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Abstract

Motivation: Systematic identification of molecular targets among known drugs plays an essential role in drug repur-
posing and understanding of their unexpected side effects. Computational approaches for prediction of drug–target
interactions (DTIs) are highly desired in comparison to traditional experimental assays. Furthermore, recent advan-
ces of multiomics technologies and systems biology approaches have generated large-scale heterogeneous, bio-
logical networks, which offer unexpected opportunities for network-based identification of new molecular targets
among known drugs.

Results: In this study, we present a network-based computational framework, termed AOPEDF, an arbitrary-order
proximity embedded deep forest approach, for prediction of DTIs. AOPEDF learns a low-dimensional vector repre-
sentation of features that preserve arbitrary-order proximity from a highly integrated, heterogeneous biological net-
work connecting drugs, targets (proteins) and diseases. In total, we construct a heterogeneous network by uniquely
integrating 15 networks covering chemical, genomic, phenotypic and network profiles among drugs, proteins/tar-
gets and diseases. Then, we build a cascade deep forest classifier to infer new DTIs. Via systematic performance
evaluation, AOPEDF achieves high accuracy in identifying molecular targets among known drugs on two external
validation sets collected from DrugCentral [area under the receiver operating characteristic curve (AUROC) ¼ 0.868]
and ChEMBL (AUROC ¼ 0.768) databases, outperforming several state-of-the-art methods. In a case study, we show-
case that multiple molecular targets predicted by AOPEDF are associated with mechanism-of-action of substance
abuse disorder for several marketed drugs (such as aripiprazole, risperidone and haloperidol).

Availability and implementation: Source code and data can be downloaded from https://github.com/ChengF-Lab/
AOPEDF.
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of drug–target interactions (i.e. interactions between
drugs and targets/proteins; DTIs) plays an important role in drug
discovery and development. Since experimental determination of
DTIs is costly and time-consuming (Haggarty et al., 2003; Kuruvilla
et al., 2002), in silico or computational approaches have offered
possibilities to identify potential DTIs for accelerating drug develop-
ment, such as drug repurposing. Several in silico approaches, such as
structure-based (Donald, 2011; Morris et al., 2009), ligand-based
(Keiser et al., 2007) and machine learning-based methods (Bleakley
and Yamanishi, 2009; Wan et al., 2019), have revealed potential in
predicting DTIs. However, structure-based methods are limited
when 3D structures of proteins are unavailable (Cheng et al., 2007;
Rarey et al., 1996) which, unfortunately, is the case for the majority
of targets. Ligand-based methods exploit the chemical structures of
ligands to make predictions, and their performance is poor when the
chemical space of the ligands is out of application domains. A var-
iety of machine learning-based approaches have been developed to
predict DTIs (Bleakley and Yamanishi, 2009; He et al., 2010; Mei
et al., 2013; Perlman et al., 2011; Xia et al., 2010). These methods
fully exploit latent correlations among the related features of drugs
and targets and offer moderate accuracy for prediction of DTIs.
Altogether, most existing methods for DTI prediction are limited to
homogeneous networks or bipartite drug–target networks (Cheng
et al., 2012a) and cannot be directly extended to heterogeneous, bio-
logical networks (Cheng et al., 2012b).

