITS
primers(ITS86F (F): 5′- GTG AAT CAT CGA ATC TTT
GA-3′ and ITS4 (R): 5′- TCC TCC GCT TAT TGATAT GC
-3′) at Eurofins Genomics, Germany, after cultural and mor-
phological studies. The fungus was deposited in the fungus
culture collection at Addis Ababa University and Jacobs
University (Bremen, Germany).

Raw materials

Four different agro-industrial substrates, wheat bran, rice bran,
pea bran, and grass pea bran, were purchased from the local
market and properly dried at 60 °C.

Inoculum preparation

Aspergillus oryzae DRDFS13 was grown into 50-mL Falcon
tubes containing 20 mL of potato dextrose agar (PDA) and
incubated at 30 °C for 5 days. Sporulated culture lawn was
mixed well in sterilized distilled water. The spore suspension
was diluted and adjusted to a concentration of 106 spores/mL
using a hemocytometer.

Experimental setup for preliminary screening
for production of MCE under SSF

The experimental setup for solid-state fermentation was according
to [16] with slight modification. The inoculum (1 mL of 106

spores/mL spores suspension) was transferred into 250-mL
Erlenmeyer flasks containing 10 g of wheat bran, 12.43% crude
protein, 3.77% crude fat, 47.23% carbohydrate, 18.77% fiber,
7.4% ash, and 10.40% moisture content, moistened with 12 mL
of (0.2 M) HCl. The flasks were incubated at 30 °C for 6 days.

The solid-state fermentation media were also prepared in
250-mL Erlenmeyer flasks containing wheat bran (10 g), ca-
sein or skim milk (2.0 g), and 10 mL of salt solution (g/L, 2.0,
KNO3; 0.5, MgSO4·7H2O; 1.0, K2HPO4; 0.439, ZnSO4·
7H2O; 1.116, FeSO4·7H2O; 0.203, MnSO4·7H2O; and
pH 7.0). The medium was sterilized at 121 °C for 30 min,
and after sterilization, the flasks were inoculated with 10%
of spore suspension (1 mL of 106 spores/mL) and incubated
at 30 °C for 5 days under static conditions [17].
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Enzyme extraction

Enzyme extraction was made according to [16, 18]. The enzyme
was extracted from solid medium using 100 mL (1:10 ratio of
bran solvent w/v) of distilled water, 0.1 M NaCl solution, and a
solution of Tween-80 (0.1%) by shaking on a rotary shaker
(MaxQ 2000 Open-Air Platform Shaker, Thermo Fisher
Scientific, USA) (240 rpm, 40 min, at room temperature) and
filtered using cotton cloth. The filtrate was centrifuged (Heraeus
Pico17/21 centrifuge, Thermo Electron Led, Germany) at
10,000g for 10 min at 4 °C. The supernatant was used as crude
enzyme source for milk-clotting and protease activities.

Assay for milk-clotting activity (MCA)

The milk-clotting activity of the enzyme extract was assayed
according to [6]; 0.5 mL of the crude enzyme was added to
5 mL of reconstituted skim milk (Nestle TM) in 12-mL test
tube pre-incubated at 35 °C for 10 min. Reconstituted skim
milk (Nestle TM) solution is consisted of 10-g dry skim milk/
100 mL and 0.01 M CaCl2 (AppliChemTM). The clotting
time was quantified in Soxhlet unit (SU) according to the
following formula:

SU ¼ 2400*5*Dð Þ= T*0:5ð Þ
where T is the clotting time (s) and D is dilution of crude
enzyme.

One SU is expressed as the quantity of enzyme required to
clot 1 mL of a solution comprising 0.1-g skim milk powder
and 0.01 M calcium chlorides at 35 °C within 40 min.

Assay for protease activity

For assaying the proteolytic activity, 0.5 mL of the enzyme extract
was mixed with 2.5 mL of 1% (w/v) alkali-soluble casein in 20-
mM potassium phosphate buffer at pH 6.5 [6], and the mixture
was incubated in a water bath at 35 °C for 10 min. The mixture
was then mixed with 2.5 mL of 0.44 M trichloroacetic acid and
filtered through Whatman no.1 filter paper. Then, 1 mL of the
filtrate was mixed with 1 mL of 2 N Folin’s phenol reagent (three
times diluted) and 2.5 mL of 0.55 M sodium carbonate solution
and incubated at 35 °C for 20 min to observe color development
and determine the optical density (OD) at 660 nm. One unit (1 U)
of enzyme activity was defined as the amount of enzyme that
liberated 1 μg of tyrosine per 1 mL in 1 min.

PA U=mLð Þ ¼ μTyr*Vt

Vs*T*Va

where PA, protease activity; μTry, μg of tyrosine equivalent
released; Vt, total volume of assay in mL (5 mL of substrate
plus 1 mL of enzyme plus 5 mL of TCA); Vs, sample volume
(i.e., the volume of protease used for assay in mL); T, reaction

time (i.e., time of incubation in minutes, 10 min); and Va,
volume of assayed (i.e., the final volume of the product used
in calorimetric determination).

Effect of media on milk-clotting protease (MCP)
production

Initial screening of the media composition for maximummilk-
clotting protease (MCP) production was performed by a one-
variable-at-a-time approach [4, 13]. Thus, 1 mL of 1*106

spore/mL from Aspergillus oryzae DRDFS13 was inoculated
into 10 g of each substrate (SS media) in 250-mL Erlenmeyer
flasks hydrated with 12-mL HCl (0.2 M) except 6-mL HCl
(0.2 M) for rice bran and incubated at 30 °C for 144 h. The
extraction was made as before, and the crude enzyme was
assayed for milk-clotting and protease activity according to
[6]. After having tested the effect of substrates on enzyme
production, the highest enzyme-producing substrate was se-
lected and tested for further optimization.

Effect of incubation time

After inoculation, the flasks were incubated at 30 °C for dif-
ferent time periods ranging from 24 to 144 h, and enzyme
activity was monitored according to [6].

Biomass determination

The biomass was indirectly detected by the glucosamine
(GlcN) released from the cell wall according to [19].

Biomass mg GlcN:gdfs−1
� �

¼
h
e^ ΔA650−bð Þ=m½ ��*DFsample

� �
= 0:1ð Þ

Where

ΔA650 =A650 (sample)-A650 (sample blank)
e^[(ΔA650-b)/m]] = mgGlcN
Standard curve values (logarithmic fit) = b&m
Sample’s amount = 0.1gdfs
Sample’s dilution = DFsample

Effect of incubation temperature

The fungal spores were inoculated into SSF medium in 250-mL
Erlenmeyer flask and incubated at 25, 30, 35, and 40 °C for 120 h
to obtain the optimum temperature for MCP production, and the
milk-clotting and protease activities were assayed according to [6].
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Effect of inoculum size

The effect of inoculum size on MCP production was stud-
ied by inoculating 0.1 (1*105 spores/mL), 0.5 (5*105

spores/mL), 1 (1*106 spores/mL), 2 (2*106 spores/mL), 3
(3*106 spores/mL), and 4 mL (4*106 spores/mL) spore
suspension in to SSF media and assayed for milk-clotting
and protease activities according to [6].The following op-
timization study was undertaken by inoculating 0.5 mL of
1*106 spore/mL using 10 g of wheat bran on SSF minimal
medium in 250-mL Erlenmeyer flask and incubated at
30 °C for 120 h unless stated otherwise.

Effect of moisture content

The effect of initial moisture content on enzyme production
was tested by moistening substrate using distilled water in
different percentages of moisture content, 45, 50, 55, 60, 65,
and 70%, to find out the best percentage for enzyme produc-
tion [20]. The milk-clotting and protease activities were
assayed according to [6].

Effect initial media pH

The effect of initial media pH on milk-clotting protease
production was studied by adjusting the SSF medium to
pH 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 using HCl or
diluted NaOH. The milk-clotting and protease activities
were assayed according to [6].

Effect of supplementary carbon and nitrogen sources

The SSF production medium was supplemented with dif-
ferent C sources (glucose, galactose, fructose, sucrose,
maltose, lactose, and starch) and N sources (casein, skim
milk, yeast extract, and urea) and inorganic nitrogen
source (NH4Cl, (NH4)2SO4 and NH4NO3) at a level of
1% w/w of the SSF medium. Further, the amount of best
nitrogen and carbon source (0.5, 1, 2, 3, 4, and 5%) was
optimized [21]. The milk-clotting and protease activities
were assayed according to [6].

