
Structural bioinformatics

atomium—a Python structure parser

Sam M. Ireland* and Andrew C. R. Martin *

Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK

*To whom correspondence should be addressed.

Associate Editor: Lenore Cowen

Received on September 30, 2019; revised on January 13, 2020; editorial decision on January 25, 2020; accepted on February 3, 2020

Abstract

Summary: Structural biology relies on specific file formats to convey information about macromolecular structures.
Traditionally this has been the PDB format, but increasingly newer formats, such as PDBML, mmCIF and MMTF are
being used. Here we present atomium, a modern, lightweight, Python library for parsing, manipulating and saving
PDB, mmCIF and MMTF file formats. In addition, we provide a web service, pdb2json, which uses atomium to give a
consistent JSON representation to the entire Protein Data Bank.

Availability and implementation: atomium is implemented in Python and its performance is equivalent to the exist-
ing library BioPython. However, it has significant advantages in features and API design. atomium is available from
atomium.bioinf.org.uk and pdb2json can be accessed at pdb2json.bioinf.org.uk

Contact: andrew@bioinf.org.uk or andrew.martin@ucl.ac.uk or sam.ireland.09@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Structural biology is the study of biological macromolecules at the
molecular level, specifically the arrangement of their atoms in space,
and how this atomic structure dictates their functions.

For any computational analysis of these structures, a representa-
tion of them must be stored on disk, and from the early days of
structural biology, the PDB (Protein Data Bank) file format was
used to represent these structures (Bernstein et al., 1977). This for-
mat uses 80-character lines, with fields defined by position along
that line, to represent information about the atoms in a structure.
This includes information about the atoms themselves (their coordi-
nates, names and connectivity), information about their organiza-
tion (residue and chain information) and meta information about
the structure such as how it was generated, who generated it and the
experimental conditions.

In the case of the majority of structures, which are generated by
X-ray crystallography, the coordinates of the atoms in these files
represent the asymmetric unit—the repeating unit of the crystals.
This may not be the biologically relevant structure, so these files
contain biological assembly instructions: transformation matrices
which are applied to the polymers in the structure to recreate the
biologically relevant structure.

Over time, the limitations of the PDB file format have become
apparent (Westbrook and Fitzgerald, 2005). Most seriously, the nu-
meric atom identifiers are defined by a fixed-width field of five char-
acters, meaning that the maximum atom ID is 99999, limiting the
number of atoms a single file can contain. Initially this problem was
not frequently encountered and, where it was, the structure was split
over several files. Eventually, however, new file formats were
introduced.

The mmCIF file format was introduced in 1997 as an extension
to the existing Crystallographic Information File format. It uses a
space-separated, linked table format to hold much more information
than PDB files, and with no upper limit on structure size (Bourne
et al., 1997; Deshpande et al., 2005). The PDBML format uses
XML to represent structures (Westbrook et al., 2005). Most recent-
ly, a binary form of mmCIF optimized for transmission over the
web, MMTF, has also been introduced (Bradley et al., 2017). The
PDB file format has now formally been deprecated in favour of
mmCIF, although it remains in widespread use.

Computational tools for processing these file formats and proc-
essing the models they represent are of great importance to struc-
tural biology. There are various examples for different languages,
such as BioJava for Java (Lafita et al., 2019) and BiopLib for C
(Porter and Martin, 2015). These libraries provide the user with a
standard interface for analysing very diverse structures, by repre-
senting them in terms of a small number of object types, such as
atoms, chains and residues, and provide a layer of abstraction that
makes more complex tasks such as creating scoring functions more
straightforward. Python, a common programming language in
Bioinformatics, has traditionally used the general-purpose library
BioPython to parse these structure files (Cock et al., 2009).
However, there are limitations to this library, as will be outlined
below.

Here we present atomium, a modern, lightweight, fast parser of
.pdb, .cif and .mmtf files. It can read from, and save to, these file
types and has powerful tools for processing and manipulating the
structures they contain. It also makes PDB structures available in the
JSON format using the pdb2json web tool, which is a wrapper
around atomium. As JSON is a very widely used data representation
format (particularly in transmission over the web), and as JSON

VC The Author(s) 2020. Published by Oxford University Press. 2750

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(9), 2020, 2750–2754

doi: 10.1093/bioinformatics/btaa072

Advance Access Publication Date: 11 February 2020

Original Paper

http://orcid.org/0000-0002-2835-2572
http://atomium.bioinf.org.uk
http://pdb2json.bioinf.org.uk
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa072#supplementary-data
https://academic.oup.com/


parsing is part of the standard library of most programming lan-
guages, this additional tool makes the data contained in the PDB
more easily accessible to those less familiar with the traditional file
formats.

2 Materials and methods

2.1 atomium library structure
The inner workings of atomium can broadly be divided into two
areas: the core structure classes for actually representing molecular
structures, and the functions for parsing data from various file types
and creating ‘models’ (i.e. data structures) from them.

The core structure classes are how atomium represents molecular
structures. These can in theory be used to create structures manually
by creating each atom explicitly although, in practice, structure cre-
ation will usually be done by the parsers. There is a class for the top-
level models themselves (the container that all the other structures
inhabit) and for each of the sub-structure types usually encountered
in PDB files. Consequently, there are classes for atoms, residues,
ligands (non-polymer molecules) and chains (Fig. 1).

In every case where a structure has a collection of sub-structures
within it (a chain’s residues, a residue’s atoms, etc.), these sub-
structures are stored as a special atomium object called a
StructureSet. These store the objects internally as a mapping of the
structures’ identifiers (IDs) to lists of the structures so that lookup
by ID can be done extremely quickly, but for all other purposes they
behave as unordered sets. IDs are mapped to lists of structures rather
than individual structures because it was necessary to allow dupli-
cate IDs, usually found in biological assemblies.

2.2 atomium functionality
All structure classes can also use atomium’s filtering syntax. The
objects can be filtered by any property, nested sub-property, by the
regular expression of any string property (allowing for substring
searches for example) or by numerical comparators of any numeric-
al property (greater than, less than, etc.). For example, one can ob-
tain all atoms of a given name, below or above a given charge
threshold, or belonging to any residue of a given name or set of
names (see Table 1).

Among other operations, the atomic structures (a chain, a resi-
due, a ligand, etc.) can all be transformed geometrically by

translating or rotating; two atomic structures can be compared by
measuring the RMSD between them, one can specify any atom or
atomic structure and search for other atoms and atomic structures in
the model which are, for example, within a given radius, or which
have a particular property. For instance, the user can identify all
sub-structures in a 5 Å radius of a given metal atom which are not
water molecules, or identify all residues within 3 Å of a ligand that
have a particular name. The documentation lists the full feature sets,
and these are summarized in Table 2.

As stated earlier, while the user is free to create these structures
manually by accessing these classes directly, it is generally more con-
venient to create them by parsing structure files. atomium can read
.pdb, .cif and .mmtf files. In each case, the overall process is the
same:

1. Obtain the file contents as a string, either from the local filesys-

tem, or remotely from the RCSB PDB servers (Rose et al., 2010)

(via HTTP) or a server (via SSH).

2. Determine which file type it is by looking at the file extension or,

if not possible, by looking at file contents.

3. Convert the filestring to a Python dictionary whose structure is

specific to that file type.

4. Convert that dictionary to a standard atomium data dictionary,

whose structure is the same regardless of the file type origin.

5. Convert that data dictionary to an atomium File object with one

or more models within it (NMR structures typically contain

multiple models). Only one atom in a set of multiple occupancy

atoms is used for the final model—currently the set with the al-

ternate location identifier that comes first alphabetically (almost

always A) is used, but future versions will allow this to be

changed. Missing residue information is stored as a dictionary in

the File object; this information comes from pdbx_unob-

s_or_zero_occ_residues rows and REMARK 465 records

in mmCIF and PDB files, respectively.

Finally, atomium has the built-in ability to generate ‘biological
assemblies’ from the coordinates given in PDB files. In the majority
of structures, which are generated by X-ray crystallography, the
coordinates of the atoms represent the asymmetric unit—the repeat-
ing unit of the crystals. This may not be the biologically relevant
structure, so these files contain biological assembly instructions:
transformation matrices which are applied to the polymers in the
structure to recreate the biologically relevant structure. atomium
can generate new models from the asymmetric unit coordinates
using a single function.

2.3 pdb2json
This process for parsing (summarized in Fig. 2) has a number of
advantages over just trying to go from filestring to parsed object in
one step. Making the three file types converge at one data structure
(the atomium data dictionary) prevents duplication of effort
involved in going from ‘data’ to ‘Python structure’. It also means
that every file can have a consistent dictionary representation, which
means that they can all be represented as JSON if desired. It is also
easier for testing, as each stage in this (relatively complex) parsing
process can more easily be tested in isolation.

As already noted, the process of parsing a structure file involves
turning the raw filestring (or binary bytestring in the case of
MMTF) into two successive Python dictionaries, before then being
turned into a Python object. Initially this choice of Python dictionary
as internal representation was a decision made to make development
easier. However, Python dictionaries have a structure very similar to
JSON, a data format that is frequently used for sending data over
the web in a very human readable way, as it is essentially just nested
key-value pairs. Thus, if the data dictionary is simply converted to
JSON using Python’s built-in JSON library, atomium becomes a
tool for turning any PDB structure into JSON.

Fig. 1. The relationship of structure classes in atomium, representing the hierarchy

of types. While the structures can be created from scratch, this hierarchy has been

designed to reflect the hierarchy of object types in PDB and mmCIF files

The atomium Python structure parser 2751



pdb2json provides this facility. This is a simple, lightweight
Django (v2.1, djangoproject.com) web app which uses atomium to
take any PDB code and return the resultant structure as JSON. This
is done using a URL, for example, /2SOD/ will return the JSON for
the PDB 2SOD. It is currently available at pdb2json.bioinf.org.uk/.

The service is therefore an HTTP alternative to the FTP service
mmJSON by PDBj (Bekker et al., 2016), which provides FTP down-
loads of mmCIF structures only, and without the additional process-
ing of the raw mmCIF table structures that pdb2json provides.

By default, pdb2json tells atomium to use the .cif representation
for parsing, but this can be altered using, for example, /2SOD.pdb/.
The structure of the JSON returned will be the same since atomium
creates the same data dictionary regardless of file type, but some val-
ues may be different. For example, many .pdb files have titles, etc. in
capitals whereas .cif files use title case, and atom IDs may be num-
bered slightly different.

If users so wish, they can obtain the initial file-type-specific Python
dictionary as JSON by adding an argument called ‘file’ to the URL
with no value, using (for example) the notation /2SOD/? file. This
is generally of limited interest in the case of .pdb and .mmtf, except as
a means of checking the original file contents pre-processing, but in
the case of .cif, it can be very useful. This is because every attribute of
the structure will be accessible in this dictionary, so if the subset of
attributes atomium pulls out of files to annotate its final representa-
tion is not sufficient, other attributes can be obtained from this repre-
sentation. For example, atomium File objects have the R-free and R-
work attributes, but there are many metrics for these calculations in
the original file, such as the number of reflections used to generate
these numbers. pdb2json allows access to these metrics too.

PDB structures can be large and some are extremely large indeed.
The user may not wish to download the JSON for an entire structure
when they only need a single metric or set of metrics. Therefore,
pdb2json allows the user to traverse the keys of the JSON structure
using the supplied URL, if the user knows the identifiers for the rele-
vant objects. For example, while /2SOD/ will return the JSON for
the entire structure, /2SOD/quality/ will return only the quality
sub-dictionary that was part of the original JSON object. This
traversal can be as deep as the user wishes. For example, /2SOD/
models/0/non-polymer/O.153/atoms/4382 will return in-
formation about a single zinc atom. In this case, this URL is the
structure 2SOD, but only its first model (they are zero indexed), the

non-polymer structure with ID O.153 in that model and the atom
with ID 4382 in that non-polymer. This requires knowing the identi-
fier of the atom and its containing HET record, but if these condi-
tions are met, much smaller HTTP responses can be requested.

If JSON conversion is required offline, a pdb2json.py script is
also provided in the atomium library itself. This is a simple utility
which imports atomium, loads a file saved on disk, converts it to
JSON and saves it.

3 Results

atomium is currently at version 1.0.3, the 22nd release. It is down-
loadable using the Python package manager PyPI and pip (pip3
install atomium), or by cloning the repository from GitHub dir-
ectly (github.com/samirelanduk/atomium). The master
branch always points to the most recent stable release, with new fea-
tures being developed on separate branches.

The speed of parsing (raw coordinates without assembly gener-
ation, as BioPython cannot do this) is comparable with BioPython
for the .pdb file format. The two Python libraries were also com-
pared with the C library BiopLib which, as might be expected,
parsed the structures faster, particularly at higher atom counts (see
Fig. 3a). The parsing time for the three file formats in atomium are
of a similar order of magnitude, with .cif taking the longest (see
Fig. 3b). In all five cases, the relationship between the number of
atoms and the time taken to parse is linear and, for all comparisons,
care was taken to ensure the same kinds of parsing were being
done—no biological assembly generation, proper relationship pars-
ing and assigning for the sub-structures, etc.

The SnakeViz profile visualization tool (SnakeViz v2.0.1,
github.com/jiffyclub/snakeviz) can identify bottlenecks in
parsing code, which has been useful in optimizing the atomium
codebase. The increased time for .cif parsing can be partly explained
using this tool as it identifies a bottleneck in scanning the lines of the
file for embedded quotation marks. Because the file format allows
for quite complicated nested quotation marks in lines, the algorithm
used to handle them can be relatively time consuming and is a

Table 2 Summary of the features that atomium sub-structures

have, and the API for using them

Feature API

Mass calculation structure.mass

Relative elemental makeup structure.formula

Centre of mass structure.center_of_mass

Radius of gyration structure.radius_of_gyration

RMSD structure.rmsd_with(other)

Grid generation structure.grid()

Atom proximity structure.nearby_atoms(n)

Translation structure.translate()

Rotation structure.rotate

Water removal structure.dehydrate()

Fig. 2. An overview of how parsing of the three file types is done. Because the three

file types converge on a single data dictionary, all three file types can be represented

as JSON

Table 1. Examples of the filtering syntax that all atomium structures have by virtue of implementing the StructureClass metaclass

Command Result

model.atoms() All atoms

model.atoms(element¼’N’) All nitrogen atoms

model.atoms(mass__gt¼14) Atoms with mass greater than 14

model.atoms(name__regex¼’CA—CB’) CA and CB atoms

model.atoms(het__name__regex¼’CYS—HIS’) Atoms in cysteine and histidine residues

model.atoms(chain__length__lt¼100) Atoms in chains shorter than 100 residues

2752 S.M.Ireland and A.C.R.Martin



significant proportion of the overall parse time. The older PDB file
format, for all its other deficiencies, has no such problem and nor
does the newer binary MMTF format. Supplementary Figures S1–S3
show ‘profiles’ for each parse process, identifying which sub-
functions take up most time in the overall process.

atomium has been used in the creation of the ZincBind database
(Ireland and Martin, 2019), where its biological assembly processing
capabilities were invaluable in identifying inter-chain zinc binding
sites.

4 Discussion

Currently the general-purpose bioinformatics library, BioPython, is
generally the structure parsing tool of choice for the Python pro-
gramming language, but atomium offers three key advantages:

First, from a purely practical feature-set point of view, at the
time of writing, BioPython does not have the ability to process the
information contained in structure files’ biological assembly instruc-
tions, or create new models from them. This is a serious problem
when dealing with structures whose asymmetric unit is markedly
different from the biological assembly. For example, the insulin
structure 1ZEH contains one subunit of the insulin hexamer, and
the biological assembly instructions are required to make the true
hexamer. BioPython cannot generate these structures by itself,
which makes it unsuitable for examining interactions between
chains. Atomium, however, can generate these with a single func-
tion, using the NumPy library optimized for matrix calculations.
The structures generated from them will have duplicated IDs, but
can still be selected individually by assigning novel names to them—
particularly in the case of chain objects with no names assigned to
them initially. While atomium does lack some features that
BioPython offers, such as solvent accessible surface and residue
depth, the future addition of such features is straightforward given
the structural representation in atomium.

Second, and more philosophically, atomium adheres more close-
ly to the Pythonic tenet that a piece of software should focus on
doing one thing only and doing that one thing well. BioPython is a
powerful, but general purpose, bioinformatics library with modules
for many different bioinformatics applications. In contrast, atomium
focuses solely on structural biology and specifically on the parsing,
representation and saving of macromolecules. Its API, package
structure, testing suite and documentation are all optimized around
this purpose. On that basis, there is a strong argument that atomium
itself should not be extended to include features such as solvent ac-
cessibility calculation since these are outside the remit of parsing
and representing macromolecular structure.

Third, atomium has a simpler API than BioPython. There is
no need to create a separate parser object; the whole parsing
step can be done with the top-level functions atomium.open and
atomium.fetch.

Finally, the addition of the pdb2json web server around atom-
ium allows for access to the parsed contents of any PDB file through
the browser in the widely accessible JSON format, removing the
need for specialized parsers altogether if the user so wishes.

5 Conclusions

The atomium PDB parser is a novel, lightweight Python library
which can handle three of the principal file types of structural biol-
ogy, save changes made to them and generate the structures con-
tained in their biological assembly instructions for more biologically
realistic models. It contains powerful querying abilities for the mod-
els, as well as other useful metrics and tools.

Funding

This work was supported by a Wellcome Trust PhD Studentship [203756/Z/

16/A to S.M.I.].

Conflict of Interest: none declared.

References

Bekker,G.-J. et al. (2016) Molmil: a molecular viewer for the PDB and beyond.

J. Cheminformatics, 8, 42.

Bernstein,F.C. et al. (1977) The Protein Data Bank: a computer-based archival

file for macromolecular structures. J. Mol. Biol., 112, 535–542.

Bourne,P.E. et al. (1997) [30] Macromolecular crystallographic information

file. In: Macromolecular Crystallography Part B, Vol. 277 of Methods in

Enzymology. Carter Jr.,C.W. and Sweet,R.M. (eds.) Academic Press,

Cambridge, Massachusetts, pp. 571–590.

Bradley,A.R. et al. (2017) MMTF—an efficient file format for the transmis-

sion, visualization, and analysis of macromolecular structures. PLoS

Comput. Biol., 13, e1005575.

Cock,P.J.A. et al. (2009) BioPython: freely available Python tools for compu-

tational molecular biology and bioinformatics. Bioinformatics, 25,

1422–1423.

Deshpande,N. et al. (2005) The RCSB Protein Data Bank: a redesigned query

system and relational database based on the mmCIF schema. