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Abstract

Motivation: Liquid chromatography–mass spectrometry (LC-MS) is a standard method for proteomics and metabo-
lomics analysis of biological samples. Unfortunately, it suffers from various changes in the retention times (RT) of
the same compound in different samples, and these must be subsequently corrected (aligned) during data process-
ing. Classic alignment methods such as in the popular XCMS package often assume a single time-warping function
for each sample. Thus, the potentially varying RT drift for compounds with different masses in a sample is neglected
in these methods. Moreover, the systematic change in RT drift across run order is often not considered by alignment
algorithms. Therefore, these methods cannot effectively correct all misalignments. For a large-scale experiment
involving many samples, the existence of misalignment becomes inevitable and concerning.

Results: Here, we describe an integrated reference-free profile alignment method, neighbor-wise compound-specific
Graphical Time Warping (ncGTW), that can detect misaligned features and align profiles by leveraging expected RT
drift structures and compound-specific warping functions. Specifically, ncGTW uses individualized warping func-
tions for different compounds and assigns constraint edges on warping functions of neighboring samples. Validated
with both realistic synthetic data and internal quality control samples, ncGTW applied to two large-scale metabolo-
mics LC-MS datasets identifies many misaligned features and successfully realigns them. These features would
otherwise be discarded or uncorrected using existing methods. The ncGTW software tool is developed currently as
a plug-in to detect and realign misaligned features present in standard XCMS output.

Availability and implementation: An R package of ncGTW is freely available at Bioconductor and https://github.com/
ChiungTingWu/ncGTW. A detailed user’s manual and a vignette are provided within the package.

Contact: dherring@wakehealth.edu or yuewang@vt.edu or yug@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For proteomics or metabolomics analysis of biological samples, li-
quid chromatography coupled with mass spectrometry (LC-MS) is a
standard method (Mueller et al., 2007; Theodoridis et al., 2008)
that produces two-dimensional profiles of constituent compounds
over retention time (RT) and mass-to-charge ratio (m/z). The

identity and quantity of a particular compound [known (Lu et al.,
2008a) or unknown (Vinaixa et al., 2012)] may be inferred by ana-
lyzing the associated characteristic peak/curve profile (RT, m/z and
intensity information). When analyzing multiple samples, the RT of
each compound must be aligned accurately across different samples
(Lu et al., 2008b).

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2862

Bioinformatics, 36(9), 2020, 2862–2871

doi: 10.1093/bioinformatics/btaa037

Advance Access Publication Date: 17 January 2020

Original Paper

http://orcid.org/0000-0001-9341-8155
http://orcid.org/0000-0002-6743-7413
https://github.com/ChiungTingWu/ncGTW
https://github.com/ChiungTingWu/ncGTW
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa037#supplementary-data
https://academic.oup.com/


Many software packages for LC-MS data analysis include a tool
kit that performs RT alignment, such as XCMS (Smith et al., 2006,
2015). However, due to varying RT drift over different m/z bins in a
sample and significant RT drift across distant samples (samples with
larger run order difference), often non-linear, accurate RT alignment
remains a challenging task (Smith et al., 2015). Unfortunately, clas-
sic alignment methods conveniently assume a single warping func-
tion across all m/z bins and perform multiple alignment that neglects
the run order of each sample (Prakash et al., 2006; Prince and
Marcotte, 2006; Zhang et al., 2005). These methods largely ignore
the aforementioned two factors, and thus are prone to various types
of misalignment. For a large-scale experiment involving many sam-
ples, some degree of misalignment for certain features becomes inev-
itable. For some types of misalignment, an algorithmic effort to
mitigate them is to optimize parameter values in complex alignment
algorithms. However, current strategies for handling a large number
of parameters or features (peaks from the same compound at a sin-
gle m/z bin with aligned RT across samples) are ad hoc, labor-
intensive, subjective and often fail to achieve a desired performance.
Furthermore, for misaligned features whose true warping functions
are different over different m/z bins, the misalignment cannot be
corrected simply by adjusting the parameters of a single warping
function (Fig. 1). Moreover, no existing analytics tool includes a sys-
tematic way to detect misalignment and thus previously acknowl-
edged misalignment is often undetectable or uncorrected.

To address the critical problem of the absence of validated meth-
ods for misalignment detection and structured alignment, we devel-
oped an integrated reference-free profile-based alignment method,
neighbor-wise compound-specific Graphical Time Warping
(ncGTW), that first detects misaligned features and then aligns affili-
ated profiles. In contrast to feature-based methods that only align
detected peaks, fundamental to the success of our approach is the in-
corporation of expected RT drift structures across both different m/
z bins and distant samples. Specifically, under the GTW framework
(Wang et al., 2016), ncGTW uses individualized warping functions
for different m/z bins and assigns constraints on warping functions
of neighboring samples. Furthermore, ncGTW utilizes a two-stage
algorithm to achieve a reference-free alignment, where combinator-
ial pair-wise alignments are first performed and these aligned pro-
files are then coordinately aggregated into a pseudo-reference.

The input data to be analyzed by ncGTW include the peak infor-
mation extracted by XCMS and the raw data profiles corresponding
to misaligned features. First, a statistically principled misalignment
detection scheme is applied to identify features requiring realign-
ment. Then, each of the two-stage alignment procedures in ncGTW
is solved efficiently by network flow-based algorithms (Goldberg
et al., 2011). The ncGTW software tool takes full advantage of
feature-based alignment methods and is provided currently as a
plug-in to XCMS package.

2 Materials and methods

2.1 Datasets
We apply ncGTW pipeline to two large-scale real metabolomics
LC-MS datasets, namely the Rotterdam (The Rotterdam
Study, The Netherlands) and MESA (The Multi-Ethnic Study of
Atherosclerosis, USA) cohorts (Bild et al., 2002; Hofman et al.,
2013), first to detect misalignment and then to realign those mis-
aligned features.

