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Abstract
Analyses of 19 amino acids, 38 acylcarnitines, and 3 creatine analogues (https://

clir.mayo.edu) were implemented to test the hypothesis that succinic semialdehyde

dehydrogenase deficiency (SSADHD) could be identified in dried bloodspots

(DBS) using currently available newborn screening methodology. The study popu-

lation included 17 post-newborn SSADHD DBS (age range 0.8-38 years; median,

8.2 years; 10 M; controls, 129-353 age-matched individuals, mixed gender) and

10 newborn SSADHD DBS (including first and second screens from 3 of

7 patients). Low (informative) markers in post-newborn DBS included C2- and

C4-OH carnitines, ornithine, histidine and creatine, with no gender differences. For

newborn DBS, informative markers included C2-, C3-, C4- and C4-OH carnitines,

creatine and ornithine. Of these, only creatine demonstrated a significant change

with age, revealing an approximate 4-fold decrease. We conclude that quantitation

of short-chain acylcarnitines, creatine, and ornithine provides a newborn DBS pro-

file with potential as a first tier screening tool for early detection of SSADHD. This

first tier evaluation can be readily verified using a previously described second tier

liquid chromatography-tandem mass spectrometry method for γ-hydroxybutyric
acid in the same DBS. More extensive evaluation of this first/second tier screening

approach is needed in a larger population.
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1 | INTRODUCTION

Succinic semialdehyde dehydrogenase deficiency (SSADHD)
is a rare genetic disease associated with mutations of the
ALDH5A1 gene, tissue accumulation of neuromodulators
including γ-aminobutyric acid (GABA) and γ-hydroxybutyric

Abbreviations: C2-carnitine, acetyl-carnitine; C4-OH-carnitine,
3-hydroxybutyryl-carnitine; F, female; M, male.
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acid (GHB), and tissue depletion of glutamine (gln), the pre-
cursor of GABA and glutamic acid (glu). SSADHD presents
with nonspecific mild to moderate developmental delay, intel-
lectual deficiency, severe expressive language impairment,
neuropsychiatric problems (ADHD, obsessive compulsive
disorder, autistic behavior), and variable epilepsy.1-8 There
have been reports of sudden unexplained death of epilepsy9,10

(Gibson, unpublished).
Current approaches and major gaps to patient identifica-

tion and treatment are summarized in Figure 1. Since
SSADHD was first described in 1981, research has focused
on identifying the spectrum of pathogenic ALDH5A1 muta-
tions, understanding the molecular and biochemical basis of
disease presentation, and testing promising therapeutics. The
development of an animal model11 resulted in significant
strides in elucidation of pathomechanisms and development
of novel preclinical therapeutics, including a recently com-
pleted interventional trial with the GABABR antagonist
SGS-742 (www.clinicaltrials.gov; NCT02019667), as well
as a completed open-label trial of taurine which failed to
demonstrate efficacy.12 Treatment for SSADHD remains
symptomatic, yet an expanding therapeutic preclinical pipe-
line strongly suggests that targeted and effective therapies
(in addition to vigabatrin, which directly targets GABA
metabolism) for SSADHD are on the horizon.13

Implementation of newborn screening (NBS) for
SSADHD is clinically important for a number of reasons.

Expanded NBS would maximize the therapeutic benefit of
targeted therapeutics, facilitate family planning, and remove
the potential off-target effects of commonly used symptom-
atic agents, effectively constituting “treatment by omission.”
Further, NBS could synergize with a recently undertaken
natural history study of SSADHD through significant expan-
sion of the span of longitudinal assessment of the disorder.
NBS would detect patients who will develop milder forms
of the disease, or patients with clinical presentations so sub-
tle that they may be misdiagnosed. The potential for delayed
diagnosis is highlighted in the postmortem identification of
an adult male in the fifth decade.5 Early patient diagnosis
would further serve to refine disease prevalence estimates,
increase the pool of patients available for a natural history
study and future clinical trials, and provide insight on dis-
ease pathogenesis and the genetic factors that track with
milder disease presentation.

