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Abstract

Motivation: The development of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associ-
ated protein 9 (Cas9) technology has provided a simple yet powerful system for targeted genome editing. In recent
years, this system has been widely used for various gene editing applications. The CRISPR editing efficacy is mainly
dependent on the single guide RNA (sgRNA), which guides Cas9 for genome cleavage. While there have been mul-
tiple attempts at improving sgRNA design, there is a pressing need for greater sgRNA potency and generalizability
across various experimental conditions.

Results: We employed a unique plasmid library expressed in human cells to quantify the potency of thousands of
CRISPR/Cas9 sgRNAs. Differential sequence and structural features among the most and least potent sgRNAs were
then used to train a machine learning algorithm for assay design. Comparative analysis indicates that our new algo-
rithm outperforms existing CRISPR/Cas9 sgRNA design tools.

Availability and implementation: The new sgRNA design tool is freely accessible as a web application, http://crispr.
wustl.edu.

Contact: xwang317@uic.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The clustered regularly interspaced short palindromic repeat
(CRISPR)/Cas systems have provided an unprecedented opportunity
for performing site-specific editing of a variety of genomes. In pro-
karyotes, CRISPRs are virus-derived DNA fragments which encode
CRISPR RNA (crRNA) (Barrangou et al., 2007). The CRISPR/Cas
systems fall into two classes: Class 1 systems use a complex consist-
ing of multiple Cas protein subunits to degrade foreign nucleic acids
and Class 2 systems use a single large Cas protein for the same pur-
pose. The CRISPR/CRISPR-associated protein 9 (Cas9) system
belongs to Class 2 systems and is the most widely used editing sys-
tem due to its simplicity, high efficiency and low cost (Doudna and
Charpentier, 2014). In conjunction with trans-activating crRNA
(tracrRNA), the crRNA serves as a guide for Cas9 to bind and
cleave foreign DNA (Deltcheva et al., 2011). In genome editing
experiments, tracrRNA and crRNA are engineered into a combined
single guide RNA (sgRNA) with a designed guide sequence comple-
mentary to the desired target (Jinek et al., 2012). Similar to the nat-
ural system, the sgRNA guides Cas9 to cleave the DNA at a specific
genomic locus based on sequence match, resulting in a double-
stranded DNA break. This break occurs precisely 3 nt upstream of

an NGG protospacer adjacent motif (PAM) sequence (Chen et al.,
2014). In mammalian cells, the DNA repair process often introduces
indels, causing frameshift mutations and resulting in functional gene
knockout. From this editing framework, advanced strategies have
also been developed such as paired nicking for increased specificity
(Ran et al., 2013) or inserting nucleotide sequences during the repair
of double-strand break to generate knock-ins (Mali et al., 2013).
The broad applicability of the CRISPR/Cas9 system stems from its
ability to target DNA based on a synthetic sgRNA sequence, specif-
ically the 20 nt guide sequence (gRNA) at the 50 end of the sgRNA
sequence.

It has been shown that the gRNA sequence is important for both
targeting specificity and cleavage efficiency (Hsu et al., 2013; Jinek
et al., 2013). Off-target Cas9 activity occurs when sequences similar
to the gRNA occur elsewhere in the genome, potentially resulting in
unintended knockout effects (Hsu et al., 2013). To address the off-
target effects, various experimental approaches, mainly by altering
the nuclease activity of Cas9 (resulting in high-fidelity Cas9) or
gRNA design, have been established in recent years, resulting in sig-
nificantly improved specificity for CRISPR/Cas9 targeting
(Kleinstiver et al., 2016; Kocak et al., 2019; Ran et al., 2013;
Slaymaker et al., 2016; Tycko et al., 2016). Further, recent studies
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have also developed bioinformatics methods to design sgRNA
sequences with reduced off-target effects (Chuai et al., 2018;
Doench et al., 2016; Hsu et al., 2013). However, these experimental
innovations could still suffer from potential cleavage efficiency var-
iations. More efficient Cas9 cleavage can potentially result in stron-
ger knockout phenotypic changes. The importance of Cas9 cleavage
efficiency is amplified when considering large-scale screening assays
where many genes are to be knocked out using a genome-wide
CRSIPR/Cas9 sgRNA library.