In comparison to homogeneous networks, heterogeneous net-
works naturally assemble more objects and complementary informa-
tion from drugs, targets/proteins and their associated diseases.
Several computational approaches have recently been reported to in-
tegrate heterogeneous data sources. For example, MSCMF (Zheng
et al., 2013) integrates multiple data sources via a weighted averag-
ing scheme and uses the resulting drug and protein similarity matri-
ces to regularize the matrix factorization operation of a given DTI
network. However, such data integration may cause substantial
losses in network-specific information. HNM (Wang et al., 2014)
fuses heterogeneous data by a network diffusion process; however,
directly using diffusion states as features or prediction scores may
easily suffer from the bias introduced by the noise and high-
dimensionality of biological network data. Inspired by the recent
surge of deep learning techniques for feature extracting, models
with higher predictive capacity have been explored. DeepWalk is a
deep learning method by utilizing the similarities from a tripartite,
heterogeneous network built from biomedical linked datasets (Zong
et al., 2017). NeoDTI integrated neighborhood information of the
heterogeneous network and automatically learns topology-
preserving representations of drugs and targets (Wan et al., 2019).
However, these methods are mainly based on a shallow neural net-
work model with only three layers. Besides, these methods are prone
to preserving only the first- or second-order proximity. deepDTnet
(Zeng et al., 2020) adopted deep autoencoder to automatically learn
high-quality features from heterogeneous networks, and then
applied positive-unlabeled (PU)-matrix completion to predict new
DTIs. Yet, recent studies have suggested that high-order proximities
among diverse types of nodes play crucial roles in capturing the
underlying topological structure of the network (Cao et al., 2015;
Cui et al., 2019; Perozzi et al., 2014); further, embedding with cer-
tain order proximity does not necessarily perform best on all net-
works. We assorted that incorporating diverse, complementary
proximities from different biological networks may improve accur-
acy further (Zhang et al., 2018).

In this study, we propose arbitrary-order proximity embedded
deep forest (AOPEDF), a new computational approach for molecu-
lar target identification from known drugs and for target-centered
drug repurposing. Specifically, AOPEDF preserves the different
order proximity information from 15 networks in a constructed

drug–target–disease heterogeneous network. It then utilizes low-
dimensional but informative vector representations of features for
both drugs and targets/proteins through a cascade deep forest classi-
fier in prediction of DTIs. Theoretically, AOPEDF has the following
advantages: (i) AOPEDF integrates diverse information from 15 het-
erogeneous networks and preserves complementary order proximity
information for different networks. Thus, the low-dimensional fea-
ture vectors learned by AOPEDF capture rich context information
as well as the topological structure of individual networks. (ii)
AOPEDF adopts deep forest as a classifier, which achieves high per-
formance in classification but has much fewer hyper-parameters
than deep neural networks (DNN) (LeCun et al., 2015). AOPEDF is
highly robust to hyper-parameter settings. Importantly, the number
of cascade levels can be adaptively determined such that the model
complexity can be automatically set. (iii) Tree-based methods imple-
mented in AOPEDF make prediction by inferring decision rules
from data, which is more effective in generating interpretable pre-
dictions from rich features compared to traditional neural network
methods. Via comprehensive evaluation on cross-validation and two
external validation sets, we show that AOPEDF achieves higher per-
formance in comparison to several state-of-the-art methods. In sum-
mary, AOPEDF offers a powerful tool to predict new DTIs from
heterogeneous networks for accelerating target-centered drug repur-
posing and therapeutic development for understudied diseases.