FIGURE 1 The GABA metabolic pathway (top) and overview of approaches toward patient identification and treatment (bottom). Metabolites
elevated in patients with succinic semialdehyde dehydrogenase (SSADH) deficiency (SSADHD) include GABA, SSA (succinic semialdehyde), and
GHB (γ-hydroxybutyric acid); conversely, glutamine (gln) appears decreased. For the diagram, green indicates procedures or measures either
achieved (solid line) or partially achieved/in progress (broken line). A tier 1 (tier 2 = confirmation of initial screen) bloodspot assay that is amenable
to current NBS platforms is currently required (red). Additional abbreviations: GLNase, glutaminase; GAD, glutamic acid decarboxylase; GABA-T,
GABA-transaminase (also referred to as ABAT, or aminobutyrate aminotransferase); SSADH, succinic semialdehyde dehydrogenase; AKR7a2,
aldo-keto reductase 7a2. VGB (vigabatrin; γ-vinylGABA; Sabril) represents an irreversible inhibitor of GABA-T

Synopsis
Quantitation of ornithine, short-chain acylcarnitines,
and creatine in newborn dried bloodspots may pro-
vide a metabolomic profile with potential as an first
tier screen for succinic semialdehyde dehydrogenase
deficiency.
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The incidence of SSADHD has been estimated at 1 × 106

based upon mutation (allele) frequency (Dr Nilah Monnier,
Stanford-personal communication). Mutation analysis has
been available for many years.14 Detection of SSADHD has
continued to expand with the addition of ALDH5A1 gene
analysis to several commercial epilepsy and intellectual dis-
ability panels; however, only ~50% of SSADHD patients
have seizures, suggesting that many patients remain
undiagnosed. On the other hand, methodology for GHB
quantitation in dried bloodspots (DBS) has been presented.15

That method utilized liquid chromatography-tandem mass
spectrometry (LC-MS/MS). At least in the United States,
only a very limited number of states employ LC/MS-MS for
metabolite quantification, primarily because it is insuffi-
ciently high-throughput (run time 2-3 minutes per DBS vs
1 minute with MS/MS alone). States with smaller
populations, and an often correspondingly lower birthrate,
have the capacity to employ LC-MS/MS which can expand
their metabolic screening “menu,” but states with larger
populations (New York, California, and Texas) may only
have the capacity to employ LC-MS/MS as a second tier
screen, or for very specialized analytical needs. Nonetheless,
GHB quantitation in DBS represents a very attractive second
tier test for confirmation of SSADHD.

Recent surveys of SSADHD families worldwide indicate
that the median age at disease onset is 1 year whereas the
median age at diagnosis is 3 years, that is, a 2-year delay
after the first clinical symptoms. Under current circum-
stances (with a median age at diagnosis of 3 years), any nat-
ural history study of SSADHD would not include patients
diagnosed in the early newborn period, representing a major
confound from the neurodevelopmental perspective of a dis-
ease manifesting a prominent neurological phenotype. More-
over, these survey data provide a measurable perspective on
the disease burden for SSADHD families who have to wait
3 years to achieve a diagnosis, as well as the public health
and societal impact of delayed diagnosis. To address these
unmet healthcare needs, we examined the hypothesis that an
integrated screen of 19 amino acids, 38 acylcarnitines, and
3 creatine analogues (https://clir.mayo.edu) could be used to
potentially identify a metabolomic pattern that could be used
as an first-tier screening tool for SSADHD using DBS, an
approach that has been successful in a number of inborn
errors of metabolism.16-18

2 | MATERIALS AND METHODS

2.1 | Dried bloodspots

DBS from post-newborn SSADHD patients were collected
with informed consent (WSU IRB 15901). Seventeen post-
newborn DBS included: 10 M/7F, ages 0.8-38 years (median,

8.2), and 4 sibships (total, 8 patients), representing ~10% of
published cases.19 SSADHD was previously confirmed
through a combination of GHB measurement (urine, DBS),
ALDH5A1 molecular analyses and expression, and assay of
SSADH in white cells for older patients (Table 1). DBS were
obtained using standard finger lance and blood collected onto
903 five spot blood cards (Eastern Business Cards, Green-
ville, South Carolina). Reference DBS encompassed an archi-
val collection in the Mayo Clinical Laboratories (n =
129-353, age range 0.5-87.9 years; mixed gender).