Several studies have approached the problem of sgRNA effi-
ciency prediction, revealing sgRNA and target features that correlate
with Cas9 cleavage efficiency (Chari et al., 2015; Chuai et al., 2018;
Doench et al., 2014, 2016; Labuhn et al., 2018; Peng et al., 2018;
Wong et al., 2015; Xu et al., 2015). Given the large number of fea-
tures involved, machine learning methods are commonly employed
for data modeling. To construct such computational models, a large
number of sgRNAs need to be experimentally tested to build a ro-
bust training dataset for efficiency prediction. In order to do so,
existing studies typically adopted biological enrichment schemes, in
which gene editing events impact cell survival or other observable
biological phenotypes. While these strategies avoid labor intensive-
ness on the experimental side, such indirect biological readouts
could produce artifacts in the training data, as equally efficient Cas9
cleavage sites may not result in equal phenotypic changes or survival
pressure. Furthermore, existing experimental studies were often
focused on a small subset of genes and/or a single cell line, which
limits the usefulness of the training data for general predictions. In
our study, we generated a plasmid target library for experimental
quantification of sgRNA efficiency in the CRISPR/Cas9 system.
Using in silico designed target sites as presented from a large plasmid
library, our large-scale training dataset reduces potential bias from
specific experimental systems and is generalizable across other data-
sets. We performed comprehensive feature analysis of our sgRNA li-
brary and used the extracted features to train a machine learning
model for sgRNA design.

Our final model, which we named sgDesigner, was developed by
utilizing a stacked generalization framework to combine distinct
models, resulting in more robust predictions (Wolpert, 1992).
sgDesigner outperforms existing sgRNA design algorithms for
sgRNA potency prediction and is publically accessible as a web ap-
plication via http://crispr.wustl.edu.

2 Materials and methods

2.1 Cloning of sgRNA plasmid library
A pool of 12 472 oligonucleotides were synthesized by
CustomArray, Inc. (Bothell, WA, USA). Each oligonucleotide con-
tains a 20 nt gRNA sequence and paired 53 nt target sequence
(including a NGG PAM), as presented in Supplementary Table S1.
Among these oligos, 11 472 gRNA sequences were randomly
selected from coding exons in humans. Most of these gRNAs (93%)
cannot target the endogenous exon sites due to the lack of adjacent
PAM domains in the genomic sequence. In these cases, a PAM do-
main was added next to the gRNA sequence in the plasmid to make
the site targetable by Cas9. In addition, 1000 randomly shuffled
gRNA sequences were included in the oligo pool to serve as negative
control. Between the gRNA and target sequence, two BsmBI sites
for Cas9 sgRNA scaffold cloning and a 12 nt unique molecular
index (UMI) sequence for bioinformatics analysis were inserted.
Two constant regions (20 nt each) at the 50 and 30 ends were added
for PCR amplification of the oligonucleotides. The oligo pool was
amplified by PCR with Phusion DNA polymerase (ThermoFisher)
using primers ‘Cas9Lib_FP’ and ‘Cas9Lib_RP’ (Supplementary
Table S5). Amplified DNA oligos were then gel purified using the
QIAquick Gel Extraction kit (QIAGEN). Next, purified PCR prod-
ucts were assembled into the BsmBI-digested plasmid Lenti-gRNA-
Puro (Addgene #84752) using the NEBuilder HiFi DNA Assembly
kit. This plasmid was referred as the Library-1st plasmids in our
study.

Cas9 sgRNA scaffold sequence was amplified from Lenti-
CRISPR V2 (Addgene #52961) using the primers ‘scaffold RNA FP’
and ‘scaffold RNA RP’ (Supplementary Table S5). The Cas9 sgRNA
scaffold PCR products were then gel purified. After BsmBI digestion
of both library-1st plasmids and Cas9 sgRNA scaffold, the two frag-
ments were ligated by T4 DNA ligase (Intact Genomics) to get the
final library plasmids.

Following Gibson assembly or T4 DNA ligation, 2 ml of the reac-
tion was transformed into 25 ll of igTM 10B ElectroCompetent cells
(Intact Genomics) by electroporation. To maximize library cover-
age, two electroporation reactions were performed. After transform-
ation, cells were pooled and spread onto LB agar plates
supplemented with 100mg/ml ampicillin. All clones were harvested
for plasmid DNA extraction by the PureYield Plasmid Midiprep kit
(Promega). Throughout the cloning process, the transformation effi-
ciency and library coverage were evaluated according to previously
published guidelines (Joung et al., 2017). On average, there are
about 300 colonies per sgRNA oligo in the plasmid library.

2.2 Lentivirus preparation
The infectious lentivirus particles were generated and packaged
using 293 T cells (ATCC). In a 60 mm dish, 2 � 106 cells were
seeded in 2.5 ml Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% fetal bovine serum (FBS) (Gibco). About 2 mg
of library plasmids or Cas9 expressing plasmids were mixed with
1.8mg of psPAX2 (Addgene #12260) and 0.2mg of pCMV-VSVG
(Addgene #8454) in 250ml of OPTI-MEM medium (ThermoFisher),
while 12ml of Lipofectamine 2000 (ThermoFisher) was diluted in
250ml of OPTI-MEM medium. After 5 min of incubation at room
temperature, the plasmid mixture and the diluted Lipofectamine
2000 were combined and incubated for 20 min at room tempera-
ture. After incubation, the 500ml plasmid–lipofectamine mixture
was dropped onto the 293 T cells. The transfection medium was
replaced with regular cell culture medium 6 h post transfection.
Virus was harvested at 40 h post transfection and filtered through a
0.45mm Millex-HV membrane (Millipore).

2.3 Plasmid library delivery into HeLa/Cas9 cells
Adherent HeLa cells (ATCC) were cultured in DMEM medium sup-
plemented with 10% FBS. Cells were cultured in a 37�C incubator
supplied with 5% CO2. To establish the Cas9 stable expressing cells,
HeLa cells (ATCC) were transduced with lentivirus containing Cas9
expressing transcripts from LentiCas9-Blast (Addgene #52962) at
an MOI of 0.7. Two days after transduction, cells were selected
with 10mg/ml blasticidin for 4 days. The blasticidin-resistant cells
were pooled and maintained in the presence of 10mg/ml blasticidin.
Cas9-expressing cells were transduced with the lentivirus expressing
the plasmid library at an MOI of 0.3. Two days after transduction,
cells were treated with 2mg/ml puromycin for 3 days. Survived cells
were harvested and genomic DNA was isolated for sequencing li-
brary construction.

2.4 Sequencing library construction
Genomic DNA was isolated using the GenElute Mammalian
Genomic DNA Purification kit (SigmaMillipore). The sequencing li-
brary was constructed according to the methods described previous-
ly (Kim et al., 2017). In brief, the target sequence was first amplified
and then the Illumina adaptor and barcode sequences were intro-
duced by a second PCR. All primers used in these two PCRs were
listed in Supplementary Table S5. The final PCR products were puri-
fied with AmpureXP beads (Beckman Coulter), quantified with the
Quantifluor system (Promega) and then sequenced with MiSeq
(Illumina).