Serum lipid profiling datasets were acquired by C8 reversed-
phase LC after serum protein precipitation using isopropanol, using
protocols adapted from (Sarafian et al., 2014) and (Lewis et al.,
2016). LC-MS profiles of the serum samples from the Rotterdam
and MESA cohorts were generated using a Waters Acquity Ultra
Performance LC system (Waters, Milford, MA, USA) for chromato-
graphic separation and a Xevo G2S Q-TOF (Waters, Milford, MA,
USA) for MS detection in positive ionization mode.

The Rotterdam dataset contains 1000 study samples and 44 in-
ternal quality control (iQC) samples and the MESA dataset contains
1977 study samples and 335 iQC samples. Each iQC sample is an
aliquot of a pool of all the study samples, used to monitor and cor-
rect instrument performance in long runs. Because each of these two
cohorts contains many samples (>1k), the total time duration on
data acquisition would be in the range of weeks—thus, significant
RT drift across experiments is expected. Indeed, on the iQC sam-
ples, the global warping function assumption made by XCMS is
clearly and evidently violated in both Rotterdam (Fig. 1a) and
MESA (Fig. 1b) datasets (using five samples from each dataset for
demonstration). Moreover, in our observation, we estimate that
there are around 3% of features which are misaligned due to the glo-
bal warping function assumption in each dataset. Given that these
two datasets were acquired from different cohorts at different labs
with probably different experimental settings, this kind of misalign-
ment may happen in any large dataset, and is not a rare occurrence.

In the subsequent experiments on both iQC and study samples,
the major preprocessing steps (peak detection, RT alignment and
peak grouping) are done by XCMS, and the ncGTW pipeline uses
the default parameter settings.

2.2 Detection of misaligned features
Accurate alignment of RT over a large number of samples remains a
challenging task, particularly across distant samples due to signifi-
cant yet varying RT drift. RT drifts between neighboring samples
are small and gradual, even though random RT drifts may occur.
More explicitly, the gradual RT drifts among neighboring samples,
mainly due to temperature or column age (Benk and Roesli, 2012;
Palmblad et al., 2007), can be modeled by the closer or similar run
orders (Tengstrand et al., 2014). For a given feature corresponding
to a set of peaks detected in several samples (e.g. by XCMS), we as-
sume that the abundances of corresponding compound are

Fig. 1. Examples of the observed misalignments due to single warping function assumption. Five samples over two m/z bins from each dataset are shown here for demonstra-

tion, where the upper and lower rows represent two different m/z bins, respectively (see details in Section 2.1). (a) An example from the Rotterdam dataset shows that even

with similar RT, the drift of each sample could be significantly different in two m/z bins. Using only a single warping function, XCMS can only align one bin (the upper one)

well but not the other one as shown in the right part. (b) A similar example is also observed in MESA dataset
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independent of sample indices (this is an implication of randomizing
the run order—standard practice in analytical science) and align-
ment relies on sufficient compound abundance in the relevant sam-
ples. Thus, for an accurately aligned feature, the samples associated
with this feature should be a subset randomly drawn from the entire
sample set, including both neighboring and very distant samples in
the run-order domain (sample index). In contrast, a misaligned fea-
ture often splits into multiple features by the feature detection algo-
rithm with non-ideal parameter setting (Fig. 2). Since most of
alignment algorithms tend to group the peaks with similar RT drift
together (Smith et al., 2015), regardless of the alignment accuracy,
neighboring samples tend to be aligned together due to their similar
RT shift. In other words, when a detected feature includes only
neighboring samples, it would highly likely constitute a misaligned
feature (one of the most common forms of misalignment). Thus,
even though the RT drift goes back and forth, and features are mis-
aligned, the neighboring samples would still be grouped into a fea-
ture, as shown in Figure 2. Accordingly, we designed a statistically
principled approach to detect misaligned features. We associate the
null hypothesis with correct alignment, use the range of sample indi-
ces within feature as the test statistic, and detect misaligned features
by rejecting the null hypothesis.

For a provisionally aligned feature for which the peak is detected
in a total of n samples, as the first criterion, we consider the range of
sample indices in the feature as the test statistic, given by:

t ¼ max1� i;j� nli � lj; (1)

where li is the sample index of the ith sample in the feature, n� 1 �
t � N � 1 and N is the total number of samples. Under the null hy-
pothesis, we assume that li follows a discrete uniform distribution.
Then, based on order statistics (Arnold et al., 1992), it can be shown
that the probability mass function of t is given by:

fT tð Þ ¼ N � tð Þ

t � 1
n� 2

� �

N
n

� � ; n� 1 � t � N � 1; (2)

where t values associated with misalignment will always correspond
to very small values under the null hypothesis and the P-values asso-
ciated with this feature can be estimated by

P� value ¼ Pr t � tobsð Þ ¼
Xtobs

t¼n�1

N � tð Þ

t � 1
n� 2

� �

N
n

� � ; (3)

where tobs is the observed sample index range of the feature. If the
P-value of a feature is sufficiently small, reflecting the fact that the
alignment only recruits neighboring samples, we can safely reject the
null hypothesis and consider this feature as a candidate misaligned
feature. The details of the test statistic are given in Supplementary
information.

To address the additional layer of complication concerning vary-
ing RT drift over different m/z bins, for a candidate misaligned fea-
ture, we further check whether there exists neighboring feature(s) in
the same m/z bin with sufficiently small P-value, while with disjoint
sets of sample indices, and if so, consider these features as needing
to be realigned together. The rationale behind this second criterion
is that applying the same warping function cross different m/z bins
would likely, yet wrongly, split the complete feature of a single com-
pound into several pieces.

In the ncGTW algorithm, these two criteria are combined to de-
tect misaligned features. The initial alignment is performed using the
existing XCMS alignment module. After XCMS alignment, two sep-
arate grouping results are produced using different RT window par-
ameter values (bandwidth, bw) in the XCMS peak-grouping module
(feature detection). More precisely, the lower resolution grouping
uses an RT window corresponding to the expected maximal RT
drift, while the higher resolution grouping uses an RT window near
the RT sampling resolution (the inverse of scan frequency). First,

ncGTW algorithm estimates the P-value of each feature using higher
resolution grouping result and identifies all features with sufficiently
small P-values and disjoint sample subsets. Then, the ncGTW algo-
rithm matches the neighboring features to the corresponding fea-
tures produced by lower resolution grouping, and considers
realigning these features. An illustration of misalignment detection
is given in Figure 2.