The extraction efficiency of some solvents

The efficiency of some solvents was checked by extracting the
milk-clotting protease using distilled water, 0.1 M NaCl, and
0.1% Tween 80 at 1:10 bran to solvent ratio. The crude en-
zyme extract was then assayed for milk-clotting activity and
protease activity according to [6].

Optimization of major factors affecting milk-clotting
protease production by response surface
methodology (RSM)

Experimental design

The effects of factors that have shown significant outcome on
milk-clotting protease production during optimization by one-
variable-at-a-time were further determined by response sur-
face methodology (RSM). The RSM was used for studying
the effects of interaction among pH, temperature, and casein
concentration on milk-clotting protease production. The opti-
mized ranges for the selected variables were pH (4–7), incu-
bation temperature (25–40 °C), and casein concentration (0.5–
5%). RSM design was adopted to optimize the levels of the
three factors, with three center points yielding a set of 20
experiments. The factors at three different levels (− 1, 0, + 1)
with minimum and maximum range of values were presented
in Table 1. The replicates (treatments 13–20 in Table 4) at the
center of the design were used for estimation of the pure error
sum of squares. The experiments were randomized to maxi-
mize the effects of unknown variability due to irrelevant fac-
tors in the observed responses [4].

Partial purification of milk-clotting protease

Acetone precipitation

The crude enzyme extract was precipitated with chilled ace-
tone (acetone or 75% acetone). Two volumes of chilled ace-
tone were slowly added to the extract, and the precipitate was
then allowed to settle for 1 h at – 18 °C to permit complete
precipitation. The precipitated protein was separated by
centrifuging (Heraeus Pico17/21 centrifuge, Thermo
Electron Led, Germany) at 10000g for 10 min at 4 °C. The
pellet was then dried in the open air for 30 min and dissolved
in 0.02 M phosphate buffer, pH 6.0 to remove trace amounts
of acetone [22].

Table 1 Experimental range and levels of the three independent
variables used in RSM in terms of actual and coded factors

S.No Variables Range and levels

− 1 0 + 1

1. pH 4 5.5 7

2. Temp 25 32.5 40

3. Casein conc. 0.5 2.75 5

– 1, minimum value; 0, average value; + 1: maximum value
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Ammonium sulfate precipitation

The crude enzyme extract was precipitated with ammoni-
um sulfate according to [23]. Accordingly, 300 mL of the
crude extract was added to 1200-mL (100%) saturated
ammonium sulfate to precipitate. Then, the enzymatic so-
lution was decanted for one night at 4 °C and then cen-
trifuged (Heraeus Pico17/21 centrifuge, Thermo Electron
Led, Germany) at 10000 g for 10 min at 4 °C, and the
pellet was suspended in the phosphate buffer (0.02 M; pH
6).

Inhibition study

The effect of protease inhibitors to inhibit protease activ-
ity was studied according to the methods of [24] after the
crude enzyme was produced using optimized parameters

(one-variable-at-a-time). The inhibitors used include cys-
teine protease inhibitor, iodoacetamide (1 and 10 mM);
aspartic protease inhibitor, pepstatin A (0.02, 0.04, 0.6,
0.08, and 0.1 mM); metalloprotease inhibitor, EDTA (5
and 10 mM); and serine protease inhibitor, phenyl-
methane sulphonyl fluoride (PMSF) (1 and 10 mM).
After incubating the enzyme with inhibitor at 35 °C for
30 min, residual activity was assayed under optimal con-
ditions. The control enzyme activity, without the inhibitor,
was taken as 100%.

Data analysis

Data analyses were performed using SAS software ver-
sion 9 (Inc. Cary NC USA). The experiments were carried
out in triplicate. Analysis of variance (ANOVA) and
means comparisons was done by Duncan’s multiple range
tests.
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Table 2 Biomass, MCA, and PA of the crude enzyme from A. oryzae DRDFS13

