
BACTERIAL FUNGAL AND VIRUS MOLECULAR BIOLOGY - RESEARCH PAPER

High similarity and high frequency of virulence genes
among Salmonella Dublin strains isolated over a 33-year
period in Brazil

Felipe Pinheiro Vilela1 & Dália dos Prazeres Rodrigues2 & Renata Garcia Costa2 & Monique Ribeiro Tiba Casas3 &

Juliana Pfrimer Falcão1
& Fábio Campioni1

Received: 27 June 2019 /Accepted: 7 September 2019
# Sociedade Brasileira de Microbiologia 2019

Abstract
SalmonellaDublin is a strongly adapted serovar that causes enteritis and/or systemic disease with high rates of mortality in cattle
and occasionally infects humans. Despite the importance of this serovar, there is a lack of studies in Brazil. The aim of this study
was to characterize the genetic diversity of 112 S. Dublin strains isolated from humans and animals in Brazil by CRISPR and
CRISPR-MVLSTand the relatedness among strains byMLST. In addition, the frequency of some important virulence genes was
verified. The strains studied belonged to nine different sequence types, being all of them single- or double-locus variants of the
ST10. CRISPR discriminated the strains into 69 subtypes with a similarity ≥ 84.4% and CRISPR-MVLST into 72 subtypes with
a similarity ≥ 84.7%. The virulence genes ratB, lpfA,mgtC, avrA, sopB, sopE2, sifA, sseA, ssrA, csgA, fliC, and sinHwere found
in all the strains studied, while spvB, spvC, sodCl, rpoS, sipA, sipD, invA, and hilAwere detected in ≥ 93.7% of the strains. In
conclusion, the high similarity among the strains reinforces the clonal nature of the strains of this serovar that may have
descended from a common ancestor that little differed over 33 years in Brazil. CRISPR and CRISPR-MVLST showed to be
good alternatives to type S. Dublin strains. MLST suggested that S. Dublin strains from Brazil were phylogenetically related to
strains from other parts of the globe. Moreover, the high frequency of virulence genes among the strains studied reinforces the
capacity of S. Dublin to cause invasive diseases.
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Introduction

Salmonellosis caused by non-typhoidal serovars is among
the most common foodborne illnesses worldwide, account-
ing for 93.8 million cases of gastroenteritis and 155,000
deaths annually [1].

Salmonella enterica serovar Dublin (S. Dublin) is strongly
adapted to cattle, responsible for causing enteritis and/or sys-
temic disease with high rates of mortality. This fact becomes
even more concerning due to the negative economic impact
for many beef-producing countries, since S. Dublin infections
in cattle may result in reduced milk production, abortion in
pregnant cows, and eventually in deaths [2–4].

Occasionally, S. Dublin can also be isolated from serious
and even fatal infections in humans, especially in patients with
underlying immunosuppression conditions, and usually caus-
ing a serious disease that can even be indistinguishable from
typhoid fever [2–4].
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Similarly to most Salmonella serovars, the pathogenesis of
S.Dublin strains is achieved, among others, by proteins coded
by chromosomal genes responsible for multiple cellular func-
tions as adhesion, acid and serum resistance, invasion of host
cells, and survival within phagocytic cells. Such genes are
mostly located in the Salmonella pathogenicity islands
(SPIs), in special the most studied ones, SPI-1 and SPI-2. In
addition, virulence plasmids such as the pSDL, that carries the
spv operon, also play important roles in survival and growth of
Salmonella Dublin into macrophages [5–9].

Some methodologies such as pulsed-field gel electropho-
resis (PFGE), multiple-locus variable-number of tandem re-
peats analysis (MLVA), enterobacterial repetitive intergenic
consensus PCR (ERIC-PCR), multilocus enzyme electropho-
resis (MLEE), multilocus sequence typing (MLST), and clus-
tered regularly interspaced short palindromic repeats
(CRISPR) have been successfully used to subtype strains of
many Salmonella serovars, including S. Dublin [9–13].
Although the great applicability, some methodologies, such
as MLST and CRISPR, require excessive laboratory work
and high costs that restricts the performing of these method-
ologies to small and representative sets of strains [14–17].
However, the evolution and costs reductions in whole-
genome sequencing (WGS) have been providing a wider ac-
cess to sequence larger sets of bacterial strains and conse-
quently have been allowing different molecular analysis to
be performed in a faster and easier way than the traditional
typing [18, 19].