2 Materials and methods

2.1 Data resource
We collect DTI information from the DrugBank database (v4.3)
(Wishart et al., 2018), the therapeutic target database (Yang et al.,
2016) and the PharmGKB database (Hernandez-Boussard et al.,
2007). Specifically, bioactivity data for drug–target pairs are col-
lected from ChEMBL (v20) (Gaulton et al., 2012), BindingDB (Liu
et al., 2007) and IUPHAR/BPS Guide to PHARMACOLOGY
(Pawson et al., 2014). The chemical structure of each drug with
SMILES format is extracted from DrugBank (Law et al., 2014).
Here, only DTIs meeting the following three criteria are used: (i) the
human target is represented by a unique UniProt accession number;
(ii) the target is marked as ‘reviewed’ in the UniProt database
(Apweiler et al., 2004); and (iii) binding affinities, including Ki, Kd,
IC50 or EC50 each �10 lM. We used a low binding affinity cutoff
of 10 lM as weak-binding drugs play crucial roles in therapeutic de-
velopment as well (Ohlson, 2008; Wang et al., 2017). In total, a
DTI network connecting 732 FDA-approved drugs and 1519 unique
human targets (proteins) were used (Supplementary Tables S1 and
S2). We randomly selected the matching number of the unknown
drug–target pairs (by excluding all known DTIs) as negative sam-
ples. The details for building the experimentally validated drug–tar-
get network are provided in a recent publication (Cheng et al.,
2018). In addition, we construct nine networks for drugs: (i) clinical-
ly reported drug–drug interactions, (ii) drug–disease associations,
(iii) drug–side effect associations, (iv) chemical similarities, (v) thera-
peutic similarities derived from the Anatomical Therapeutic
Chemical Classification System, (vi) target sequence-derived drug–
drug similarities, (vii) Gene Ontology (GO) biological process, (viii)
GO cellular component and (ix) GO molecular function, and six
networks for proteins: (i) protein–protein interactions, (ii) protein–
disease associations, (iii) protein sequence similarities, (iv) GO bio-
logical process, (v) GO cellular component and (vi) GO molecular
function. The detailed description for building 15 networks is pro-
vided in the Supplementary Methods and our recent study (Cheng
et al., 2019a,b). For external validation sets, we assembled the new-
est experimentally validated DTIs from the DrugCentral database
(Ursu et al., 2019) and ChEMBL database (Mendez et al., 2019) by
excluding overlapping drug–target pairs from the training set. There
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are partly overlap between two validated sets from DrugCentral and
ChEMBL databases, respectively (Supplementary Table S3). There
are no any overlap DTIs between the training set and two external
validation set.

2.2 Pipeline of AOPEDF
As shown in Figure 1, AOPEDF consists of three steps: (i) data prep-
aration and benchmarking, (ii) arbitrary-order proximity preserved
network embedding (AROPE) and (iii) deep forest-based prediction
of DTIs. First, we integrate 15 biological networks to construct a
complex heterogeneous network which contains diverse information
and a multiview perspective in predicting novel DTIs. Then, we pre-
serve arbitrary-order proximity of each network to obtain inform-
ative, but low-dimensional vector representations of drugs and
targets. Finally, potential DTIs will be predicted using the deep for-
est classifier.

2.3 Arbitrary-order proximity preserved network

embedding
We use A to denote the adjacency matrix (binary or weighted) of a
network G with N nodes and M edges. A i; :ð Þ and Að:; iÞ stand for its
ith row and column, respectively. Aði; jÞ is the weight of the edge be-
tween nodes i and j. A is symmetric, AT denotes the transpose of A.
Functions are marked by curlicue, e.g. Fð�Þ.

Definition 1.High-order proximity. Given the adjacency matrix A of an

undirected network, a high-order proximity is defined as a polynomial

function Fð�Þ of A:

S ¼ F Að Þ ¼ w1Aþw2A2 þ � � � þwqAq; (1)

where q is the order and w1; . . . ;wq are the weights. We refer to a prox-

imity of order q as the weighted combination of all the orders from the

1st to the qth, rather than the qth order alone. We allow q ¼ þ1 if the

summation converges. We will assume that wi � 0 for 8 1 � i � q.

To preserve the high-order proximity in a low-dimensional vector space,

the widely adopted method is matrix factorization, which minimizes the

following objective function:

min
U� ;V�

S�U�V�Tj jj j2
F ; (2)

where U�,V� 2 R
NXd are content/context embedding vectors and d is the

dimensionality of the space. Without loss of generality, we use U� as the

content embedding vectors. From Eckart–Young theorem, the global op-

timal solution to Equation (2) can be obtained by truncated SVD (Eckart

and Young, 1936). Specifically, denote [U;R; V] as the top-d SVD

results of S, where U;V 2 R
NXd and each column corresponds to one

left/right singular vector, and R 2 R
dXd is a diagonal matrix of singular

values in descending order. The embeddings can be obtained by multi-

plying R into U, V:

U� ¼ U
ffiffiffiffi
R
p

; V� ¼ V
ffiffiffiffi
R
p

: (3)

However, directly calculating S and SVD will be both time and space

consuming. Besides, since different networks and targets applications

usually require the proximities of different orders, how to shift across

different orders is also challenging.

Denote the top-d eigen-decomposition of S as [K;X], where K2 R
dXd

is a diagonal matrix of eigenvalues in descending order of the absolute

value, X 2 R
NXd and each column corresponds to an eigenvector. We

can refer [Kði; iÞ;Xð:; iÞ], 1 � i � d as an eigen-pair. To solve the

SVD problem, we can transform it into an eigen-decomposition problem

(Strang, 2006).

THEOREM 1. For any symmetric matrix S, 8 1 � i � d, we have:

U :; ið Þ ¼ Xð:; iÞ
R i; ið Þ ¼ abs K i; ið Þð Þ

V :; ið Þ ¼ Xð:; iÞsignðK i; ið ÞÞ
;

8<
: (4)

where abs xð Þ ¼ x stands for the absolute value function and signð�Þ is

the sign function, i.e. sign xð Þ ¼ 1 if x > 0, sign xð Þ ¼ 0 if x ¼ 0 and

sign xð Þ ¼ �1 if x < 0.

Now, we only need to focus on solving the eigen-decomposition of S:

As proved in Zhang et al. (2018), to calculate the eigen-

decomposition on S, we can follow the eigen-decomposition

Reweighting theorem:

THEOREM 2. Eigen-decomposition Reweighting. If [k; x] is an eigen-pair

of A, then [FðkÞ; x] is an eigen-pair of S ¼ FðAÞ.
The theorem shows that, without performing the eigen-decompos-

ition on S, we can obtain the eigen-decomposition results of S from the

eigen-decomposition results of A by replacing k with FðkÞ. In fact, the

theorem reveals the intrinsic relationship between proximities of differ-

ent orders. If we regard each eigenvector as a ‘coordinate’ of the nodes

in the network and each eigenvalue as a ‘weight’ of the coordinate, then,

preserving proximities of different orders is equivalent to reweighting

the dimensions.

After the eigen-decomposition reweighting, the order of the eigenval-

ues may change, including the top-d eigen-decomposition of S is not ne-

cessarily the reweighting of the top-d eigen-decomposition of A: To

tackle the problem (Zhang et al., 2018) proved that the top-d eigen-de-

composition of any S is guaranteed to be the reweighting of the top-l

eigen-decomposition of A, where l ¼ ‘ðA;dÞ is a function of the network

and d. Thus, to get the top-d eigen-decomposition of any Fð�Þ, we need

to calculate the top-l eigen-decomposition of A. Then we can reweight

and reorder dimensions and use the top-d after reweighting to derive the

embedding vectors. Since the top-l eigen-decomposition of A is shared

by arbitrary-order proximities, we can shift between proximities of

Fig. 1. A flowchart of the proposed approach. First, we integrate 15 networks to

construct a complicated heterogeneous network which contains diverse chemoinfor-

matics and bioinformatics profiles and a multiview perspective for predicting DTIs.

Then, AOPEDF integrates diverse information from the heterogeneous network,

and preserves the different order proximity information for different networks

through AROPE. Finally, the deep forest classifier is utilized to infer potential DTIs

among known drugs
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different orders with a low marginal cost by pre-computing the eigen-

decomposition.

2.4 Deep forest algorithm
After learning the low-dimensional vector representation of drugs
and proteins, we utilize the deep forest (Zhou and Feng, 2017) for
prediction, which provides an alternative approach to DNNs to
learn hyper-level representations in low computing cost. Inspired by
the layer–layer processing of raw features in DNNs, deep forest
employs a cascade structure, each level of cascade receives feature
information processed by its preceding level and outputs its process-
ing results to the next level (Fig. 1). Each level is an ensemble of deci-
sion tree forest, such as an ensemble of ensembles. Diversity is
crucial for ensemble construction. In this study, we used: (i) two ran-
dom forests (RFs), (ii) two completely random tree forests and (iii)
two gradient boosting tree forests. Each forest contains 500 trees
and there are 3000 trees in total. For instance, each forest will pro-
duce an estimate of class distribution, by counting the percentage of
different classes of training examples at the leaf node where the con-
cerned instance falls, and then averaging across all trees in the same
forest. The estimated class distribution forms a class vector, which is
then concatenated with the original feature vector to be input to the
next level of the cascade (Fig. 1). Herein, there are two classes in
binary classification, with each of the six forests producing a 2D
class vector. In total, the next level of the cascade will receive 12
(¼2�6) augmented features.