Sample Day pH
mean ± SD

Biomass in mg GlcN/gdfs MCA(U/mL)
mean ± SD

PA(U/mL)
mean ± SD

Ratio
M C A /
PA

Blank _ 3.93 ± 0.01a – NDc 0.00 ± 0.00f ND

Aspergillus oryzae DRDFS13 0 3.91 ± 0.01a 10.15 ± 0.11c NDc 0.00 ± 0.00f ND

1 3.78 ± 0.00a 12.43 ± 2.02c NDc 0.00 ± 0.00f ND

2 3.90 ± 0.09a 19.77 ± 8.20a NDc 100.24 ± 6.88e ND

3 3.85 ± 0.01a 16.64 ± 6.48b NDc 129.07 ± 1.64d ND

4 3.90 ± 0.02a 11.43 ± 0.18c 63.76 ± 6.62b 196.39 ± 3.12b 0.32

5 3.94 ± 0.01a 11.30 ± 0.04c 79.60 ± 3.16a 172.26 ± 10.53c 0.46

6 4.02 ± 0.20a 10.96 ± 0.71c 70.20 ± 1.20b 231.24 ± 1.01a 0.30

Chymosin _ – – 2181.81 ± 0.00 281.75 ± 24.79 7.74

Chymosin, commercially produced pure enzyme used as positive control; ND, not determined (if milk did not clot within 40 min); MCA, milk-clotting
activity (U/mL); PA, protease activity (U/mL); ratio, the ratio of MCA/PA; SD, standard deviation; mean, average of two measurements; different letters
(a, b, c, d) designate significantly different means as determined by Duncan multiple mean comparison test (P < 0.05)
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Results and discussion

Selection of solid substrate for production
of milk-clotting protease (MCP) by Aspergillus oryzae
DRDFS13

In this study, several agro-industrial substrates (wheat
bran, rice bran, pea bran, and grass pea bran) were
screened for production of MCP from A. oryzae
DRDFS13 under SSF. Although the fungus grew on all
substrates (wheat bran, pea bran, grass pea, and rice bran),
it did not show milk-clotting activity, except on wheat bran
with milk-clotting activity (MCA) of 77.74 U/mL (Fig. 1).
Although the particle size of each substrate was not deter-
mined, the difference may be due to differences in particle
size between wheat bran and the other three substrates
which is partly related to porosity [25]. Wheat bran is con-
sidered as the best substrate for the production of acid pro-
tease from A. oryzaeMTCC 5341 [4], other Aspergillus species
[20, 26], and Mucor sp. [27].In the present study, both wheat
bran moistened with a mineral solution and wheat bran moist-
ened with HCL were used for milk-clotting protease production;
however, the result showed that wheat branmoistened with HCL
was better for MCP production (Fig. 1).

The effect fermentation time on biomass
and milk-clotting protease production by Aspergillus
oryzae DRDFS13

The growth and milk-clotting protease production in SSF
were studied for 6 days under previously established optimal
conditions (Table 1). Chymosin (commercial enzyme) was
used as a positive control during the milk-clotting activity test.
The fungus showed a steady growth starting from 10.15 mg
GLcN/gdfs to 19.77 ± 8.20mgGLcN/gdfs implying a twofold
increase in biomass after 2 days of incubation. Similarly, the
highest biomass levels ofM. mucedo DSM 809 was achieved
between 2 and 3 days [24]. This could be interpreted as mi-
crobe that undergoes lag phase before active growth and starts
to decline in biomass when the nutrients depleted. Biomass
production was supported by carbohydrates consumption,
which was almost exhausted at the time of maximum enzyme
production.

The milk-clotting activity was detected after 96 h of
incubation, and the maximum value of MCA (79.6 U/
mL) was recorded at a 120 h incubation period. Whereas
the protease activity was noticed from the second day
(100.24 U/mL) and the highest PA (231.24 U/mL) was
recorded on the 6th day of the incubation period
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(Table 2), this might be due to the gene encoding aspartic
protease enzyme that could be induced later than other
types of protease. The maximum MCA recorded from
M. circinelloides, A. oryzae MTCC, and Aspergillus sp.
on the 5th day of fermentation time under SSF is compa-
rable with the present study [4, 21, 28]. But, further incu-
bation showed a reduction in enzyme production. The
reduction in enzyme yield after the optimum period was
probably due to the depletion of nutrients available to
microbial growth [21]. On the other hand, the highest
milk-clotting activity was obtained from A. niger FFB1
on the 3rd day [20], and maximum acid protease activity
was noticed from A. oryzae HG76 at 80 h incubation time
[29] which was different from the present study.