MLST is a method based on the analysis of a particular set
of housekeeping genes for each bacterial species. The analysis
of the alleles of seven housekeeping genes can be submitted to
an online public database (https://enterobase.warwick.ac.uk/)
that assigns the strains according to the specific alleles to a
specific sequence type (ST), which allows the comparison of
strains isolated in different parts of the globe [15]. This
methodology has successfully contr ibuted to the
understanding of the epidemiology, evolution, and genotypic
diversity of many Salmonella serovars and it has even been
proposed as an alternative for traditional identification by
serotyping [15, 19, 20].

CRISPR are short and highly conserved sequences of DNA
direct repeats, which range from 21 to 48 base pairs (bp),
usually specific for a determined CRISPR locus. These se-
quences are regularly interspaced by variable DNA sequences
of constant and similar length, usually 20–58 bp, called
spacers, which vary according to the species of the microor-
ganisms or the CRISPR locus [21, 22]. Among Salmonella
serovars, two non-coding CRISPR loci were identified in their
genomes, and the analysis of the different spacers contained in
their respective CRISPRs loci has been successfully used to
subtype these serovars [18, 23–25].

Aiming to increase the discriminatory power of CRISPR
technique, Liu et al. (2011) proposed the association of the

two Salmonella CRISPR loci with the virulence genes fimH,
responsible for bacterial binding to structures in the cell-host
membrane, and sseL, responsible for inducing inflammation
and killing macrophages [28]. This association originated the
method known as CRISPR-multi-locus virulence sequence
typing (CRISPR-MVLST) [26–28]. This methodology has
also been successfully used to subtype serovars as
Enteritidis, Newport, and Typhimurium [18, 23–25].

Few information is available about the molecular epidemi-
ology of S.Dublin strains isolated worldwide, and most of the
studies did not study sets of strains exclusively of this serovar,
interfering on the understanding of the specific characteristics
and traits of S. Dublin [9–12, 29]. Specifically in Brazil, only
five studies molecularly typed strains of this serovar, among
which, only two analyzed a large set exclusive of S. Dublin
strains, making it difficult to evaluate the diversity of strains of
this serovar circulating in this country [13, 30–33].
Furthermore, MLST, CRISPR, and CRISPR-MVLST have
never been used for typing strains of this serovar in Brazil,
according to the published literature.

Therefore, the aim of this study was to genotype S. Dublin
strains isolated from humans and animals in Brazil between
1983 and 2016 by MLST and CRISPR and its variation
CRISPR-MVLST. Moreover, the ability of CRISPR-based
methodologies in subtyping S. Dublin strains was analyzed
in addition to the pathogenic potential of these strains that
was determined by searching for the frequency of 20 genes
related to Salmonella virulence.

Material and methods

Bacterial strains

A total of 112 Salmonella Dublin strains isolated in Brazil
from humans (82) between 1983 and 2016, and animals (30)
between 1992 and 2015 were studied. These strains were pre-
viously described in Vilela et al. 2018 [13] and are represen-
tative isolates of the years, states, material, and source of iso-
lation of the collections of two Salmonella reference laborato-
ries in Brazil, the Adolfo Lutz Institute of São Paulo (IAL-SP),
and Oswaldo Cruz Foundation of Rio de Janeiro (FIOCRUZ-
RJ). Supporting Information Table S1 presents the year,
source, and states of isolation of the 112 S. Dublin strains
studied.

MLST

MLST was performed in silico for all the S. Dublin studied
using the 112 whole-genome assembled sequences, previous-
ly obtained and described in Campioni et al. (2018) [34],
following the Achtman scheme available at the Enterobase
database (http://enterobase.warwick.ac.uk/species/senterica/
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allele_st_search) using the allele identification of seven
specific housekeeping genes for S. enterica (aroC, dnaN,
hemD, hisD, purE, sucA, and thrA). Allele identification was
performed by uploading the assembled sequences of S.Dublin
strains studied in the MLST web-based tool available in the
Center for Genomic Epidemiology website (https://cge.cbs.
dtu.dk/services/MLST/). The minimum spanning tree
generated with STs and eBURST groups was generated with
the software eBURSTv3.

CRISPR and fimH and sseL virulence genes analyses

The CRISPRs loci and the virulence genes fimH and sseL
analysis were also performed for all the S. Dublin studied
using the 112 whole-genome assembled sequences.