2.5 Quantification of sgRNA efficiency
FASTQ raw sequencing data were de-multiplexed and ambiguous
reads were filtered out. Each sequencing read was identified using its
gRNA sequence and UMI and subsequently aligned to its reference
sequence using Smith–Waterman alignment with affine gap penalty
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to detect editing (with parameters for match¼3, mismatch ¼ �2,
gap opening ¼ �10 and gap extension ¼ �1). In this step, plasmids
that exhibited indels prior to exposure to Cas9 were excluded from
further analysis. Proportion of reads edited was used to quantify
sgRNA efficiency. sgRNAs with 100% of associated reads edited
were considered of high efficiency, while those with �50% of asso-
ciated reads edited were considered of low efficiency. A minimum
read count of 10 per sgRNA was required for sgRNA inclusion in
the analysis, and an additional criterion of at least two UMIs were
required for each sgRNA included the high-efficiency group in order
to maximize training data quality.

2.6 Computational tools
Data processing, sequence alignment and feature extraction were
performed using custom Perl scripts. RNAfold (Hofacker, 2003)
was used to compute sgRNA structural features. Features analysis
was performed using MATLAB. Significance levels (P-values) were
calculated using Student’s t-test for numerical features and v2 test
for binary features. Feature enrichment was determined by compar-
ing functional sgRNAs with non-functional sgRNAs.
Computational modeling and performance evaluation were per-
formed using Python.

2.7 Independent testing datasets
A total of six testing datasets were gathered from published studies,
namely: Wang, Koike-Yusa, FC, RES, Shalem and Chari (Chari
et al., 2015; Doench et al., 2014, 2016; Koike-Yusa et al., 2014;
Shalem et al., 2014; Wang et al., 2014). The Wang and Koike-Yusa
datasets were downloaded from supplemental tables provided by
Xu et al. (2015). We used the negative log2 fold change values for
correlative analysis of sgRNA prediction. The FC and Shalem data-
sets were provided by Doench et al. (2014). The RES dataset was
downloaded from the Azimuth website, which was implemented by
Microsoft (Doench et al., 2016). The Chari dataset was directly
retrieved from supplemental tables at the journal’s website (Chari
et al., 2015). Additional details about these datasets can be found in
Supplementary Table S4.

2.8 Model performance evaluation
We compared sgDesigner with three existing sgRNA design tools
included RS2, Sequence Scan for CRISPR (SSC) and DeepCRISPR.
RS2 prediction results were retrieved from Microsoft’s Azimuth 2.0
website, using predefined in vitro parameters (Doench et al., 2016).
SSC prediction results were computed using the authors’ web-based
implementation (Xu et al., 2015). DeepCRISPR predictions were
generated using the command-line version with sequence features
only (Chuai et al., 2018). Receiver operating characteristic (ROC)
and Spearman correlation analyses were performed using the testing
datasets to assess the consistency between experimentally deter-
mined sgRNA efficiencies and predicted efficiencies.

2.9 Availability of data
Our sgRNA design tool, sgDesigner, is freely accessible as a web ap-
plication via http://crispr.wustl.edu. In addition, the source code and
stand-alone version of sgDesigner are freely accessible at GitHub
(https://github.com/wang-lab/sgDesigner). Additional supplemen-
tary data can be downloaded from journal’s website and
Zenodo.org (http://doi.org/10.5281/zenodo.3572803).

3 Results

3.1 An sgRNA library for quantifying CRISPR/Cas9

editing efficiency
The overall experimental procedure is summarized in Figure 1a. In
summary, we synthesized an sgRNA library and used it for cleavage
efficiency quantification by high-throughput sequencing.
Specifically, we designed a pool of oligonucleotides each containing
a U6 promotor sequence, a gRNA sequence and a corresponding