The effect of incubation temperature on milk-clotting
protease (MCP) production by Aspergillus oryzae
DRDFS13

The study indicated that the MCA activity started to steadily
increase to 60–70 U/mL between 25 and 30 °C and abruptly
declined to 30–40 U/mL at 35 °C (Fig. 2). Other studies also

showed slight variations in the temperature optima for the
production protease enzymes by Aspergillus spp. from above
30 °C (32 °C) [28] and a decline at 35 °C from A. oryzae
MTCC 5341 [4]. Although the enzymes showed slight varia-
tion, no significant difference showed; in their temperature
optimal activities, they were within the optimum temperature
of 30 °C for the production of these enzymes with solid-state
fermentation by other fungi.

The effect of inoculum size on milk-clotting protease
production by Aspergillus oryzae DRDFS13

The highest milk-clotting activity was recorded from the crude
enzyme extract produced by A. oryzae DRDFS13 using an
inoculum size of 0.5*106 spores/mL followed by 0.1*106

spores/mL (Fig. 3). This was comparable to the highest en-
zyme activity displayed by A. niger under SSF using an inoc-
ulum size of 1*106 spores/mL [20]. However, the acid prote-
ase activity observed from A. oryzae HG76 at an inoculum
concentration of 0.75*106 mL−1 under SSF is similar to the
present study [29].

As the level of inoculum size increased to 4*106 spores/
mL, the milk-clotting activity of the protease was decreased to
lower activity (45.16 U/mL). Similarly, a milk-clotting activ-
ity of the protease lowered when an inoculum concentration of
4.5 × 106 spores/mL was used in SSF [20]. The decrease in
MCA that has been observed with higher inoculum size could
be due to the shortage of the nutrients available for the larger
biomass and faster growth of the culture. Hence, a balance
between the proliferating biomass and available material is
vital for maximum enzyme production [21].

The effect moisture content on milk-clotting protease
production by Aspergillus oryzae DRDFS13

In the present study, the maximum milk-clotting activity
of 100.43 ± 0.84 was observed with 55% moisture content
(Fig. 4). Different studies showed that different SSF
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Fig. 7 Effect of supplementary C source on MCP production by
A. oryzae DRDFS13 in SSF. MCA, milk-clotting activity; PA, protease
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systems gave optimum protease activities at various mois-
ture contents ranging from 40 to 60% with various fungi:
A. oryzae HG76, Rhizopus stolonifer, Rhizomucor miehei,
and A. niger FFB1 [20, 29–31]. [21] reported maximum
enzyme production from M. circinelloides at 20% mois-
ture content in SSF. This may be related to the different
types and porosity of substrates used for SSF.

The effect initial media pH on milk-clotting protease
production by Aspergillus oryzae DRDFS13

The pH of the medium strongly affects many enzyme
processes and transport of various compounds across the
cell membrane. Thus, the effect of initial media pH on the
production of MCP is illustrated in Fig. 5. The MCA
gradually increased from pH 4.0 to pH 6 where the max-
imum milk-clotting activity was recorded at pH 6. This
was similar to maximum MCA production recorded from
A. oryzae MTCC 5341 and Rhizopus stolonifer at pH 6.3
and pH 6, respectively [4, 31]. Other studies indicated
optimum MCA production by A. oryzae and Mucor
circinelloides at pH 7.0 [21, 26]. The protease production
by A. niger FFB1 and A. oryzae MTCC 5341 and other
Aspergillus sp. was maximum between pH 4 and pH 5 [4,
20, 28]indicating the pH optima difference between aci-
dophilic and neutrophilic fungi irrespective of their taxa.

The effect supplementary nitrogen source
on milk-clotting protease production by Aspergillus
oryzae DRDFS13

Different nitrogen sources, i.e., skim milk, casein, yeast ex-
tract, urea, NH4NO3, NH4SO4, and NH4Cl, were used in the
SSFmedium for the production of milk-clotting protease from
A. oryzae DRDFS1 (Fig. 6). Supplementation of casein (1%)
as a nitrogen source resulted in an increase in enzyme

Table 3 The effect of acetone and ammonium sulfate precipitation on MCA/PA ratio of MCP from A. oryzae DRDFS13

Sample Extraction solvent Precipitating solvents MCA (U/mL)
Mean ± SD

PA (U/mL)
Mean ± SD

Ratio
( M C A /
PA)