Analysis of CRISPR1 and CRISPR2 was performed,
uploading the assembled sequences in the CRISPRFinder tool
(available at http://crispr.i2bc.paris-saclay.fr/). This tool
automatically analyzes the CRISPRs, as well as the length
and location per contig of the direct repeats and spacers in
each genome. To perform the analysis, only spacers were
considered, as reported in previous studies [23–25, 28].
These spacers were manually listed in each of the S. Dublin
strains studied, and a binary matrix with the presence or
absence of every spacer in CRISPR1 and CRISPR2 was
generated using Microsoft Excel.

The analysis of the sequences of the virulence genes fimH
and sseL was performed using Basic Local Alignment Search
Tool (BLAST) (available at blast.ncbi.nlm.nih.gov/Blast.cgi)
by uploading the assembled sequences of all S. Dublin strains
studied and aligning with sequences of the fimH and sseL
genes, of 1005 bp and 954 bp, respectively, downloaded
from GenBank (available at ncbi.nlm.gov/genbank/) as
standard (accession numbers KF465864 and KJ095841 for
the genes sseL and fimH, respectively). The sequences were
analyzed using ChromasPro 2.33 (Technelysium Pty. Ltd.).

CRISPR-MVLST sequence types (CM-ST) were assigned
based on the combination of CRISPR1 and CRISPR2 profiles
and fimH and sseL alleles for all strains studied. A similarity
dendrogram was generated based on the CRISPRs binary ma-
trices and another one was generated based on CRISPRs bi-
nary matrices in addition to the allele types of fimH and sseL
genes. The software BioNumerics 7.6 (Applied Maths) with
the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) algorithm was used to build both dendrograms.
The discriminatory power of both CRISPR and CRISPR-
MVLST was assessed by Simpson’s diversity index, as de-
scribed by Hunter and Gaston (1988) [35].

Virulence gene detection

All the S.Dublin strains studied were tested for the presence of
21 virulence genes using the MyDbFinder tool, a web-based

tool available in the Center for Genomic Epidemiology
website (https://cge.cbs.dtu.dk/services/MyDbFinder/).
Briefly, specific sequences of genes ratB, sodCl, lpfA, rpoS,
mgtC, sipA, sipD, invA, avrA, hilA, sopB, sopE2, sifA, sseA,
ssrA, spvB, spvC, csgA, fljB, fliC, and sinH were downloaded
from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and
combined in a single fasta format file to create a personalized
database. This database was uploaded toMyDbFinder tool to
perform the alignment between the assembled sequences of
the S. Dublin strains studied with the sequences of the
searched virulence genes and detecting if they were present
or not among the strains studied. The parameters used were
90% of minimum identity and 60% of minimum length. The
21 virulence genes were searched; its respective functions and
accession numbers are presented in Table 1.

Results

MLST

The STs detected, eBURST group, allelic profile of the house-
keeping genes analyzed, and the percentage of detection
among the strains studied are presented in Table 2. The min-
imum spanning tree generated with the STs detected is pre-
sented in Fig. 1. Among the S.Dublin strains studied, nine STs
were detected and belonged to the same eBURST group
eBG53 (Table 2). The most prevalent ST among the strains
studied was ST10. The STs ST3734, ST4030, ST4097,
ST4100, ST4232, and ST4574 were single-locus variants of
the ST10, while ST4098 and ST4101 were double-locus var-
iants of ST10 (Fig. 1, Table 2). Moreover, STs ST4097,
ST4098, ST4100, ST4101, ST4232, and ST4574 were detect-
ed for the first time in the S. Dublin global database.

CRISPR and CRISPR-MVLST

Among the 112 S. Dublin strains studied, 59 CRISPR1, 12
CRISPR2, 2 fimH, and 4 sseL alleles were identified. When
combined, these alleles generated 72 CM-STs (Table 3).
CRISPR1 alleles ranged from one to nine spacers in size,
while CRISPR2 alleles ranged from two to four spacers in
size. In our analysis, we found 70 and 16 different spacers in
CRISPR1 and CRISPR2 loci, respectively. The strain SD 721
presented a duplication in one of CRISPR1 spacers and was
also included in the analysis. The complete absence of spacers
was found in a single strain in CRISPR1 analysis and in 33
strains in CRISPR2 analysis.

The similarity dendrogram generated with the binary ma-
trix of CRISPR1 and CRISPR2 spacers grouped all the 112 S.
Dublin strains in a single cluster (> 80% of similarity) present-
ing 69 CRISPR-types with a similarity ≥ 84.4% among the
strains (Fig. 2). The association of the binary matrix of
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CRISPR1 and CRISPR2 spacers with the respective fimH and
sseL gene loci also grouped all the 112 S.Dublin strains into a
single cluster presenting 72 CRISPR-MVLST-types with a
similarity ≥ 84.7% among the strains studied (Fig. 3). The
discriminatory index (DI) for CRISPR and CRISPR-
MVLST were 0.976 and 0.980, respectively.