target sequence. The target sequence included a 20 nt gRNA-
matching region, followed by an NGG PAM domain. In addition, to
examine the potential impact of target flanking regions, we also
included 30 distinct nt surrounding the target site, forming an
extended target site of 53 nt. The oligos were cloned into plasmids
by Gibson assembly, and then the sgRNA scaffold was inserted
downstream of the gRNA sequence. In this way, each plasmid con-
tains both an sgRNA expression cassette and a paired target se-
quence. This plasmid library was transduced into Cas9-expressing
cells, and the editing of in silico designed target sequences was deter-
mined by sequencing. In this way, the potency of 7407 sgRNAs
were quantified after filtering out low-quality reads. Overall, Cas9
activity was high, with 81.1% reads edited. We stratified the
sgRNAs into high-efficiency (100% editing), medium-efficiency
(51–99% editing) and low-efficiency (0–50% editing) groups and
selected high-confidence sgRNAs for training (Fig. 1b). To empha-
size the most predictive features affecting sgRNA efficiency, our
strategy was to only consider the high- and low-efficiency groups for
data modeling, resulting in a training set comprised of 746 function-
al sgRNAs and 563 non-functional sgRNAs (see Materials and
methods, Supplementary Table S2).

3.2 sgRNA/target features
Previous studies have identified multiple sgRNA and target features
contributing toward Cas9 activity, such as position-specific nucleo-
tide composition and GC content (Chari et al., 2015; Chuai et al.,
2018; Doench et al., 2014, 2016; Labuhn et al., 2018; Peng et al.,
2018; Wong et al., 2015; Xu et al., 2015). However, feature com-
parison between published datasets reveals considerable discordance
and further study is warranted to identify generalizable features
affecting Cas9 efficiency. For example, Xu et al. (2015) demon-
strated that guanines are preferred at positions �14 to �17 of the
20-mer gRNA sequence, whereas this was not observed by Doench
et al. (2014). Our new dataset, with its direct cleavage quantifica-
tion by employing a plasmid-based system for generation of target
sites, provides a unique opportunity to isolate and quantify features
that are intrinsically associated with Cas9 activity. We included a
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total of 26 nt for analysis, including the 20 nt gRNA-matching se-
quence, the NGG PAM and 3 nt downstream of the PAM (Fig. 2a).
In total, 302 features were chosen as machine learning input
(Supplementary Table S3). These features were extracted by a com-
bination of sequence and structural analyses of the gRNA and target
sites, as described in detail below. We also explored additional fea-
tures of the 53 nt extended target sequence, including 15 nt and 12
nt flanking the gRNA-matching/PAM sequence at the 50 end and 30

end, respectively. However, none of the additional extended posi-
tions were statistically significant after correcting for multiple com-
parison, nor did they improve model performance (Supplementary
Fig. S1). Thus, we excluded these additional nucleotide positions
from further analysis.

3.2.1 Nucleotide composition

Nucleotide composition at each target position is summarized in
Figure 2a. Nucleotides at positions 1–20 are identical to those in the
gRNA [with a thymine (T) to uracil (U) conversion], followed by the
NGG PAM, which is a requirement for Cas9 targeting (Jinek et al.,
2012). Positions þ1, þ2 and þ3 represent the genomic context of
the target sequence. Functional gRNAs were depleted in T through-
out 19 of the 23 positions (P-values in the range of 2.4E�27–
1.8E�02; average depletion of 38%), while position þ1 was signifi-
cantly enriched in T (P¼1.3E�02; enrichment of 28%; Fig. 2a).
The overall depletion is in part due to transcriptional efficiency as
opposed to an interaction involving Cas9. The U6 promotor used in
the study recruits RNA polymerase III which recognizes a poly-T se-
quence as a termination signal (Nielsen et al., 2013). Consistent
with this mechanism, none of the gRNAs in the high efficiency
group contained a sequence of five or more contiguous T bases.
However, this phenomenon does not account for the entirety of the
depletion in T, since we still observed significant overall T depletion
after excluding gRNAs with four or more contiguous Ts.