To reduce the risk of overfitting, class vector produced by each
forest is generated by k-fold cross-validation (k¼5). In detail, each
forest will be used as training data for k�1 times, resulting in k�1
class vectors, which are then averaged to produce the final class vec-
tor as augmented features for the next level of cascade. After
expanding to a new level, the performance of the whole cascade will
be estimated on a validation set, and the training procedure will ter-
minate if there is no significant performance gain. Subsequently, the
number of cascade levels is automatically determined. Deep forest
employs a multigrained scanning strategy, a sliding window-based
approach, to extract local features by scanning raw input to generate
a series of local low-dimensional feature vectors. It then trains a ser-
ies of forests by using those low-dimensional vectors to obtain class
distribution of input vectors. More details are provided in previous
study (Zhou and Feng, 2017).

3 Results

3.1 Baseline methods

• NeoDTI: Neural integration of neighbor information for DTI

prediction (Wan et al., 2019) is a nonlinear end-to-end learning

model that integrates diverse information from heterogeneous

networks and automatically learns topology-preserving represen-

tations of drugs and targets for prediction.
• deepDTnet: A network-based, deep learning methodology for

drug repurposing, which integrates DNN algorithm for network

embedding and a PU-matrix completion algorithm for prediction

(Zeng et al., 2020).
• RLSWNN: Regularized Least Squares with Weighted Nearest

Neighbors (van Laarhoven and Marchiori, 2013), which uses a

weighted nearest neighbor procedure for inferring a profile for a

drug by using interaction profiles of drugs in the training data.
• KBMF2K: Kernelized Bayesian matrix Factorization method

(Gonen, 2012), which uses a kernelized Bayesian matrix factor-

ization with twin kernels to predict DTIs.
• NetLapRLS: An algorithm utilizing the bipartite local model

concept (Xia et al., 2010), performs two sets of predictions,

including one from the drug side and one from the target side,

and then aggregates these predictions to give the final prediction

scores for the potential interaction candidates.

• DeepWalk: A deep learning method utilizes the similarities with-

in a heterogeneous tripartite network built from biomedical

linked datasets (Zong et al., 2017).

3.2 Performance of AOPEDF on the cross-validation
We first evaluated performance of AOPEDF by conducting a 5-fold
cross-validation procedure on all positive pairs and a set of matching
number of randomly sampled negatives with positive samples (ran-
dom selection of unknown drug–target pairs by excluding all known
DTIs). During each 5-fold cross-validation, we randomly chose a
subset of 80% of the known DTI pairs and a matching number of
randomly sampled unknown drug–target pairs as the training set,
and the remaining 20% known DTI pairs and a matching number of
randomly sampled unknown drug–target pairs were held out as the
test set. The area under the receiver operating characteristic curve
(AUROC) and the area under the precision–recall curve (AUPR)
were utilized to evaluate the overall performance of AOPEDF. To
reduce the data bias of cross-validation, we performed 10 times of
random 5-fold cross-validation and computed the average perform-
ance. We found that AOPEDF showed high accuracy (AUROC ¼
0.985 and AUPR ¼ 0.985) in 5-fold cross-validation, outperforming
that of several state-of-the-art methods: NeoDTI (AUROC ¼ 0.971

Fig. 2. Evaluation of AOPEDF on the external validation set collected from the

DrugCentral database (see Section 2). (a) Receiver operating characteristic (ROC)

curves of prediction results obtained by applying AOPEDF and five previously pub-

lished methods. (b) Precision–recall (PR) curves of prediction results obtained by

applying AOPEDF and five previously published methods. AUROC, the area under

ROC curve; AUPR, the area under PR curve
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and AUPR ¼ 0.970), deepDTnet (AUROC ¼ 0.965 and AUPR ¼
0.969), RLSWNN (AUROC ¼ 0.949 and AUPR ¼ 0.955),
KBMF2K (AUROC ¼ 0.936 and AUPR ¼ 0.947) and NetLapRLS
(AUROC ¼ 0.923 and AUPR ¼ 0.936) (Supplementary Fig. S1 and
Table S4). In addition, AOPEDF outperforms DeepWalk (Zong
et al., 2017), a state-of-the-art deep learning approach
(Supplementary Fig. S2).

3.3 Performance of AOPEDF on the external validation
Cross-validation on retrospective data probably leads to overopti-
mistic results. For object performance evaluation, we further col-
lected experimentally validated DTIs from DrugCentral and
ChEMBL databases, as two external validation sets (Supplementary
Table S3), which can be used to evaluate the generalizable ability of
models. The DrugCentral validation set contains 1507 DTIs that
were not used in the training set, while the ChEMBL validation set
contains 3034 DTIs that were not used in the training set as well.
Figure 2a and b illustrates the performance comparison from the
DrugCentral validation set. AOPEDF achieves a higher performance
over other methods in terms of both AUROC and AUPR.
Specifically, AOPEDF achieves AUROC value of 0.868, outperform-
ing that of NeoDTI (0.843), deepDTnet (0.831), RLSWNN (0.772),
KBMF2K (0.774) and NetLapRLS (0.738). AOPEDF achieves
AUPR value of 0.869, outperforming that of NeoDTI (0.859),
deepDTnet (0.861), RLSWNN (0.821), KBMF2K (0.807) and
NetLapRLS (0.769) as well. Figure 3a and b shows the performance
comparison on the ChEMBL validation set. AOPEDF still yields the
best prediction performance in comparison with the other methods.
AOPEDF achieves an AUROC value of 0.768 in comparison to
NeoDTI (0.744), deepDTnet (0.702), RLSWNN (0.692), KBMF2K
(0.648) and NetLapRLS (0.593). AOPEDF achieves an AUPR value
of 0.764, outperforming that of NeoDTI (0.745), deepDTnet
(0.739), RLSWNN (0.722), KBMF2K (0.684) and NetLapRLS
(0.642). However, there are partly overlap between two external
validation sets (Supplementary Table S3). The generalizable ability
of AOPEDF is warranted to be tested further using more independ-
ent validation sets in the future.

3.4 Performance of AOPEDF by ablation analysis
AOPEDF contains two parts, that is, AROPE for feature extraction
and deep forest for classification. To examine the contribution of
each component, we compared AOPEDF with several combinations.
First, we replaced AROPE with LINE (Tang et al., 2015) for feature
extraction. Specifically, we integrated 15 networks using AROPE
and LINE respectively, and then used the deep forest for prediction.
LINE is another network embedding method, which explicitly pre-
serves the first two order proximities, here denoted as
LINE1st and LINE2nd, respectively. This operation can inspect the
contribution of AROPE. As shown in Supplementary Table S5, we
found that AROPE outperformed both LINE1st and LINE2nd. This
finding suggested that preserved high-order proximities may provide
more effective information for classification. To inspect the contri-
bution of deep forest, we compare deep forest classifier with other
traditional classifiers using the same features extracted from
AROPE. Specifically, for support vector machine (SVM) (Chang
and Lin, 2011), we use a soft margin SVM with linear kernel, which
performed better than radial basis function kernel in our experi-
ments. We used a standard RF with 1000 trees, which get the best
performance. For DNN (LeCun et al., 2015), we use an MLP having
three hidden layers, with 1000, 500 and 200 units, respectively. We
use ReLU as activation function and Adam optimizer with learning
rate 0.001 to perform gradient descent. The evaluation results of
these combinations are reported in Supplementary Table S5. We
found that deep forest achieved the best performance. We also eval-
uated the combination of LINE with traditional classifiers, from
which we can further validate the contribution of AROPE and deep
forest. In addition, we found that performance of assembling in total
15 networks is much higher than single networks under AOPEDF
framework (Supplementary Table S6), indicating power of heter-
ogenous biological network integration. However, when we left

each network out, we only found the marginal improvement of
in total 15 networks compared to 14 networks (Supplementary
Table S7).

3.5 Case study: drug repurposing for substance abuse

disorder
Substance abuse disorder, also termed drug addiction, is a serious
public health issue and there are no effective treatments available in
the clinic (Lo Coco et al., 2019). We next turn to inspect whether
AOPEDF could identify molecular targets from marketed drugs in
the potential treatment of substance abuse disorder. Here, we cen-
tered on 64 G-protein-coupled receptors (GPCRs) which are related
to substance abuse disorder (Chen et al., 2019). In total, we compu-
tationally identify 648 potential interactions connecting 64 GPCRs
and 732 known drugs based on the top 20 predicted candidates by
AOPEDF. The network visualization of the top 20 predicted candi-
dates of 64 GPCRs is illustrated in Figure 4. Among the AOPEDF-
predicted DTIs, multiple candidates can be supported by previous
published literatures. For instance, aripiprazole, an atypical anti-
psychotic medication, primarily used in the treatment of schizophre-
nia and bipolar disorder, was predicted by AOPEDF to interact with
histamine H3 receptors (HRH3). Such a prediction can be supported
by a systematic, unbiased GPCR experimental assay (Lounkine
et al., 2012). Besides, we also found that aripiprazole is related to

Fig. 3. Evaluation of AOPEDF on the external validation set collected from the

ChEMBL database (see Section 2). (a) ROC curves of prediction results obtained by

applying AOPEDF and five previously published methods. (b) PR curves of predic-

tion results obtained by applying AOPEDF and five previously published methods.

AUROC, the area under ROC curve; AUPR, the area under PR curve
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drug abuse (Brunetti et al., 2012). Risperidone, an atypical anti-
psychotic, is approved to treat schizophrenia, bipolar disorder and
irritability associated with autism. Here, we computationally identi-
fied that risperidone has potential interactions with HRH3 as well
predicted by AOPEDF. This prediction is supported by the previous
finding that HRH3 was involved in the pharmacodynamics and clin-
ical efficacy of risperidone (Wei et al., 2012). In addition, risperi-
done was reported to mediate preclinical efficacy of substance abuse
(Machielsen and de Haan, 2009). Haloperidol is a typical anti-
psychotic medication used in the treatment of schizophrenia, tics in
Tourette syndrome, mania in bipolar disorder, nausea and vomiting,
delirium, agitation, acute psychosis and hallucinations in alcohol
withdrawal. AOPEDF predicts that haloperidol interacts with cho-
linergic muscarinic 2 receptor, which is also supported by a previous
publication (Swathy and Banerjee, 2017). Furthermore, haloperidol
was reported to involve in potential treatment of drug abuse as well
(Hoffman et al., 1986). In summary, these case studies suggest po-
tential of identifying new molecular targets from marketed drugs in
potential treatment of substance abuse disorder. All predictions war-
rant further preclinical and clinical validations. From a translational
perspective, if broadly applied, AOPEDF developed here could help

accelerate therapeutic development for multiple understudied dis-
eases as well.

4 Discussion and conclusion

In this article, we proposed a deep learning-based computational ap-
proach for molecular target identification from known drugs,

termed AOPEDF. AOPEDF preserves different order proximity in-
formation from 15 networks in a constructed drug–target/protein–

disease heterogeneous network. Specifically, AOPEDF formulates
DTI prediction as a binary classification task and feeds the low-
dimensional but informative vector representations of features for

both drugs and proteins into a cascade deep forest classifier. The
low-dimensional feature vectors learned by AOPEDF capture rich

context information as well as the topological structure of individual
networks. In comparison to DNNs approaches, the deep forest clas-
sifier of AOPEDF performs excellently in classification but has

much fewer hyper-parameters and its performance is quite robust to
hyper-parameter settings. Neural network methods often achieve
state-of-the-art performance with a ‘black-box’, for which the

Fig. 4. An AOPEDF-predicted drug–target network connects 64 substance abuse disorder-related GPCRs and 164 drugs. GPCRs are denoted by gray square nodes. Drug nodes

(circle) are labeled by the first-level of the Anatomical Therapeutic Chemical Classification System. Node size represents the degree (connectivity). Several GPCRs and predicted

drugs were highlighted and discussed in the main text
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reasons underlying a prediction cannot be explicitly presented.
AOPEDF makes prediction by inferring decision rules from data,
which is more effective in generating interpretable predictions from
biologically relevant features. We have validated the prediction abil-
ity of AOPEDF in terms of 5-fold cross-validation, two external val-
idation sets and a case study. Systematic evaluation demonstrates
that AOPEDF achieves state-of-the-art performance for the discov-
ery of DTIs and potential applications of target-centered drug repur-
posing for substance abuse disorder in the case study. Theoretically,
AOPEDF can process various high-dimensional features by utilizing
multiple networks with different order features. The deep forest
classifier implemented in AOPEDF will utilize the information it
needs automatically. In our experiments, for each network we pre-
serve different order proximity, and then choose the best order
according to the feature importance and prediction results. Overall,
AOPEDF is a scalable framework, which can incorporate more drug
and target-related information from various publicly available data-
bases and literatures. Therefore, if broadly applied, we believe that
AOPEDF offers a powerful and useful tool to facilitate drug repur-
posing and therapeutic development in various understudied
diseases.

We acknowledged several potential limitations in current study.
In this study, we used a low binding affinity value of 10 lM as a
threshold to define a physical DTI. Recent studies suggested that
weak-binding drugs play crucial roles in therapeutic development as
well (Ohlson, 2008; Wang et al., 2017). Our recent studies have suc-
cessfully applied this low binding affinity cutoff of 10 lM for drug
repurposing (Cheng et al., 2018, 2019a, b). However, a stronger
binding affinity threshold (e.g. 1 lM) may be a more suitable cutoff
in drug discovery although it will generate a small size of drug–tar-
get network (Pahikkala et al., 2015). In addition, random selection
of unknown drug–target pairs as negative samples may generate
possible false positive rate of AOPEDF models. We have repeated
the 10 times of random 5-fold cross-validation on each method and
added the mean and standard deviation in the Supplementary Table
S4. We found that AOPEDF revealed the smallest standard deriv-
ation compared to other approaches, suggesting a minor influence
of low-quality negative samples on performance. Building regression
models to predict the continuous binding affinity (such as Kd, Ki,
IC50, EC50) will avoid selecting different biological threshold and
avoiding lack of publicly available negative drug–target pairs as
well. We found that performance of 5-fold cross-validation
(Supplementary Fig. S1) was much higher than performance of two
external validation sets (Figs 2 and 3). One possible reason is that
experimental assays of DTIs are different between training set and
the external validation sets. However, the overfitting risk of
AOPEDF is needed to be tested by more independent validation sets
in the future. Ablation analysis reveals a marginal improvement of
in total 15 networks compared to 14 networks (Supplementary
Table S7). Thus, potential risk of information redundancy from
multiple networks’ integration is warranted to be tested further.
Other feature extraction approaches, such as convolution neural
networks (LeCun et al., 2015), could be used to avoid information
redundancy in current AOPEDF framework. Finally, the deep forest
classifier has much fewer hyper-parameters compared to DNN algo-
rithms, potentially making the proposed method more robust to par-
ameter settings. As shown in the Supplementary Table S8, AOPEDF
reveals high robustness by the hyper-parameter settings. Finally, all
experimentally validated drug–target networks, including training
set and two external validation sets, and codes used in this study are
free available at https://github.com/ChengF-Lab/AOPEDF.
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