Crude enzyme (0.5% glucose) 1 M NaCl – 168.47 ± 2.96a 300.80 ± 22.52a 0.56

Crude enzyme (0.5% glucose) 1 M NaCl Acetone 84.96 ± 1.06c 65.28 ± 3.07c 1.30

Crude enzyme (0.5% glucose) 1 M NaCl 80% (NH4)2SO4 120.19 ± 6.80b 185.01 ± 0.32b 0.65

Chymosin _ _ 2533.33 ± 188.56 99.76 ± 5.36 25.39

Chymosin, commercially produced pure enzyme used as positive control; MCA, milk-clotting activity (U/mL); PA, protease activity (U/mL); ratio, the
ratio of MCA/PA; SD, standard deviation; mean, average of two measurements; different letters (a, b, c, d) designate significantly different means as
determined by Duncan multiple mean comparison test (P < 0.05)

Table 5 Experimental design used in the RSM studies of three
independent variables with 3 center points for MCP production by
A. oryzae DRDFS13 under SSF

Run order A
pH

B
Casein conc.

C
Temp.

MCA (U/mL)

Actual value Predicted value

1. 4.00 0.50 25.00 134.85 137.58

2. 7.00 0.50 25.00 107.99 93.31

3. 4.00 5.00 25.00 131.18 115.50

4. 7.00 5.00 25.00 79.34 71.23

5. 4.00 0.50 40.00 83.05 62.72

6. 7.00 0.50 40.00 0.00 18.44

7. 4.00 5.00 40.00 15.95 40.62

8. 7.00 5.00 40.00 14.55 −3.65
9. 2.98 2.75 32.50 132.24 104.20

10. 8.02 2.75 32.50 49.49 29.74

11. 5.5 −1.03 32.50 69.78 85.54

12. 5.5 6.53 32.50 30.57 48.40

13. 5.5 2.75 19.89 101.95 129.93

14. 5.5 2.75 45.11 0.00 4.01

15. 5.5 2.75 32.5 56.65 66.97

16. 5.5 2.75 32.5 72.89 66.97

17. 5.5 2.75 32.5 59.54 66.97

18. 5.5 2.75 32.5 56.94 66.97

19. 5.5 2.75 32.5 79.18 66.97

20. 5.5 2.75 32.5 63.22 66.97

MCA, milk-clotting activity (U/mL); casein conc., casein concentration (%); and temp., tem-

perature in °C

Table 4 ANOVA table for milk-clotting activity in response surface
linear model

Model terms Value Model terms Value

Std. Dev. 18.08 R2 0.8402

Mean 66.97 Adj R2 0.8102

C.V. % 27.00 Pred R2 0.7161

PRESS 9293.13 Adeq Precision 17.467

Model F-value 28.04 Lack of fit 4799.77
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production, which is comparable to the highest MCA acquired
from A. oryzaeMTCC 5341 [4] and Rhizomucor nainitalensis
[32] on the same substrate. Although the effect of specific
nitrogen supplement on milk-clotting enzyme production dif-
fers from organism to organism, the complex nitrogen sources
such as casein and peptone are usually used for milk-clotting
enzyme production [26].

The effect of casein concentration on milk-clotting
protease production by Aspergillus oryzae DRDFS13

ThemaximumMCAwas observed at 1% casein concentration
(Supplementary Data Fig. 1). Similar to the present study, the
highest MCA was recorded from Rhizopus stolonifer [31]
and Rhizomucor nainitalensis [32] at 1% and 1.5% casein

Fig. 9 Comparative plot showing
predicted vs. actual values of
milk-clotting protease from
Aspergillus oryzae DRDFS13

Fig. 10 Response surface curves
of milk-clotting protease produc-
tion from Aspergillus oryzae
DRDFS 13 showing the interac-
tion between casein and pH
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concentration, respectively. Similarly, the addition of 2 g of
casein into the solid substrate showed a significant increase in
the production of microbial rennet from M. miehei [33].

The effect supplementary carbon source
on milk-clotting protease production by Aspergillus
oryzae DRDFS13

Among the various carbon sources tested, glucose at 0.5%
was found to be the best source for milk-clotting enzyme
production followed by galactose and starch (Figs. 7 and 8).
Although it is argued that the simplest carbon sources like
glucose in the media enhance protease production by
A. oryzae [34], other studies also showed supplementation

with maltose [35], and lactose [31] showed maximum milk-
clotting activity in the SSF media.