Detection of virulence genes

The frequency of 21 virulence genes showed that all the S.
Dublin strains studied carried the genes ratB, lpfA, mgtC,
avrA, sopB, sopE2, sifA, sseA, ssrA, csgA, fliC, and sinH.
Moreover, spvB gene was present in 105 strains (93.7%),
spvC in 106 strains (94.6%), sodCl in 108 strains 96.5%),
rpoS in 109 strains (97.3%), sipA in 110 strains (98.2%),
sipD in 110 strains (98.2%), invA in 110 strains (98.2%),
and hilA was present in 110 strains (98.2%). On the other
hand, fljB gene was not detected in any of the strains studied.

Discussion

Salmonella Dublin is a serovar strongly adapted to bovine
hosts, but can be sporadically isolated from human clinical
cases [1, 2]. Different molecular typing techniques have been
used for epidemiological studies of S. Dublin strains world-
wide [9–13]. The advancement in whole-genome sequencing
allowed the sequencing of large sets of strains and the charac-
terization by classic or newly developed methodologies, such
as MLSTand CRISPR [18, 19]. To our knowledge, no studies
have been conducted to characterize the genotypic diversity in
large sets composed exclusively of S. Dublin strains isolated
in Brazil by MLST and/or CRISPR. In the present study, we
used MLST, CRISPR, and CRISPR-MVLST to type 112 S.
Dublin strains isolated from humans and animals between
1983 and 2016 in Brazil. In addition, we characterized the
virulence potential of these strains searching for the frequency
of 20 S. enterica virulence genes.

Table 1 Virulence genes
searched in the 112 S. Dublin
strains studied and its respective
functions and accession numbers
(GenBank)

Virulence gene Function Accession number

ratB Putative outer membrane protein NP_461449
sodCl Gifsy-2 prophage: superoxide dismutase precursor (Cu-Zn) NP_460019
lpfA Long polar fimbria protein LpfA NP_462541
rpoS Sigma S (sigma 38) factor of RNA polymerase, the major sigma

factor during stationary phase
NP_461845

mgtC Mg2+ transport protein NP_462663
sipA Type III secretion system effector SipA, actin polymerizing activity NP_461803
sipD Type III secretion system hydrophilic translocator, needle tip protein SipD NP_461804
invA Type III secretion system major export apparatus protein InvA NP_461817
avrA Putative inner membrane protein NP_461786
hilA Invasion protein transcriptional activator NP_461797
sopB Invasion gene D protein NP_460064
sopE2 Type III secretion protein SopE2 NP_460811
sifA Replication in macrophages; SIFA protein NP_460194
sseA Chaperone for sseB and sseD NP_460362
ssrA Hybrid sensor histidine kinase/response regulator NP_460357
spvB Type III secretion system effector SpvB, ADP-ribosylation activity NP_490529
spvC Type III secretion system effector SpvC, phosphothreonine lyase NP_490528
csgA Curlin major subunit CsgA NP_460115
fljB Phase 2 flagellin; flagellar synthesis NP_461698
fliC Phase 1 flagellin; Filament structural protein NP_460912
sinH Intimin-like protein NP_461452

Table 2 Sequence type (ST),
eBURST group (eBG), number of
strains, year of isolation, and
allelic profile of 112 S. Dublin
strains studied

STs eBG Number of
strains (%)

Year of
isolation

aroC dnaN hemD hisD purE sucA thrA

10 53 68 (60.7) 1985–2016 5 2 3 6 5 5 10

3734 53 28 (25.0) 1984–2013 5 2 3 6 5 671 10

4030 53 9 (8.0) 1983–2005 5 2 612 6 5 5 10

4097 53 1 (0.9) 2007 5 2 3 6 748 5 10

4098 53 1 (0.9) 2005 5 2 612 6 749 5 10

4100 53 2 (1.8) 1991 5 2 3 6 5 713 10

4101 53 1 (0.9) 1998 5 2 3 6 750 671 10

4232 53 1 (0.9) 1988 5 2 3 6 636 5 10

4574 53 1 (0.9) 1990 5 2 3 6 800 5 10
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Due to laborious work and high costs to perform traditional
MLST for large sets of strains, most studies only used this meth-
odology to type small sets of representative strains [14–17].
However, WGS has been providing a faster and easier alterna-
tive to type in silico a large number of strains, contributing for a
better characterization of many Salmonella serovars [18, 19].