Nucleotides proximal to the PAM were the most predictive of
Cas9 activity. Most significantly, functional gRNAs had strong en-
richment in guanine (G) at positions 19, 20, and the N position of

the PAM (P¼4.7E�19, 1.4E�36 and 5.9E�08; enrichment of 165,
392 and 71%, respectively). Adenines (A) were, however, more
enriched toward the middle of the gRNA specifically at positions 9–
12 and 14–16 (P-values in the range of 2.0E�08–1.8E�02; average
enrichment of 53%). Cytosines (C) were most enriched at positions
17 and 18 (P¼1.2E�06 and 1.2E�07, enrichment of 60 and 73%,
respectively).

3.2.2 GC content

We found decreased activity in gRNAs with extreme overall GC
content. As shown in Figure 2b, the vast majority of gRNAs with
GC content >80% and <30% were non-functional (depletion of 81
and 93%, respectively). These two features were significant and
improved overall predictions (P¼1.8E�02 and 1.1E�09, respect-
ively). In contrast, we did not observe model improvement using ab-
solute GC content values.

3.2.3 Structural features

RNA molecules commonly form secondary structures through intra-
molecular interactions, resulting in differential accessibility for the
nucleotides within the folded structure. This phenomenon can po-
tentially result in unfavorable sgRNA structures affecting Cas9 effi-
ciency. However, most sgRNA design tools did not consider sgRNA
nucleotide accessibility for Cas9 editing prediction. Here, we investi-
gated these structural features using RNAfold (Hofacker, 2003) for
structure prediction. The present dataset showed that sgRNA nu-
cleotide accessibility at positions 18–20 of the gRNA domain are
crucial for efficient editing (P¼2.1E�3, 5.8E�13 and 9.9E�23, re-
spectively; Fig. 2c). Functional sgRNAs tend to be accessible at these
positions with enrichment values of 20, 41 and 68%, respectively
(Fig. 2d). In the predicted sgRNA secondary structure, these three
nucleotides proximal to the PAM align with the nucleotides in the
scaffold at positions 51–53 due to a stem-loop formation at posi-
tions 21–50. Thus, interestingly, increased accessibility at 51–53 is
also significantly correlated with high Cas9 efficiency (Fig. 2c). The
sgRNA sequence at positions 51–53 is AAG, which would ideally
bind to a CUU sequence at positions 18–20, or a UUU sequence
when considering wobble base pairing. This may explain the
observed depletion of U nucleotides at the 30 end of the 20 nt gRNA.
Our results suggest that there are more complex intramolecular
interactions which may have been missed in other algorithms that
do not consider structural features.

3.3 Assessment of modeling methods
Recently, several machine learning algorithms have been used to
predict sgRNA efficiency. We summarize these algorithms into three
categories: (i) regression models such as gradient boosting regression
tree (Doench et al., 2016) and extreme gradient boost (XGBoost)
(Peng et al., 2018), (ii) classification models, such as support vector
machines (SVM) (Chari et al., 2015; Wong et al., 2015) and logistic
regression (Doench et al., 2014) and (iii) emerging technologies or
hybrid algorithms, such as deep learning technology (Chuai et al.,
2018) and simple average of multiple models (Peng et al., 2018).
Given the variety of potentially useful models, our strategy was to
use a stacking framework in order to capture the advantages of mul-
tiple models. Our Stacking model was designed by stacking SVM
and XGBoost using a logistic regression model as the combiner
(Fig. 3). We compared Stacking performance against commonly
used machine learning algorithms as well as models proposed in
other sgRNA design studies.