Newborn DBS were obtained with parental and State
Newborn Screening Laboratory consents from seven patients
(10 DBS), including three patients providing both first and
second screens (approximate age at collection, 48 and
340 hours) (Table 2). Conditions of DBS storage included
three first screens stored at 4�C, with the remainder kept at
room temperature. Patient overlap between newborn and
post-newborn samples included a single sibship (first, sec-
ond, and post-newborn DBS from one sibling, and a second
screen [first screen unavailable] with post-newborn DBS
from the older sibling).

2.2 | Metabolic measurements

Analyses of amino acids, acylcarnitines (saturated and unsat-
urated), and creatine derivatives were performed using tan-
dem mass spectrometry as previously described.18,24 A
single 3 mm punch from one DBS was used. At this time,
we do not have insights into specific metabolic profile
changes due to prematurity, drug treatment, alimentation, or
other external factors which might influence the screening
results. This will need to await implemented and expanded
NBS for SSADH deficiency.

2.3 | Collaborative Laboratory Integrated
Reports

Collaborative Laboratory Integrated Reports (CLIR 2.12;
https://clir.mayo.edu) is a web application that maintains an
interactive database of laboratory results from multiple sites
and provides on demand clinical decision support for their
integrated interpretation.25 CLIR replace conventional refer-
ence intervals with continuous, covariate-adjusted moving
percentiles,26 as well as replacement of analyte decision limits
(ie, cutoff values) with a condition-specific degree of overlap
between reference and disease ranges. Further, an additional
feature of CLIR incorporates integration of primary markers
and unbiased biomarker discovery by automated calculation
of all possible permutations of ratios (A/B) plus manual selec-
tion of complex ratios and equations, which can be performed
simultaneously for all conditions that can be diagnosed from
the available laboratory measurements.
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2.4 | Data and statistical analyses

Metabolic measures were integrated within CLIR, facilitat-
ing comparison with anonymized DBS data from multiple
NBS centers throughout the world. Analyte-covariate analy-
sis employed age as covariate. Gender was known for refer-
ence and patient values, but was only assessed as covariate
for informative markers in the post-newborn DBS samples
of SSADHD. Statistical analysis included one-way analysis
of variance or two-tailed t test using GraphPad Prism 8.0
(San Diego, California).

3 | RESULTS

3.1 | Informative biomarkers in newborn vs
post-newborn DBS

Informative biomarkers are shown in Figure 2 (A, newborn
DBS; B, post-newborn DBS). The y-axis depicts metabolite
abbreviations in units of μM. Reference data are shown as
green boxes, and depict data falling between the 1%ile and
the 99%ile of the reference population for that marker.
Patient values are depicted in box and whisker format in

TABLE 1 Characteristics of patients from whom post-newborn dried bloodspots were obtained

Patient
Age
(year) Gender Mutation 1 Mutation 2 Zygosity

GHB (physiol.
fluid) Notes on alleles

1 10 F p.W204* p.R425* CH Elevated

2 8 M p.W204* p.R425* CH Elevated

3 24 M p.W204* p.W204* HZ Elevated <10% of nl in white cells

4 40 M p.W204* c.1054-2A>Ca CH Elevated Undetectable in white cells

5 M NA NA

6 1.5 M p.G176R p.G409D CH 843 mmol/mol
(urine; nl < 9)

Both alleles tested in HEK293
overexpression: 0% residual
activity14

7 26 F p.G196D p.G196D HZ CSF, 594; sera,
265 μmol/L
(nl < 3, both
fluids)

Allele p.G196D: 9% residual
activity in HEK293
overexpression (Pop et al,
unpublished)

8 11 M See legend See legend 325 mmol/mol
(urine; nl < 9)

9 7 F p.T233M p.T233M HZ Elevated Allele tested in HEK293
overexpression: 4% residual
activity14

10 15 F p.T233 M p.T233M HZ Elevated See above

11 7 M p.C93F p.C531Y CH (parents
untested)

477 mmol/mol
creatinine (<10)

Allele C93F in HEK293
overexpression: 3% residual
activity14; C531Y 1% (Pop et al,
unpublished)

12 10 M p.C93F p.C531Y CH (parents
untested)

114 mmol/mol
creatinine (<10)

See above

13 18 F c.621delC c.621delC HZ Elevated

14 18 M p.C93F p.C93F HZ 119 mmol/mol
(urine; nl < 9)

See above20

15 2 F p.G252C p.G252C HZ Elevated Allele p.G252C: 6% in HEK293
overexpression (Pop et al,
unpublished)

16 5 F p.G252C p.G252C HZ Elevated See above

17 8 M p.G252C p.G252C HZ Elevated See above

Note: Sibships: patients 2 and 3; 9 and 10; 11 and 12; and 15-17; all confirmed by sequencing of the parents. For patient 8, Sanger sequencing of ALDH5A1 gene,
exon 1 could not be amplified, suggesting a homozygous deletion (MLPA confirmation pending). Control range (nl) for SSADH activity in extracts of white cells,
1.9-3.9 nmol/min/mg.
Abbreviations: CH, compound heterozygous; HZ, homozygous; NA, not available.
aSplice variant at the canonical splice site which is considered pathogenic.
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quartile ranges. Error bars on the box represent the 1%ile
(lowest) and 99%ile (highest) error bar. The bottom of the
box represents the 10%ile while the top of the box represents
the 90%ile, with the median represented by the horizontal
line. The x-axis depicts multiples of reference median in log-
arithmic scale for newborn reference data (A) and in expo-
nential scale for post-newborn samples (B). Informative
markers (blue) for newborn DBS included C2-, C3-, C4- and
C4-OH carnitines, ornithine, and creatine (Figure 2A). For
post-newborn DBS, informative markers (blue) included C2-
and C4-OH carnitines, ornithine, histidine, and creatine.

The individual data points for Figure 2A,B are comprehen-
sively described in Table 3 (newborn DBS, corresponding to
Figure 2A) and Table 4 (post-newborn DBS, corresponding
to Figure 2B). Summary data highlight the mean and SEM
(SE of the mean) for the 10 newborn (Table 3) and 17 post-
newborn DBS (Table 4), as well as showing the summary
characteristics of data for parallel control DBS available from
the CLIR database. For control newborn DBS, shown are the
1st, 50th and 99th centiles for individual control data points
ranging from n = 9840 for creatine to up to n = 5 089 207
data points for C3-carnitine. For control post-newborn DBS,
shown are the 1st and 99th centiles, as well as the median, for
individual control DBS data points representing n = 129 for
creatine up to n = 353 data points for ornithine.

3.2 | Comparison of gender and screen
number for informative markers

Sufficient samples were only available for post-newborn
DBS, and for the informative markers noted above there

were no significant differences with respect to gender. For
informative markers in newborn DBS, only creatine demon-
strated a significant change with age (first screen (~48 hours
post birth), [275 ± 68 μM (range 101-521, n = 6)]; second
screen (~312-360 hours post birth), [71 ± 30 μM (range
31-159, n = 4); P < .05, two tailed t test]). This was not
unexpected given the inverse age relationship for creatine
noted above.

4 | DISCUSSION

4.1 | Comparison of metabolic panels to detect
SSADHD in DBS

4.1.1 | Informative amino acid markers

Based upon the known metabolic correlations between glu-
tamine, glutamate, and GABA,27-29 our initial prediction
was glutamic acid and glutamine would serve as informa-
tive markers for SSADHD in DBS. These amino acids
were, however, noninformative, whereas ornithine and his-
tidine were. Indeed, the most consistent amino acid dys-
regulation was that of ornithine, both in post-newborn and
newborn DBS. Low ornithine has hitherto not been
reported in plasma amino acid analysis of patients with
SSADHD. Conversely, ornithine has been implicated in
the ocular toxicity associated with vigabatrin, an anti-
epileptic whose mode of action encompasses irreversible
inactivation of GABA-transaminase (Figure 1) with con-
comitant elevation of GABA, a finding analogous to that
of SSADHD.30 Shank and Campbell31 demonstrated that

TABLE 2 Characteristics of patients from whom newborn dried bloodspots were obtained

Patient Current
age (year)

Gender Screen 1 Screen 2 Mutation 1 Mutation 2 Zygosity GHB (urine)

1 10 F x p.W204* p.R425* CH Elevated comparable to other patients

2 8 M x p.W204* p.R425* CH Elevated comparable to other patients

2 8 M x p.W204* p.R425* CH Elevated comparable to other patients

3 4 M x p.G533R c.1015-2A>Ca CH Elevated comparable to other patients

3 4 M x p.G533R c.1015-2A>Ca CH Elevated comparable to other patients

4 27 M x NA NA NA

5 8 F x p.M445L c.610-2A>G CH “Marked elevation”b

6 9 M x p.W204* p.G441Rc CH 79-156 mmol/mol

7 5 F x c.104_127del p.Ser35* c.1054-2A>C CH “Marked elevation”

7 5 F x c.104_127del p.Ser35* c.1054-2A>C CH “Marked elevation”

Note: Patients 1 and 2 identical to patients 1 and 2 in Table 1; for urine GHB, control values are <9 mmol/mol creatinine.
Abbreviations: CH, compound heterozygous; HZ, homozygous.
aSplice site SNP [1] at the intron 6/exon 7 junction.14,21.
bIn addition to elevated 4-hydroxybutyric acid, the urine organic acids revealed elevations of 4,5-dihydroxyhexanoic, glutaric, adipic, glycolic, 3-hydroxypropionic, and
2-hydroxyglutaric acids, all hallmarks of SSADH deficiency, in two unique urine samples.22,23
cPolyPhen characterization of p.G441R indicated a strong likelihood of pathogenicity.
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both orn and gln can serve to replenish glu and GABA
pools, although gln has a more prominent role in this
process.

Of interest, histidine was only informative for post-
newborn DBS and not newborn DBS. It is noteworthy that
histidine is conjugated with GABA in CNS to derive the
dipeptide homocarnosine, an osmoregulator that is also
increased in cerebrospinal fluid of SSADHD patients.32,33

Nevertheless, we could not document the presence of
homocarnosine in post-newborn SSADHD DBS, perhaps
indicating that the enzyme required for GABA-histidine con-
jugation is not active in the newborn period.

4.1.2 | Informative acylcarnitine markers

Short-chain acylcarnitine species were informative in both
post-newborn and newborn SSADHD DBS, encompassing
C2- and C4-OH carnitine in the post-newborn samples and
C2-, C3-, C4-, and C4-OH in newborn SSADHD DBS. This
may not be surprising in view of the accumulation of both
GHB and succinic semialdehyde in SSADHD,13,34 which
may interfere with short chain fatty acid metabolism. This
observation is further supported by the early reports of dicar-
boxylic aciduria and unusual tetronic acid derivatives in
SSADHD.22,35 Depleted levels of acetyl-carnitine further

FIGURE 2 Comparison of multiple analytes against reference intervals for (A) newborn SSADHD DBS and (B) post-newborn SSADHD
DBS. Data for patients is presented as box and whisker (quartiles; 1%ile, 10%ile, median, 90%ile, 99%ile, whereas the reference range (green) lacks
whiskers and presents data from 1%ile to 99%ile of reference for that marker. For (A), informative markers (blue) included ornithine, C2-, C3-, C4-
and C4-OH carnitines, and creatine; for (B), informative markers (blue) included histidine, ornithine, C2- and C4-OH carnitines, and creatine.
X-axis values depict multiple of the reference median, shown for (A) in log scale and for (B) in exponential scale. Amino acids are shown in
standard three letter code (eg, his = histidine). Xle represents the sum of leucine and isoleucine, isobaric species. Additional abbreviations: guac,
guanidinoacetic acid; C0-, free carnitine; crn, creatine; suac, succinylacetone; figlu, formiminoglutamic acid. Acylcarnitine metabolites are depicted
as chain-length (eg, C12 = dodecanoylcarnitine), as a monounsaturated (eg, C8:1) or diunsatured (C14:2) species, as the hydroxylated species (eg,
C16OH), or as the unsaturated, hydroxylated species (C18:1OH). In selected instances (C16:1OH(C17), C5DC(C10OH), C3DC(C8OH)), identical
molecular ions are produced such that the value represents the sum of the two isobaric species shown. DC represents dicarboxylic acid carnitine
species (eg, C3DC, malonylcarnitine)

34 BROWN ET AL.



suggest reduced mitochondrial function, which we and
others have observed both in SSADHD and other disorders
of fat oxidation.36,37 Low levels of 3-hydroxybutyryl-
carnitine may also provide insight into the success of the
ketogenic diet in aldh5a1−/− mice.38 Administration of the
ketogenic diet to these animals significantly elevated blood
levels of 3-hydroxybutyrate while significantly improving
the phenotype of seizures and runted growth in this model.

4.1.3 | Creatine as an informative marker for
SSADHD DBS

Creatine was an informative marker in both post-newborn
and newborn SSADHD DBS. Previously, we had docu-
mented the presence of 4-guanidinobutyrate in tissue and
physiological fluids of both aldh5a1−/− mice and patients
with SSADHD.39,40 This species is predicted to derive from
conjugation of GABA (in lieu of glycine) in the arginine:
glycine amidinotransferase reaction of the creatine biosyn-
thetic pathway. On the other hand, if this pathway is
engaged, we might expect depletion of arginine in DBS,
which was not an informative amino acid marker in either
post-newborn or newborn SSADHD DBS.

4.1.4 | Utility of metabolomic profiles as a
potential 1st tier screen for SSADH deficiency

For both newborn and post-newborn SSADHD DBS, there
was a degree of overlap with reference ranges. However, the

individual markers taken together may provide a
metabolomic profile with a high degree of probability for
accurate detection of SSADH deficiency. For example, it is
informative to compare the mean values of biomarkers for
patients (n = 10; Table 3) in comparison to the 1%ile of the
control data range (n = 9840-5 089 207) (the appropriate
data are italicized in Table 3). These results highlight the fact
that the patient means are below this control percentile for
both ornithine and creatine, and very close to this percentile
for the four acylcarnitine species. Accordingly, the newborn
profile of C2-, C3-, C4- and C4-OH acylcarnitines, creatine,
and ornithine in DBS may highlight an informative “bio-
signature” of SSADH deficiency.

For post-newborn DBS (Table 4), it is similarly informa-
tive to compare the mean of patient DBS (n = 17) to the 1%
ile of the control DBS (n = 129-353) for the five biomarkers
shown, including orn, his, C2- and C4-OH acylcarnitines,
and creatine. For histidine, the mean patient DBS data were
below the 1%ile of parallel DBS control data, while the
mean C4-OH for patient DBS is proximal to the parallel 1%
ile control DBS data (pertinent data sets in Table 4 are itali-
cized), while the mean for all five biomarkers resides well
below the median of control DBS data. The fact that four of
six biomarkers show parallel patterns between newborn and
post-newborn SSADHD DBS (ornithine, C2- and C4-OH-
acylcarnitines, and creatine) lends further credence to the
idea that this “biosignature” of biomarkers is informative for
SSADH deficiency. At this time, and in the absence of spe-
cific funding for those studies, retrospective “in silico”

TABLE 3 Summary of informative markers from newborn dried bloodspots of SSADH-deficient patients in comparison to control percentiles

Patients Age (h) Sex Ornithine C2 C3 C4 C4-OH CRE

336 F 12.3 2.7 0.06 0.03 0.033 39.9

48 M 6.7 3.2 0.08 0.045 0.02 101.4

360 M 6.6 2.1 0.04 0.048 0.027 30.9

48 M 10.8 4.9 0.29 0.067 0.047 161.4

312 M 10.4 3.1 0.19 0.059 0.022 53.3

48 M 9.4 6.8 0.61 0.196 0.054 216.5

48 F 19.2 45.2 2.56 0.26 0.50 438.5

48 M 35.4 24.6 1.76 0.41 0.168 521.0

336 F 15.6 5.4 0.33 0.188 0.040 159.2

48 F 9.1 4.7 0.42 0.139 0.033 209.9

Summary Mean 13.6 10.3 0.63 0.14 0.09 193.2

SEM 2.7 4.4 0.27 0.04 0.05 52.5

Controls Count 2 379 498 2 935 441 5 089 207 2 939 759 1 065 684 9840

1%ile 20.4 8.5 0.6 0.10 0.06 254

50%ile 72 22.9 1.7 0.22 0.18 425

99%ile 235 47.8 4.1 0.58 0.46 684

Ages (h) are approximate. C2-, C3-, C4-, and C4-OH represent acylcarnitine species (corresponding to Figure 2A). Additional abbreviations: Count represents the
number of newborn data points available from CLIR; CRE, creatine; ile, percentile; SEM, SE of the mean.
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analyses of metabolic patients in archival newborn DBS has
not been undertaken, but such data will provide key sensitiv-
ity and specificity data, as well as predictive value, for the
metabolomic profile results we have observed.

5 | LIMITATIONS AND FUTURE
STUDIES

A primary limitation with this study is the low number of
both post-newborn and newborn SSADHD DBS, especially
the latter. This issue is compounded by the fact that different
states within the USA retain archival NBS DBS for variable
times, with some states discarding samples at the end of
1 year, others at 6-8 years, and still others retaining their
samples for decades or indefinitely. This provides inherent
challenges in accruing substantial numbers of newborn
SSADHD DBS. Moreover, conditions of storage are often

variable, with some states storing archival DBS at room tem-
perature, while others may keep these samples at 4�C. For
post-newborn DBS, an additional confound is medication
(we did not have information on medication intake for the
current study), and the potential influence of medications on
DBS metabolites. We plan to significantly expand the num-
ber of newborn SSADHD DBS for further evaluation.

It remains to be determined if GABA (free, or esterified)
can be quantified in human DBS, but at present this analyte
is not present on US NBS panels. Moreover, it would be
worthwhile to evaluate the current SSADHD DBS for the
presence of 4-guanidinobutyrate, which may be a potentially
relevant biomarker for SSADHD, as well as further charac-
terizing the presence/absence of homocarnosine and
carnosine (the latter the dipeptide of his and β-alanine).
These might be pertinent to the development of a sensitive
first-tier screen for SSADHD using DBS. A second-tier
screen already exists that can quantify GHB in DBS (see

TABLE 4 Summary of informative
markers in post-newborn dried bloodspots
from SSADH-deficient patients in
comparison to control

Patients Age (year) Sex Ornithine Histidine C2 C4-OH CRE

22.7 M 28.9 26.3 5.9 0.06 147.8

8.7 F 8.8 25.4 4.7 0.04 138.3

6.8 M 6.3 21.0 4.3 0.06 126.9

38.2 M 27.1 29.4 12.1 0.07 151.4

4.1 M 9.4 25.6 7.5 0.05 154.4

0.9 M 14.2 20.6 17.3 0.15 134.1

24.3 F 15.7 25.4 7.7 0.05 164.9

9.6 M 12.1 25.3 6.2 0.07 176.8

5.8 F 21.9 49.4 9.2 0.06 166.6

13.5 F 19.1 66.4 10.2 0.05 251.5

5.6 M 20.8 141.1 9.3 0.05 133.1

8.2 M 27.1 129.0 9.1 0.05 137.9

16.6 F 36.9 144.2 12.9 0.14 240.5

7.1 M 12.5 21.7 9.6 0.04 121.8

4.2 F 8.8 22.8 9.2 0.05 119.4

0.8 F 7.6 21.7 15.4 0.11 108.7

18.4 M 27.6 113.3 19.7 0.15 182.0

Summary Mean 17.9 53.5 10.0 0.07 156.2

SEM 2.2 11.3 1.0 0.01 9.6

Controls Count 353 129 350 347 343

Min 13.3 41.0 6.0 0.04 115.2

Max 88.2 320.3 40.1 0.40 475.2

Mean 35.3 131.0 15.4 0.13 243.2

1%ile 14.4 54.8 6.9 0.05 127.8

Median 33.4 121.5 14.4 0.12 234.7

99%ile 72.3 309.6 33.9 0.34 444.8

Control age range, 0.5-87.9 years, mean 38.3 years. C2- and C4-OH represent informative acylcarnitines (refer to
Figure 2B). Additional abbreviations: Count represents the number of control data points available from CLIR;
CRE, creatine; ile, percentile; SEM, SE of the mean; min, minimum; max, maximum.
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Introduction15,41) or via mutation analysis.14 Finally, any
methodology pertinent to the newborn detection of
SSADHD may have relevance to the identification of
GABA-transaminase deficiency,42 as more patients are being
identified. With regard the latter, our prediction is that orni-
thine will remain an informative marker in DBS.

6 | CONCLUSIONS

Quantitation of short-chain acylcarnitines, creatine, and orni-
thine provides a newborn DBS profile with potential as a
first tier screening tool for early detection of SSADHD. This
first tier evaluation can be readily verified using a previously
described second tier LC-MS/MS method for GHB in the
same DBS. Our approach awaits more extensive evaluation
in a larger population.
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