In the present study, MLST revealed the presence of nine
different STs among the strains studied (Table 2). The most
prevalent STwas ST10, found in 68 strains (60.7%) out of 112
strains studied, that has also been the main ST reported for S.
Dublin strains [14–17].

Moreover, other eight STs were detected in the strains stud-
ied. Among them, six (ST3734, ST4030, ST4097, ST4100,
ST4232, and ST4574) were single-locus variants of ST10,
while two (ST4098 and ST4101) were double-locus variants
of ST10 (Fig. 1, Table 2). In addition, STs ST4097, ST4098,
ST4100, ST4101, ST4232, and ST4574 were detected for the
first time in S. Dublin strains.

The detection of only single- or double-locus variants of
ST10 from clonal complex 10, as well as no prevalence of STs
by source, material, or year of isolation among the strains
studied, reinforces the proposed by Achtman et al. (2012) that
different clonal complexes generally represent specific
serovars, mainly due to the highly clonal characteristic of
S. enterica [15].

Regarding CRISPR and CRISPR-MVLSTanalysis, the 112
S. Dublin strains studied showed 59 CRISPR1 and 12
CRISPR2 and 2 fimH and 4 sseL different alleles identified,
which showed the high differentiation capacity of these meth-
odologies, which were also confirmed by the high values of DI
of 0.976 for CRISPR and of 0.980 for CRISPR-MVLST (Figs.
2 and 3, Table 1). However, despite the high discrimination
power, the strains showed to be genetically related, with a
similarity ≥ 84.4% among the strains for CRISPR and ≥ 84.7
for CRISPR-MVLST (Figs. 2 and 3).

The similar DI found in both methodologies mentioned
above showed that the addition of fimH and sseL in the
analysis did not increase the discriminatory power of the
methodology on typing S. Dublin strains, which differed
from previous studies with other Salmonella serovars [19,
23–25]. This fact reinforced that this was not due to a
technique limitation but to the clonal characteristic of
serovar Dublin strains. Similar to MLST, both methodolo-
gies grouped the strains independently of geographical,
temporal, or isolation source characteristics, which rein-
forced the idea from previous studies of Salmonella
Dublin strains from Brazil performed by our research
group that suggest that these strains may have descended
from a common ancestor that has little differentiated over
the years [13].

Fig. 1 Minimum spanning tree generated with the software eBURSTv3 for
the 112 S.Dublin strains studied and the other strains of this serovar available
in the Enterobase database. Each ST is represented by a dot. The pink
numbers above black dots represent the STs detected in this study. The

blue central dot represents the predicted primary founder ST of the clonal
complex 53 (CC53), ST10. The diameter of each dot indicates the prevalence
of the STs in the input data that generated the graphic. Black numbers above
back dots represent other S. Dublin STs presented in the database

Braz J Microbiol (2020) 51:497–509 501



In the previous study of our research group [13], the
same 112 S. Dublin strains of this study were typed by
pulsed-field gel electrophoresis (PFGE) and multilocus
variable-number tandem repeat analysis (MLVA). Similar
to the results found in the present study, PFGE also
grouped the strains in a single cluster, with a similarity of
≥ 80.7%. However, that methodology showed a lower dis-
criminatory power, differentiating the strains into 35 PFGE
types and with a DI of 0.53. Regarding MLVA, the strains
were classified in 89 types with a similarity of ≥23.3% and
a DI of 0.95, closer to the results found in the present study.
In addition, MLVA was able to group the strains into two
different clusters that contained five and 106 strains, re-
spectively, and also two strains showed to be single
MLVA types [13].

The DIs observed for the four methodologies mentioned
above showed that CRISPR and CRISPR-MVLST are good
in silico techniques to type S.Dublin strains and alternatives to
the non-WGS techniques, such as PFGE and MLVA, consid-
ered the gold standard methodologies to type Salmonella spp.