The true causes for a misaligned feature may be complex and
hidden, and may involve multiple yet unknown factors. It may be ar-
guably suspected that the observed misalignment by existing align-
ment methods is at least partially due to the unstructured cost
distributions over neighboring versus distant samples adopted by
these methods. The joint optimization may thus be overly influenced
by neighboring samples with intrinsically less costs. However, such
a biased solution is clearly in conflict with the very purpose of a glo-
bally optimal alignment that should be able to simultaneously cor-
rect larger and complex RT drift over samples that are widely
separated in run order.

2.3 Basic principles of profile-based multiple alignment
Profile-based multiple alignment methods align all profiles
fx1; . . . ; xNg in N samples to a reference profile xc, applied on every
point in each profile, not just the extracted features. We use Ui;c to
denote the function that maps profile xi to xc, commonly referred to
warping function. Profile-based multiple alignment methods esti-
mate both xc and N warping functions U1;c; . . . ;UN;cf g. One popu-
lar method is pair-wise Dynamic Time Warping (DTW) (Sakoe and
Chibe, 1978), matching the corresponding points between sample
and reference to achieve minimum overall discrepancy while no
‘crossing’ is allowed between links (Fig. 3a). DTW considers align-
ment as a shortest path problem on a grid where the dots represent
all possible point pairs and the edges represent ‘possible path’ in
warping function. Specifically, DTW assigns cost to the edges as the
intensity distance between the paired points (Fig. 3b). For a sample

Fig. 2. Illustrative example on detecting misaligned features. After initial alignment,

among the total 70 samples, relevant peaks are detected only in some samples (the

indices in blue), and some of the feature(s) are obviously misaligned. With a lower

resolution grouping by XCMS, these peaks are all grouped into one single feature,

as shown between the two blue dashed lines. While with higher resolution grouping,

this feature is split into three features 1–3 as separated by the red dashed lines. The

sample index sets of these features are shown in red, respectively. The P-values of

features 1–3 are all smaller than 0.05, thus pass the first criterion. Because the sam-

ple index sets of these three features are also disjoint, they pass the second criterion.

Accordingly, ncGTW will detect the misalignment and realign the whole blue fea-

ture produced by the lower resolution grouping. (Color version of this figure is

available at Bioinformatics online.)
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profile xi and a reference profile xc, the optimal warping function
Ui;c corresponds the shortest path, minimizing the cost function:

min
Ui;c

f Ui;cð Þ ¼ min
Ui;c

X
p;qð Þ2Ui;c

d xip; xcqð Þ; (4)

where d is the pointwise distance function, xip is the pth point on xi,
xcq is the qth point on xc and p; qð Þ is a dot in the grid.

Because DTW grid is a planar graph, after converted to the cor-
responding DTW graph, the shortest path problem is readily con-
verted into an equivalent minimum-cut/maximum-flow problem
(Fig. 3c; Wang et al., 2016). The cut with the minimum cost in
DTW graph corresponds to the path with the lowest cost in DTW
grid (Fig. 3d), thus the alignment problem is solved by any

minimum-cut/maximum-flow algorithm.

2.4 Graphical time warping
We have recently developed GTW (Wang et al., 2016) that extends

classic DTW to perform multiple alignments with the possibility of
incorporating structure information. For example, the run order of
samples is one useful type of structure information: samples that are
processed at closer time should exhibit similar global drifting.

GTW first converts each DTW grid (shortest path problem) to a
DTW graph (minimum-cut/maximum-flow problem). Then add-

itional edges are applied to link the DTW graphs (Fig. 4a) of neigh-
boring samples and form a larger graph—GTW graph. These edges
link the vertices with the same position of DTW graphs (Fig. 4b)
among neighboring samples (Fig. 4c), and the warping functions in
the resulting larger graph are simultaneously estimated by solving
the expanded maximum flow problem (Wang et al., 2016). This
maximum flow problem is equivalent to finding the warping func-
tions with the minimum cost:

min
U

f Uð Þ ¼ min
U¼fUi;cg

X
Ui;c

X
p;qð Þ2Ui;c

d xip; xcqð Þ þ j
X

i and j are
neighboring samples

dU Ui;c;Uj;cð Þ;

(5)

where 1 � i; j � N, dU is the function measuring the difference be-
tween two warping functions and j is a hyperparameter. The first
term is the summation of DTW cost functions [Eq. (4)] of all sam-
ples. The second term is the discrepancy penalty among pairs of
warping functions, which incorporates the structure information
among samples. j (cost of the additional edges) controls the relative
contribution of the two terms. When j increases, the cut will pro-
duce more similar warping functions among neighboring samples.

When j is close to zero, the warping functions will be similar to
those obtained by DTW.

In the application of GTW multiple alignment to real LC-MS
data, we have also observed a few drawbacks of this method.
Similar to DTW, multiple alignments by GTW requires a common
yet ‘ideal’ reference, while in many real-world problems, there is no
a priori perfect reference available (e.g. no missing peak and little
noise). Moreover, GTW may encounter a post-warping peak-distor-
tion problem.

2.5 Framework of ncGTW algorithm
We developed the ncGTW framework that incorporates structural
information, does not require an a priori common reference, and
can correct post-alignment peak distortions. As mentioned above,
both DTW and GTW align each profile to the specified reference,
with the difference that GTW imposes the structural information
among warping functions, while DTW aligns separately. Both meth-
ods are sensitive to the selection of the reference. Rather than requir-
ing that a common reference be prespecified, ncGTW jointly align
all profiles to a virtual reference (xc), which can be considered as a
placeholder in the algorithm and is never estimated. ncGTW utilizes
information from two aspects to make the multiple alignment pos-
sible: (i) the biological preferences of the shape of warping functions
to be estimated (Ui;c; which aligns profile xi to xc) and (ii) the know-
ledge of the warping functions fUi;jg between all possible pairs of
samples, which in term is estimated utilizing the structural
information.

The ncGTW algorithm consists of two key stages. First, by view-
ing each sample as a reference in a combinatorial network, ncGTW
incorporates available sample structure information (in the case of
LC-MS data, the run order) and aligns all possible sample pairs in
the dataset (without repetition). Then, ncGTW aligns all samples to
a virtual reference using the warping point correspondences estab-
lished in the first stage to make sure Ui;c and Uj;c are consistent with
Ui;j estimated in the first stage. The overall flowchart of ncGTW al-
gorithm is given in Figure 5. We will discuss the details of each stage
below.

Fig. 3. Principle concept of DTW grid and graph. (a) DTW alignment aims to find

the pairs of corresponding points over which the maximum profile similarity is

achieved. Here the paired corresponding points are (1, 1), (2, 2), (3, 2), (4, 3) and

(4, 4) that form the warping function. (b) DTW grid for solving the warping func-

tion shown in blue edges and dots, where the cost of each edge is determined by the

intensity distance of each point pair. By solving the ‘shortest path’ problem, the

warping function is obtained (black path) whose paired corresponding points are

reflected in (a). (c) Based on the duality property of planar graph, DTW gird is trans-

formed to DTW graph (red and orange lines and dots), where each red or orange

edge crosses one blue edge, and the cost of red or orange edge is the same as the cost

of blue edge. Note that orange lines link only the vertices (red dots enclosed by blue

lined exterior triangle) to a single source or sink. Then, the shortest path problem

becomes a maximum-flow/minimum-cut problem. (d) Solving the alignment prob-

lem is to find a ‘cut’ which separates the DTW graph into two parts with the min-

imum cost, with one part including the source and the other including the sink. The

cut with the minimum cost corresponds to the warping function (black path).

(Color version of this figure is available at Bioinformatics online.)

Fig. 4. Construction of the various GTW graphs used in the different steps of

ncGTW algorithm (Wang et al., 2016). (a) Two small DTW graphs are linked to

form a GTW graph via additional ‘connecting’ edges (green lines between the verti-

ces as the same position of two DTW graphs). (b) After adding the green edges, we

can solve all warping functions at the same time, with the similarity among warping

functions as constraints. The cost on green edges is to control the similarity between

warping functions. For example, if the cost is very high, no green edge will be cut

and all the warping functions would be the same. (c) GTW graph formed by two

linked DTW graphs of two neighboring samples (x_i and x_(iþ1)) with a common

reference, extendable to all neighboring samples, where the orange lines link vertices

to a single source or sink forming a large maximum flow graph, while green edges

link the corresponding vertices of two DTW graphs (only edges linking top three

vertices are shown here). (d) Part of the graph constructed in Stage 1 of ncGTW

without using a common reference, where x_i and x_m are neighboring samples,

and x_j and x_n are neighboring samples. (e) Part of the graph constructed in Stage

2 based on all pairwise warping functions obtained in Stage 1, where the warping

function U_(i!j) guides the links between the corresponding vertices in GTW

graphs, with x_c being the virtual reference. (Color version of this figure is available

at Bioinformatics online.)
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In Stage 1, given the profiles fx1; . . . ; xNg of N samples, ncGTW
incorporates structural information and simultaneously estimates
total NðN � 1Þ=2 warping functions Ui;jf g for all distinct sample
pairs. Like GTW, instructed by structural information, additional
edges are applied to link the vertices at the same position of DTW
graphs among neighboring samples (Fig. 4d). Again, this circular
multiple alignment can be readily realized by solving a classic max-
imal flow problem (Supplementary information). Specifically,
ncGTW estimates the enumerated pairwise warping functions joint-
ly by minimizing the cost function given by

min
U

f Uð Þ ¼ min
U¼fUi;jg

X
Ui;j

X
p;qð Þ2Ui;j

di;j xip;xjqð Þ þ

j1

X
i;j;k;l: i;jð Þ \ k;lð Þ 6¼ /

dUi;j ;Uk;l
Ui;j;Uk;lð Þ;

(6)

where 1 � i < j � N, j1 is a hyperparameter, ði; jÞ \ ðk; lÞ 6¼ /
indicates that the warping functions Ui;j and Uk;l are associated with
neighboring samples (/ is the empty set). Eq. (6) may look similar to
Eq. (5), but ncGTW estimates the pairwise warping functions, in-
stead of warping functions aligning profiles to the common refer-
ence. Similar to j in Eq. (5), here j1 is also used for balancing the
cost of the first term (the distances between profile pairs after align-
ment) and second term (the distances between warping functions).
All Ui;jf g are efficiently obtained by solving an equivalent maximum
flow problem.

In Stage 2, ncGTW uses the warping functions Ui;jf g as both
guidelines and constraints to aggregate the profiles of all samples to
a common virtual reference. That is, the need of a reference is
bypassed by simultaneously estimating all Ui;cf g, thus achieving
reference-free multiple alignment. Different from Stage 1, here each
DTW graph is constructed between each sample and the virtual ref-
erence. Note that the cost of DTW graph edges in this stage has
nothing to do with sample profile intensity, so ncGTW does not
need a ‘real’ reference but a virtual one as a coordinate. The DTW
graphs are ‘fully’ connected in the way that additional edges link all
corresponding points of fUi;jg (Fig. 4e, green edges), where the cost
of these connecting edges reflecting the distance between the corre-
sponding warping points with respect to virtual reference.

Furthermore, ncGTW considers the biological preference of the
alignment function to avoid exaggerated distortions of the profiles
with unnecessary distortion (expansion and shrink) as well as loca-
tion shift. Roughly speaking, we hope that after multiple alignment,
the information contained in original profiles should not be lost. An
example is the so called all-to-one matching (all vertical/horizontal
paths), where all the points on a sample align to only one point on
the reference, so no information is kept. Thus, a fixed cost is applied
to only vertical/horizontal but not diagonal paths in the DTW
graphs of fUi;cg, encouraging warping functions with diagonal
paths; a completely diagonal warping function means the profile is
the same as the original one after alignment. Specifically, ncGTW
estimates the final warping functions to virtual reference on all sam-
ples jointly by minimizing the cost function given by:

min
U

f Uð Þ ¼ min
U¼fUi;cg

X
i

nondiag Ui;cð Þ þ j2

X
i;j

incons Ui;c;Uj;c; Ui;jð Þ;

(7)

where nondiag Ui;cð Þ is the cost measuring the deviation of warping
function from diagonal path (one-to-one mapping), j2 is a hyper-
parameter and incons Ui;c;Uj;c; Ui;jð Þ is the cost measuring the incon-
sistency between Ui;c and Uj;c given the pairwise warping function
Ui;j (the corresponding points in Ui;j are aligned to different points
on virtual reference c). Likewise, j2 here is the cost of the additional
edges, which is for balancing the non-diagonal cost term and the in-
consistency term. Overall, the cost function encodes our goal to find
the warping functions which are (i) biologically meaningful (without
unwanted distortion/displacement, e.g. all to one mapping) and (ii)
consistent with pairwise warping functions Ui;jf g from Stage 1.
Again, all Ui;cf g are efficiently obtained by solving an equivalent
maximum flow problem and thus the multiple alignment problem
(Supplementary information).

Hyperparameters j1 and j2 can be any positive real number.
However, we observed that values of j1 or j2 within a certain range
may give the same alignment result. That is, they may give the same
alignment result as a line segment of the step function. For example,
the line segments associated with various j1 and j2 combinations
correspond to one of the alignment results (Supplementary informa-
tion). While the number of total line segments is often unknown,
these segments are theoretically searchable. Thus, we iteratively find
representative values of j1 and j2; in each iteration, a call of
ncGTW will be performed to obtain a new value between each
neighboring pair of given values. After we search sufficient number
of values, a representative value will be found for each line segment
and we can pick up the pair of j1 and j2with the best warping func-
tions Ui;cf g.

Practically, the starting and ending points of the first and last
segments about j1 and j2 can be found first, and then different val-
ues for j1 and j2 can be searched and located where their values are
scanned roughly uniformly along line segments. Our experimental
result on both Rotterdam and MESA cohorts shows that the align-
ment performance is highly satisfactory when three values for j1

and one value for j2 are examined on both iQC and study sample
data sets. Accordingly, we scan three values for j1 and one value for
j2 for each data set as the default setting in our software package.
Furthermore, the package allows users to change the search setting
on various combinations of j1 and j2 when desirable.

Based on all peak positions within a feature (peak group) after
ncGTW realignment with various combinations of j1 and j2, the
best combination of hyperparameter values can be decided.
Specifically, the maximum number (K) of all peaks is first deter-
mined from the calculated peak numbers across samples, using the
relevant information readily provided by XCMS; the peaks are then
grouped into K clusters via k-means clustering. If all peaks are well-
aligned, the apex RT range in each peak cluster should be small.
Accordingly, the optimum hyperparameter values are chosen corre-
sponding to the minimum of the summed RT ranges over all
clusters.

Fig. 5. Flowchart of ncGTW algorithm. (a) With two-stage alignment strategy, all

input samples (curves) are aligned simultaneously to a virtual reference. (b) Stage 1

of ncGTW with three illustrative samples. First, ncGTW builds a pairwise warping

flow map (blue arrows). Then ncGTW incorporates structural information as the

constraint and applies to all pairs (pair as red dot and constraint as a red dashed

line). Lastly, ncGTW estimates all pairwise warping functions (U_(i,j)) jointly with

e.g. smoothness constraint on neighboring sample pairs. (c) Stage 2 of ncGTW with

three illustrative samples. ncGTW aligns every sample to a common virtual refer-

ence x_c, where the warping functions fU_(i,j)g obtained in Stage 1 provide warping

correspondences and final warping functions fU_(i,c)g are calculated by solving the

maximum flow problem. (Color version of this figure is available at Bioinformatics

online.)
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2.6 Correction of potential peak distortion
Peak distortion is a potential problem associated with DTW-based
alignment, that is, while warping functions are optimally estimated
by network flow algorithm, the shape of peaks may be altered. In
other words, DTW-based methods do not guarantee one-to-one
mapping for the points in the peak area (may be many-to-one or
one-to-many), so the peak may become broader or narrower with
shape changing. The reason is that DTW-based methods are trying
to map the points with similar intensity. When aligning peaks with
different shapes, the peak in the sample may be distorted to fit the
shape of the peak in the reference. The requirement of maintaining
the shape of peaks cannot be easily incorporated into the cost func-
tions of existing methods and ncGTW alike. Therefore, while warp-
ing functions are optimally estimated, the shape of peaks may still
be altered. To avoid such distortion, based on multiple alignment of
all samples, we first extract the information of each peak from
XCMS. Within the starting and ending points of each peak, only the
apex point will be aligned by the warping function Ui;c, and the rest
of the points are simply shifted by the same amount as the apex. In
other words, the whole peak area will be aligned together with shift-
ing the same amount, so the shape of the peak will be the same after
alignment. For the samples with peaks undetected by XCMS, we
borrow information from samples with detected peaks. The apices
on virtual reference aggregated by samples with no missing peaks
are first identified, and then a representative peak can be constructed
from them. The apex of the representative peak is the median of the
locations of the detected apices, and the width is the median of the
detected peak widths. The range and apex location of the represen-
tative peak is mapped back to each sample with undetected peaks by
reversely applying the warping function. Thus, the samples with un-
detected peaks will be finally aligned without peak distortion. An il-
lustrative experimental result is given in Figure 6(c–d) using the
MESA dataset, demonstrating the improved alignment by ncGTW
where distorted peaks are effectively corrected.

2.7 Implementation of ncGTW on a large dataset
For a large dataset, it is very time-consuming to simultaneously align
all the samples for a profile-based alignment method. When the sam-
ple number is large, the ncGTW graph becomes extremely huge, and
it may take hours or even days to solve the maximal flow problem.

Thus, in the practical implementation, ncGTW splits the whole
dataset into several sub-datasets, and performs alignment on each
small dataset. In this way, the numbers of nodes and edges in the
graph for each small dataset will decrease significantly comparing
with the original graph. Also, since these small datasets are aligned
independently, the computation time can be further reduced with
parallel computing. After the alignment of each small dataset, we
build a ‘super-sample’ for each small dataset. Then, align these
super-samples to obtain the warping functions of super-samples.
With the warping functions within each small dataset and of the
super-samples, we can obtain the final warping functions for each
sample. We called this hierarchical alignment process as ‘two-layer
ncGTW’. The details about two-layer ncGTW are in Supplementary
information.

2.8 Integration of ncGTW into XCMS
The ncGTW R package is developed currently as a complementary
plug-in to XCMS tool. The unique features of ncGTW algorithm in-
clude misalignment detection, individualized warping function (over
m/z bins), incorporation of structural information (run order),
reference-free multiple alignment and correction of peak distortion.
The functional integration of ncGTW into XCMS also allows ‘iter-
ation’ (or ‘interaction’) between ncGTW and XCMS. For example,
information about misaligned features obtained by ncGTW may be
used to guide parameter retuning in XCMS. Then, those misaligned
features may be realigned by ncGTW and regrouped by XCMS.
Moreover, using the correct locations of missing peaks specified by
ncGTW warping functions, those missing peaks may be accurately
retrieved by the peak-filling procedure in XCMS. The workflow of
XCMS-ncGTW pipeline is given in Figure 7.

3 Results

3.1 Validation of ncGTW multiple alignment using

simulated datasets
To test whether our ncGTW can improve multiple alignments by
incorporating structural information of various forms, we assess
alignment accuracy via realistic simulation studies (Supplementary
information). Because the graph representation of structural infor-
mation about neighboring samples is a unique feature of ncGTW,
we consider three different structures including line (samples are
profiled continuously), block (samples are profiled in batches) and
uniform (no information on how samples are profiled) (Supplemen-
tary information), in a set of experiments with 10 simulated sam-
ples. Three representative peer methods are selected for comparison
including DTW Barycenter Averaging (DBA) (Petitjean et al., 2011),
Continuous Profile Model (CPM) (Listgarten et al., 2005) and GTW
(Wang et al., 2016). Specifically, DBA iteratively computes the

Fig. 6. An illustrative experimental result on realignment and peak-distortion cor-

rection by ncGTW, where a feature from the MESA dataset was initially misaligned

by XCMS. The color mapping (green to blue and blue to red) corresponds to the

sample index. (a) Raw LC-MS data associated with the feature of interest (before

alignment). (b) The misaligned feature by XCMS that has been correctly detected

and reported by the misalignment detection module of ncGTW package. (c)

Realignment by ncGTW where apices are well aligned but with observable peak

shape distortion. (d) Peak shape distortion is efficiently corrected by the post-proc-

essing module of ncGTW package. (Color version of this figure is available at

Bioinformatics online.)

Fig. 7. Workflow of ncGTW. As a plug-in to XCMS, ncGTW uses the grouping

results provided by XCMS as the inputs (one lower resolution and one higher reso-

lution, as explained in Fig. 2). Then, ncGTW detects all misaligned features using

the aforementioned criteria and performs realignment on these features. Lastly,

ncGTW calculates final warping functions for each sample that can be sent back to

XCMS for re-grouping or peak-filling
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barycenter of each aligned points set to give an average sample as a
reference; CPM uses classic hidden Markov model to learn a proto-
type function for alignment. Since GTW needs a reference, each
sample is set as a reference and takes the average of scores in mul-
tiple alignments.

In addition to visual inspection, we use two benchmark quantita-
tive measures to assess alignment accuracy, including mean correl-
ation coefficient (MCC) and simplicity (SP; Jiang et al., 2013). MCC
is averaged over all aligned sample pairs, and SP is the normalized
sum of fourth power over all singular values on data matrix
(Supplementary information).

The experimental results are presented in Supplementary
information in detail and briefly summarized here. When there are
missing peaks in some samples, DBA often misaligns some peaks, in-
dependent of specific neighborhood structure. When a selected refer-
ence contains missing peaks, GTW often produces many
misalignments. CPM performs relatively better than DBA and
GTW, while it misaligns several peak groups with block structure of
large drift. The proposed ncGTW approach consistently outper-
forms all three peer methods by aligning all the peaks with the high-
est scores in all accuracy measures and structures. Table 1 gives the
average performance scores of simulation studies.

3.2 Initial test of ncGTW multiple alignment on

small-scale real LC-MS dataset
We further conduct similar comparison studies on small-scale real
LC-MS datasets of 10 samples (acquired from samples of the MESA
cohort) involving line, block and uniform structures. Because no
ground truth on correct alignment is available, we opt for visual in-
spection to assess relative performance. The experimental results are
highly consistent with what is observed in simulation studies. DBA
and GTW easily misaligned samples with some missing peaks, and
CPM failed again on either block structure or samples with signifi-
cant peak intensity imbalance. In contrast, ncGTW aligned all peaks
nicely and consistently under different neighborhood structures. The
alignment results are shown in Figure 8 (with line structure), and
additional experimental results using other neighboring structures
are given in Supplementary information.

3.3 Detection of misaligned features
Application of XCMS to the Rotterdam iQC samples alone gener-
ates total 1872 features, among which 57 features are detected as
potentially misaligned by the misalignment detection module in
ncGTW package. With a closer visual inspection (performed inde-
pendently by two MS experts), 41 features are confirmed as mis-
aligned (true positives, Fig. 6b as an example) and 16 remaining
features are considered well-aligned (false positives, see
Supplementary Figure S13 as an example). On Rotterdam study
samples (excluding iQC samples), XCMS generates total 1689 fea-
tures, of which 45 features are detected as misaligned. Visual screen-
ing identifies 32 true positives and 13 false positives. On MESA iQC
samples alone, XCMS generates total 1951 features, of which 61
features are detected as misaligned. Visual inspection identifies 58
true positives and 3 false positives. On MESA study samples
(excluding iQC samples), XCMS generates total 1861 features, of
which 49 features are detected as misaligned. Visual screening iden-
tifies 48 true positives and 1 false positive. All the P-value thresholds
of the misalignment detection here are set as 0.05. For the results of
different threshold, please refer to Supplementary information.
While the false discovery rate is higher than theoretically expected,
these false positives are mainly due to signal intensity fluctuation
and will be eliminated in a post-realignment step.

3.4 Realignment by ncGTW
We apply the ncGTW tool to realign the features flagged as mis-
aligned in the previous step. While we have applied ncGTW to all
study samples to show the scalability, our reports are focused on the
results only on iQC samples mainly attributed to the feasibility of
performing quantitative assessment. The evaluation criteria are the
average pairwise correlation coefficient (Jiang et al., 2013) and the
average pairwise total overlapping area (Christin et al., 2008). We
use these two benchmark quantitative measures to assess the com-
parative performances by ncGTW and XCMS.

Table 1. The average performance scores obtained in the simula-

tion studies with line, block and uniform structure, where ‘Before

alignment’ serves as the baseline, MCC and SP represent MCC and

SP, respectively, and the range of either score is between 0 and 1

with higher score indicating better performance

Methods Scores

MCC SP

Line structure

Before alignment 0.2330 0.4202

DBA 0.5422 0.6737

CPM 0.7894 0.8981

GTW 0.7991 0.9592

ncGTW 0.8366 0.9999

Block structure

Before alignment 0.1062 0.1959

DBA 0.7767 0.8761

CPM 0.3773 0.5078

GTW 0.8687 0.9521

ncGTW 0.9159 0.9998

Uniform structure

Before alignment 0.0641 0.2341

DBA 0.3797 0.7649

CPM 0.5651 0.8867

GTW 0.4926 0.8447

ncGTW 0.6953 0.9990

Note: The best score for each structure is represented in bold.

Fig. 8. Illustrative realignment successfully performed by ncGTW incorporating

‘line’ structure in small-scale real LC-MS dataset. (a) LC-MS profiles of total ten

samples. (b) The same LC-MS profiles but the curves are shifted to separate the

curves. The 8 indexed peaks on sample 10 represent there are 8 peak groups. The

peaks indicated by arrows in group 2 were misaligned by most peer methods except

GTW and ncGTW. (c) The arrow-indicated peaks were wrongly aligned to the third

peak group (and all peaks were severely distorted by DBA). (d) The arrow-indicated

peaks were misaligned by CPM. (e) The arrow-indicated peaks were well-aligned by

GTW while the fourth and fifth peak groups were misaligned. (f) All nine peak

groups were correctly and accurately aligned by ncGTW in this challenging case
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Comparative experimental results are detailed using two per-
formance measures (Fig. 9), where the features with circles represent
true positives and the features with crosses represent the false posi-
tives. These comparative experimental results, on both Rotterdam
and MESA datasets, consistently show that ncGTW effectively and
accurately realigns those misaligned features. Specifically, ncGTW
realignment on most true positives achieves much higher perform-
ance scores than that of XCMS, and on most false positives, produ-
ces comparable performance scores as expected (near the diagonal
lines, Fig. 9). Note that the default parameter setting of ncGTW in
this step is purposely designed for the true positives, and probably
not suitable for the false positives.

Experimental results on iQC samples also show that the two per-
formance scores can well separate the true positives and false posi-
tives (Fig. 9). Accordingly, via a post-alignment step we use these
two performance scores to screen out true positives for further ana-
lysis. This strategy is also applicable to handling study samples.

3.5 Evaluation of ncGTW via post-realignment

peak-filling performance
Accurate alignment of RT drift has significant impact on the per-
formance of peak-grouping and peak-filling that define the features.
In the XCMS pipeline, detected peaks are first grouped into features,
and when there are undetected/missing peaks, peak-filling is then
performed to retrieve those peaks. In our experiments, the coeffi-
cient of variation (CV) of intensity calculated over the samples, with
and without ncGTW guided peak-filling, is adopted to assess the
beneficial impact of ncGTW realignment (Matuszewski et al.,
1998).

Though we proposed that we can screen out the false positives
by the two performance scores, we still include the false positives in
the peak-filling step to observe the impact of the realignment on
them. Post-realignment peak-filling results show that, measured by
CV over the iQC sample features, ncGTW realignment consistently
reduces the CV as compared with that derived from the initial
XCMS alignment in both Rotterdam and MESA datasets (Fig. 10).
Note that here again the circles represent the true positives and the
crosses represent the false positives. More importantly, post-
realignment peak-filling supported by ncGTW has led to the

significantly reduction of CV on many ‘hard-to-define’ features,
demonstrating the beneficial contribution of ncGTW realignment to
improved feature generation.

3.6 Biological or clinical importance of the detected

misaligned features
When significant misalignment occurs, it is possible that some peaks
will be incorrectly assigned to the wrong compound and the infor-
mation from those peaks comingled with other compounds. In add-
ition, in samples where a peak has been improperly aligned and
therefore misclassified, the true compound of interest may appear to
be completely absent. These errors may obscure important informa-
tion about molecular pathways and lead to biased inferences or cor-
rupt statistical analyses concerning relationships between specific
compounds and other traits associated with the samples. In Table 2,
we provided the detailed annotation for the five features associated
with underlying compounds that were initially misaligned in MESA
and Rotterdam datasets and later corrected by ncGTW (measured
by the reduction in CV values). For the whole list of annotation,
please refer to Supplementary Table S9. Indeed, each of these com-
pounds plays important roles in specific and clinically relevant meta-
bolic pathways. For instance, a-tocopherol-glucuronide is a
conjugation metabolite of the biological anti-oxidant a-tocopherol
(vitamin E); ganglioside GM3 is a phospholipid found predominant-
ly in cell surfaces, and this molecule has important role in cell-to-cell
recognition (Lopez and Schnaar, 2009). Phosphatidylinositol is a
glycerophospholipid and an important component of cell mem-
branes, found predominantly in the inner surface of the cell mem-
branes (Van Meer et al., 2008); Choline is an important precursor of
phosphatidylcholine and sphingomyelin phospholipids, and also the
precursor of the neurotransmitter acetylcholine and participates as
methyl group donor in several biochemical reactions (Parrish et al.,
2008); Lysophosphatidylinositol is a metabolite of phosphatidylino-
sitol resulting from the cleavage of one the two fatty acyl chains by

Fig. 9. Application of ncGTW realignment method to Rotterdam and MESA data-

sets, where among the detected misaligned features, the blue circles represent true

positives, and the red crosses represent false positives, respectively. (a) The average

pairwise correlation coefficients on the Rotterdam dataset. (b) The average pairwise

correlation coefficients on the MESA dataset. (c) The average pairwise total overlap-

ping area on the Rotterdam dataset. (d) The average pairwise overlapping area on

the MESA dataset. (Color version of this figure is available at Bioinformatics

online.)

Fig. 10. The comparisons of CV with versus without ncGTW realignment after the

peak-filling step of XCMS. The blue circles represent the true positives and the red

crosses represent the false positives. (a) The CV comparison on Rotterdam dataset.

(b) The CV comparison on MESA dataset. (Color version of this figure is available

at Bioinformatics online.)

Table 2. Annotation details on the representative features that are

associated with biologically important compounds with their m/z

and RT positions, where the improvements in the targeted ncGTW

realignment are quantitatively measured by the reduction in CV

values

Dataset m/z RT Metabolite annotation CV

XCMS

CV

ncGTW

MESA 629.4 184.9 a-Tocopherol-glucuronide 0.29 0.25

MESA 844.6 275.6 Ganglioside GM3 0.39 0.29

MESA 879.5 293.8 Phosphatidylinositol 0.39 0.19

Rotterdam 104.1 24.2 Choline 0.66 0.51

Rotterdam 342.3 111.5 Lysophosphatidylinositol 0.71 0.41
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the action of a phospholipase-type A enzyme (Ueda et al., 1993).
Given the important biological roles of these compounds, potential
misclassification or corruption of the signals concerning these
metabolites, due to misalignment, could seriously hinder the ability
to understand important aspects of disease biology.

4 Discussion

Feature-based and profile-based alignment methods are complemen-
tary to each other. Because of high efficiency on large datasets, the
majority of existing alignment methods are feature-based. However,
due to the challenging nature of accurate peak detection particular-
ly, when there are some missing peaks and significant RT drift, mis-
alignment occurs on some features that also causes incorrect peak-
grouping and/or peak-filling. Here, we develop the ncGTW method
to first detect misaligned features and then to realigned them. One
unique advantage of ncGTW is the incorporation of structural infor-
mation (i.e. run-order) in our multiple alignment method. To the
best of our knowledge, most existing alignment methods have over-
looked structural information related to experimental design and
batch duration. Moreover, the novel design of a reference-free mul-
tiple alignment strategy and utility of individualized warping func-
tions across m/z bins all contributed to produce superior
performance of ncGTW.

Our approach is built on GTW, a recent extension of DTW to
multiple pairs. GTW retains all the desirable properties of DTW
such as monotonicity of time shifts and polynomial efficient solu-
tion, and yet flexibly models any graph-encoded structure among
pairs. However, GTW cannot be directly applied to solve the mul-
tiple alignment problems. GTW takes multiple pairs of samples as
input and finds alignment for each pair with consistency between
pairs considered. The problem considered in this article takes mul-
tiple samples as input and aims to find consistent alignment among
all samples. Though we can manually specify one certain sample as
a reference to construct pairs of samples for input of GTW, to our
knowledge, there is no established method that can always help the
user to identify which sample is the most suitable one as the refer-
ence. Moreover, it is likely that none of the samples contains enough
information to serve as a good reference. Thus, ncGTW is a signifi-
cant improvement of GTW, since ncGTW can model all samples
simultaneously and deal with the multiple alignment problems with-
out manually setting a reference.

Currently, there is no consensus method to detect misalignment
other than simple visual inspection. Thus, misalignment is often un-
detected and therefore may not even benefit from the application of
(substandard) conventional alignment methods. Specifically
designed to address the problem of misalignments complementary
to existing alignment software tools, our proposed ncGTW method
focuses on correcting only those misaligned features. Toward this
objective with high efficiency, the ncGTW package includes a
unique functional module that specifically aims to detect misaligned
features. We validated ncGTW using both realistic synthetic data
and iQC samples. The performance of ncGTW is particularly at-
tractive when processing large-scale datasets consisting of hundreds
or thousands of samples, because the RT drifts between distant sam-
ples may be significant and warping functions over different m/z
bins are not guaranteed to be the same (Fig. 1). Explicit incorpor-
ation of the RT structural information by the ncGTW method helps
to achieve accurate realignments on misaligned features. While we
have only demonstrated ncGTW as a plug-in package to XCMS, in
fact, two major functions of the ncGTW tool can serve as a plug-in
jointly or independently to other alignment tools as well, and thus
have broad applicability, including to other spectral data types be-
yond LC-MS.

Regarding the peak-distortion problem associated with warping
functions, there are at least two potentially effective solutions. First,
the peak information provided by XCMS can be utilized by ncGTW
to correct peak distortion as discussed in Section 2.6. Second, par-
ameter settings in ncGTW can be adjusted or optimized to reduce
the likelihood of peak distortion. Note that the current ncGTW tool
package already includes a peak-distortion correction module, and

our experiments have also shown that interim peak-distortion cor-
rection can help optimize ncGTW parameter settings that will in
turn reduce the likelihood of peak distortion.

In our misalignment detection step in Section 3.3, we have
observed that the false-positive rate in the Rotterdam dataset is
much higher than the theoretical threshold of 0.05. By a closer look
at the peak detection results, we found that many peaks were actual-
ly missed by XCMS, mainly due to significant yet irregular signal in-
tensity fluctuating over the course of data acquisition as shown in
Supplementary Figure S13 with all samples. Considering such rela-
tively higher false-positive rate does not create significant computa-
tional burden on ncGTW yet may be uncontrollable, we have opted
to first ‘accept’ these false positives and then screen them out at a
later stage.
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