Using our training dataset comprised of 746 high-efficiency
sgRNAs and 563 low-efficiency sgRNAs, we employed 7 different
classification-based approaches and tested the performance of each
model. The models tested include Stacking, XGBoost, L2-
regularization logistic regression, SVM, adaboost, random forests
and decision trees. Each of the model parameters were tuned based
on the training dataset. We used ROC curve, Spearman correlation
and predicted mean accuracy from cross-validation analysis to
evaluate the performance of each model. Based on these assessment
metrics, we conclude that the Stacking model had the best

(a) (b)

(c)

(d)

Fig. 2. Feature analysis of efficient sgRNAs. (a) Position-specific nucleotide compos-

ition. A positive or negative value represents enrichment or depletion of the nucleo-

tide, respectively. Statistically significant nucleotides are depicted in blue. (b) GC

content of the gRNA. (c) Significance of nucleotide accessibility at each position in

the sgRNA. The significance level (P¼ 0.05) is depicted with red dashes. (d) Percent

enrichment of nucleotide accessibility at each position in the gRNA. Significant posi-

tions are depicted in blue. (Color version of this figure is available at Bioinformatics

online.)
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performance among all models included in the analysis (Fig. 4).
The Stacking model developed using the training dataset was thus
chosen to be the final model, which we named sgDesigner.

3.4 Validation of sgDesigner
To evaluate the general applicability of sgDesigner at predicting
sgRNA efficiency, we curated six CRISPR/Cas9 sgRNA datasets
from various cell lines (see Materials and methods for details;
Supplementary Table S4). With these datasets, we compared
sgDesigner with three existing state-of-the-art sgRNA design tools,
including Doench Rule Set 2 (RS2) (Doench et al., 2016), SSC (Xu
et al., 2015) and DeepCRISPR (Chuai et al., 2018). These existing
tools were selected for comparison because they are currently widely
used and freely accessible to the public. To avoid training bias, we
only considered independent datasets that were not used to train re-
spective models. The prediction results for these independent data-
sets were separately generated using each design tool. For each tool,
prediction results for all independent datasets were combined for

subsequent performance evaluation. Specifically, we performed
ROC and Spearman correlation analyses and used true data labels
to evaluate the performance of the design tools. The area under the
curve (AUC)–ROC and correlation coefficient analysis results are
summarized in Figure 5(a, b), with more detailed results for each
dataset presented in Supplementary Figures S2 and S4. Further, we
present detailed performance evaluation of sgDesigner across six in-
dividual datasets in Figure 5(c, d). Compared with other tools,
sgDesigner had the best performance, as evaluated by ROC,
precision-recall and correlation analyses. Specifically, sgDesigner
consistently outperformed all competing tools across all six inde-
pendent datasets (Supplementary Figs S2–S4). Overall, sgDesigner
had consistently high performance across all testing datasets, with
average ROC–AUC of 0.833 and a range of 0.765–0.899 (Fig. 5c).
From these validation results, we conclude that sgDesigner has ro-
bust performance and consistently performs well across various ex-
perimental settings.

3.5 Genome-wide sgRNA design database
Using the sgDesigner algorithm, we computed cleavage efficacy
for CRISPR/Cas9 sgRNAs to target all human and mouse genes
annotated in the NCBI RefSeq database. To reduce potential off-
target editing, we also computed off-target scores for the sgRNAs
and select those with greater specificity using our previously pub-
lished algorithm (Wong et al., 2015). In brief, we performed both
gRNA seed search and BLAST alignment to identify potential off-
targets that share identical 13-mer seed sequence or with at least
85% overall sequence homology to the gRNA sequence. Of note,
we focused on identifying off-targets from all known exons (for
both coding and non-coding genes) instead of the entire genome
space which contains other potentially important non-coding
regions.

Our online database provides up to 20 sgRNA designs per gene
in the human and mouse genomes. Our database and open-source
custom sgRNA design tool are freely accessible at http://crispr.
wustl.edu.

Fig. 3. Stacking model framework. The features were first used as input to train first

layer models (SVM and XGBoost). Fivefold cross-validation was performed for

each individual model in the first layer and the predictions from each model were

merged into a two-column feature set. The resulting feature set was then used to

train the second layer model (logistic regression)

Fig. 4. Comparison of different computational models. (a) ROC curve analysis.

AUC values for individual models are shown in the legend. (b) Spearman correlation

between experimentally determined efficiency and predicted efficiency score. Error

bars indicate the SD. (c) Mean accuracy of sgRNA classification (high or low

efficiency)

Fig. 5. Comparison of sgDesigner with public sgRNA design tools. sgDesigner and

three other algorithms were included in this analysis. Validation analysis was per-

formed using six independent datasets, and the combined results are summarized

here. Detailed results on each testing dataset are presented in Supplementary Figures

S2 and S4. (a) ROC curve analysis. (b) Spearman correlations between experimen-

tally determined efficiency and prediction score. (c) Summary of ROC–AUC values

for sgDesigner on six independent datasets. (d) Summary of Spearman correlation

coefficient values for sgDesigner on six independent datasets
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4 Discussion

As the CRISPR/Cas9 system has quickly become a ubiquitous gene
editing tool in biological research, an increasingly pressing challenge
is the design of efficient sgRNAs. Various bioinformatics tools have
been developed to address this important issue. However, one major
limitation of previous studies is related to the quality of the datasets
used to train such tools. Most experimental methods are based on
phenotypic screening and are not ideal at quantifying CRISPR/Cas9
editing efficiency. Successful gene editing is unlikely to produce con-
sistent and precise phenotypic changes across all genes and target
sites tested. Thus, such indirect methods introduce undesired noises
in the datasets used to train machine learning algorithms, which
could mask true features that are characteristic of sgRNA-guided
Cas9 cleavage. Furthermore, sgRNAs tested in functional screens
are typically designed for a subset of genes and tested in a single cell
line. These restrictions may introduce biases specific to each experi-
mental setting, such as those related to different levels of genomic
accessibility, or different responses to DNA cleavage in a cell line or
gene specific manner. All these factors may potentially reduce model
generalizability. In the present study, we address these issues by
using a new in silico designed plasmid library for sgRNA expression
and target site presentation. We produced a new training dataset
with precise and direct quantification of sgRNA efficiency, which
was used to characterize general sgRNA features that are intrinsical-
ly associated with CRISPR/Cas9 cleavage. This new strategy was
feasible due to a unique experimental design in which oligonucleoti-
des were synthesized with both an sgRNA expression cassette and a
corresponding target sequence in the same construct. Similar strat-
egies were recently used to generate large-scale datasets for analysis
of CRISPR/Cpf1 efficiency as well as for the analysis of CRISPR/
Cas9 editing patterns and specificity (Allen et al., 2019; Kim et al.,
2017; Shen et al., 2018; Tycko et al., 2018). Here, we demonstrate
that an in silico designed Cas9 targeting system is useful at generat-
ing large-scale training data to characterize CRISPR/Cas9 cleavage
efficiency. We were able to precisely quantify the efficiencies of a
large number of sgRNAs within a single experiment, thus avoiding
inconsistencies when merging datasets from heterogeneous experi-
ments. Our final model, sgDesigner, had stable, high-quality per-
formance across vastly different independent testing datasets in
human and mouse experimental systems. However, it remains to be
tested whether sgDesigner can be robustly applied to other biologic-
al systems, as the rules for CRISPR/Cas9 targeting could be different
in other organisms not assessed in our study.

Equally important to training data quality, the choice of machine
learning modeling methods also has great impact on the quality of
predictions. Previous studies have not reached a consensus on the
best modeling approach as seen in the variety of distinct frameworks
proposed in sgRNA design studies. Most studies tested a single
model or a small number of similar models, limiting the potential
for model improvement. Thus, in the present study, we explored
multiple vastly different frameworks to identify the best one at
sgRNA efficiency prediction. Our final stacking model combined
the advantages of multiple models and exhibited greater perform-
ance than individual models alone. In summary, through improve-
ments in experimental design, data quality and computational
modeling, we developed a new sgRNA design tool, which consist-
ently outperformed competing tools under various experimental set-
tings. Our tool is freely accessible as a web application via http://
crispr.wustl.edu.
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