Table 3 CRISPR-MVLSTsequence types (CM-ST) and respective fre-
quencies identified in the 112 S. Dublin strains in this study

CM-ST Number of strains Alleles

CRISPR1 CRISPR2 fimH sseL

1 9 53 2 1 1

2 7 5 11 1 1

3 7 43 2 1 1

4 6 5 7 1 1

5 5 5 1 1 1

6 5 29 2 1 1

7 4 35 1 1 1

8 2 5 8 1 1

9 2 5 10 1 1

10 2 10 1 1 1

11 2 36 1 1 1

12 2 49 2 1 1

13 1 1 4 1 1

14 1 2 8 1 1

15 1 3 4 1 1

16 1 4 1 2 1

17 1 4 4 1 1

18 1 4 11 1 2

19 1 5 12 1 1

20 1 5 7 1 3

21 1 6 8 1 1

22 1 6 1 1 1

23 1 7 1 1 1

24 1 8 11 1 1

25 1 9 8 1 1

26 1 11 4 1 1

27 1 12 1 1 1

28 1 13 1 1 1

29 1 14 4 1 1

30 1 15 7 1 1

31 1 16 7 1 1

32 1 17 11 1 1

33 1 18 1 1 1

34 1 19 9 1 1

35 1 20 6 1 1

36 1 21 5 1 1

37 1 22 7 1 1

38 1 23 1 1 1

39 1 24 1 1 1

40 1 25 7 1 1

41 1 26 1 1 1

42 1 27 2 1 1

43 1 28 1 1 1

44 1 30 2 1 1

45 1 31 2 1 4

46 1 32 2 1 1

Table 3 (continued)

CM-ST Number of strains Alleles

CRISPR1 CRISPR2 fimH sseL

47 1 33 1 1 4

48 1 34 1 1 1

49 1 37 1 1 1

50 1 38 1 1 1

51 1 38 1 1 1

52 1 40 1 1 1

53 1 41 1 1 1

54 1 42 1 1 1

55 1 43 2 2 1

56 1 44 2 1 1

57 1 45 2 1 1

58 1 46 2 1 1

59 1 47 2 1 1

60 1 48 2 1 1

61 1 50 2 1 1

62 1 51 2 1 1

63 1 52 2 1 1

64 1 52 3 1 1

65 1 53 1 1 1

66 1 53 2 1 2

67 1 54 2 1 1

68 1 55 2 1 1

69 1 56 2 1 1

70 1 57 2 1 1

71 1 58 2 1 1

72 1 59 1 1 1
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Fig. 2 Similarity dendrogram representing the genetic relationships
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Moreover, CRISPR methodologies are performed in silico,
which minimizes reproducibility mistakes among different
laboratories.

To our knowledge, until the writing of this manuscript,
there were no studies performed that used CRISPR and
CRISPR-MVLST methodologies to type exclusively S.
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Fig. 3 Similarity dendrogram representing the genetic relationships
among Salmonella Dublin strains based on the combination of the
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Dublin strains, which makes the comparison of the results
found in the present study difficult. However, other stud-
ies using these methodologies had been successfully

conducted to subtype other Salmonella serovars, such as
Typhimurium, Newport, Enteritidis, and Heidelberg [19,
23–25].
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The presence of multiple virulence genes was verified in the
strains studied (Table 1). The high prevalence of SPI-1 and SPI-2
genes detected in the S. Dublin strains studied reinforced the
invasive potential and the capacity to cause serious disease of
strains of this serovar [8, 36–38]. The absence of the genes
spvB and spvC in seven and six strains studied, respectively,
may be explained to a possible absence of pSDL2, a well-
characterized S. enterica virulence plasmid encoded by genes
of spv locus [39, 40].

Regarding the flagella-related genes, the fljB, responsible
for phase-2 flagellin, was absent in all the strains studied,
while fliC gene, responsible for phase-1 flagellin, was found
in all the strains studied, which showed a prevalence of this
type of flagella among the strains studies. It is interesting to
mention that Yim et al. (2014) [16] showed differences in the
expression of fliC gene in S.Dublin strains from Uruguay that
may alter the flagella expression [16].

Although some genes such as hilA and rpoS are important
transcriptional regulators and mainly detected in Salmonella,
in this study, these genes were not detected in two and three of
the strains studied, respectively. Previous studies have already
reported the absence of hilA in Salmonella serovars [41, 42].
The absence of rpoSmight have been due to a genome assem-
bly drawback, which may have led to a non-detection of any
gene fragment below the parameters established for the detec-
tion of this gene.

In conclusion, the high similarity among the strains rein-
forces the clonal nature of the strains of this serovar that may
have descended from a common ancestor that little differed
over 33 years in Brazil. CRISPR and CRISPR-MVLSTshowed
to be good alternatives to type S. Dublin strains. MLST sug-
gested that S. Dublin strains from Brazil were phylogenetically
related to strains from other parts of the globe. Moreover, the
high frequency of virulence genes among the strains studied
reinforces the capacity of S. Dublin to cause invasive diseases.
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