The effect extraction solvents on the activity of MCP
produced by A. oryzae DRDFS13

The extraction efficiency is critical to the recovery of the en-
zyme from the fermented biomass; hence, the selection of a
suitable solvent is necessary [36]. The highest milk-clotting
activity was recorded using 0.1 M NaCl followed by distilled
water as an extraction solvent for enzyme leaching in SSF
(Fig. 8). The acid protease enzyme extracted from A. oryzae
MTCC 5341 using 0.1 M NaCl solution that showed signifi-
cant MCA was comparable with the present study [1].
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However, on the economic feasibility of fermentation, dis-
tilled water was chosen as a suitable solvent for further extrac-
tion of crude protease from fermented solids [28].

Partial purification of milk-clotting protease
from A. oryzae DRDFS13

Partial purification of the crude enzyme extract obtained from
A. oryzae DRDFS13 using chilled acetone and 80%
(NH4)2SO4 increased the ratio of MCA/PA while reducing
the MCA and PA. Chymosin (commercial enzyme) was used
as a positive control during the milk-clotting activity test. The
ratio of MCA/PA of the crude enzyme increased by 2.3-fold
(from 0.56 to 1.3) by acetone and by 1.2-fold (from 0.56 to
0.65) via 80% (NH4)2SO4 (Table 3). Similarly, partial purifi-
cation of protease from A. oryzaeMTCC 5341, A. terreus, and
P. aeruginosa using chilled acetone increased the purification
by 5-fold, 2.6-fold, and 1.6-fold, respectively [9, 22, 37].

Production of the milk-clotting protease (MCP)
under SSF using response surface methodology

Three factors, i.e., pH, casein concentrations, and temperature,
were found to be the most significant factors affecting the
production of MCP under SSF conditions, but their possible
interactions were not evaluated. Thus, a statistical design re-
sponse surface methodology was employed here to study their
possible interactions for its effect on milk-clotting
protease production. Consequently, the data were fitted with
the following regression equation which is an empirical rela-
tionship between the enzyme yields and test variables:

MCA (U/mL) = + 323.85921 – (14.75783* pH) – (4.90801
*Caesin conc.) – (4.99157 *Temp.)

The regression equation obtained from the ANOVA
showed that the multiple correlation coefficient (R2) was
0.8402. The R2 value > 0.75 indicates the fitness of the model
[38]. The “adjusted R2” is 0.8102, and the predicted R2 is
0.7161, indicating that the model is good as for a good statis-
tical model, the R2 should be in the range of 0–1.0, and the
nearer to 1.0 the value is the more fit the model is deemed to
be [38]. The “adequate precision value” of the present model
was 17.467suggesting that the model can be used to navigate
the design space. The “precision value” is an index of the
signal-to-noise ratio, and values of higher than 4 are prerequi-
sites for a model to be a good fit [38]. The model showed
standard deviation, mean, and predicted R2 values of 18.08,
66.97, and 0.7161, respectively (Table 4).

The results from the RSM experiments were presented
in Table 5 as both predicted and experimental values. The
highest MCA (137.58 U/mL) from Aspergillus oryzae
DRDFS13 was recorded at a casein concentration of
0.5%, pH 4.0, and 25 °C. Generally, the optimization of
the physicochemical and nutritional factors for the produc-
tion of the MCE by RSM increased the MCA by ≈2.0-fold.
Similar to the present study, [39] reported the optimization
of protease production from Paecilomyces marquandii in
central composite design (CCD) increased the enzyme ac-
tivity by 2.57-fold. In the same way, the MCA of MCE
from B. subtilis B1 was improved by 5.57-fold after opti-
mization by response surface methodology [40]. In another
study, optimizing the production of MCE enzyme from
Mucor mucedo KP736529 by the CCD led to a 6.12-fold
increase in MCA compared with initial activity [41].
According to [42], the activity of acid protease from a
mixed culture of A. oryzae AS3042 and A. niger SL-09
was increased by five fold using response surface method-
ology (RSM) optimization.

Table 6 Inhibition study for the crude enzyme from A. oryzae DRDFS13

Sample Fermentation
Time (days)

MCA(U/mL)
Mean ± SD

Inhibition study
Residual MCA (%)

Pep A
(1 mM)

I.A
(10 mM)

EDTA
(10 mM)

PMSF
(10 mM)

Aspergillus oryzae DRDFS13 0 NDc NDd NDd NDd NDd

1 NDc NDd NDd NDd NDd

2 NDc NDd NDd NDd NDd

3 NDc NDd NDd NDd NDd

4 63.76 ± 6.62b 0.00d 97.14c 94.56c 95.78c

5 174.61 ± 3.18a 0.00d 72.94b 69.82b 76.22b

6 170.22 ± 1.21a 0.00d 84.19ab 89.52a 74.80b

D, not determined; MCA, milk-clotting activity (U/mL); Pep A, pepstatin A; I.A, iodoacetamide; EDTA, ethylenediaminetetraacetic acid; PMSF,
phenyl-methane sulphonyl fluoride; SD, standard deviation; mean is average of two measurements; different letters (a, b, c, for MCA (U/mL) designate
significantly different means as determined by Duncan multiple mean comparison test (P < 0.05); different letters (a, b, c,d for PepA, I.A, EDTA, and
PMSF) designate significantly different means as determined by Duncan multiple mean comparison test (P < 0.05)
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The probability plot showed a satisfactory correlation
between the experimental and predictive values (Fig. 9).
In order to determine the optimal levels of each factor for
maximum milk-clotting protease production, three-
dimensional response surface plots were constructed.
Figure 10 shows the response for the interactive factors,
casein and pH, when the temperature was at 32.5. The
maximum milk-clotting activity in this condition was pre-
dicted to be 132.24 U/mL. The production of milk-
clotting protease production varied considerably over the
range tested from 30.57 to 132.24 U/mL. Figure 11. indi-
cates the response for the interactive factors, casein and
temperature, when the pH was 5.5. The maximum milk-
clotting activity in this condition was predicted to be
101.95 U/mL. The production of milk-clotting protease
production varied considerably over the range tested from
0.00 to 101.95 U/mL.

Figure 12 shows the response for the interactive factors, pH
and temperature, when the casein concentration was 2.75. The
maximum milk-clotting activity in this condition was predict-
ed to be 45.11 U/mL. The production of milk-clotting protease
production varied considerably over the range tested from
32.5 to 101.95 U/mL.

Inhibition study

Incubation of crude enzyme with pepstatin A completely
inhibited the milk-clotting activity of the enzyme. On the other
hand, more than 68% of residual MCA was recorded using
iodoacetamide, EDTA, and PMSF as protease inhibitors
(Table 6). Similar results were reported by [1, 24, 43–48].

Comparative analysis of the efficiency of A. oryzae
DRDFS 13 onMCA under SSF in comparison with other
fungi

In general, the milk-clotting activity of protease enzyme pro-
duced from Aspergillus oryzae DRDFS 13 was comparable
with the milk-clotting activity of protease reported by [20].
However, the milk-clotting activity recorded for milk-
clotting protease in this study was higher than the milk-
clotting activity of proteases produced from Aspergillus
oryzae [26], Aspergillus flavo furcates DPUA 1461 [49],
Aspergillus spp. [28], and Rhizopus stolonifer [31]. On the
other hand, the activity of milk-clotting protease from
Aspergillus oryzae DRDFS 13 was lower than the milk-
clotting activity of proteases produced from Aspergillus
oryzaeHG76 [29] andMucor spp. [50]. The variation record-
ed in milk-clotting activity could be due to the difference of
the substrate combination, mineral supplements, effectiveness
of the fungus species, incubation time, and/or moisture con-
tent used in solid-state fermentation.

Conclusion

Optimization of the milk-clotting protease enzyme production
from A. oryzaeDRDFS 13 by both one-variable-at-a-time and
response surface methodology (RSM) significantly improved
the milk-clotting activity by twofold.

The milk-clotting activity was increased by twofold in one-
variable-at-a-time optimization (from 77.74 U/mL to 168.47)
when A. oryzae DRDFS13 was cultivated at temperature
(30 °C), pH (6.0), moisture content (55%), and inoculum size
(5*105 spores/mL) for 5 days using wheat bran as solid sub-
strate under solid-state fermentation. The milk-clotting activ-
ity was also increased by about twofold using RSM optimiza-
tion (from 77.74 U/mL to 137.85 U/mL) when A. oryzae
DRDFS13 was cultivated at a casein concentration of 0.5%,
pH 4.0, and 25 °C.
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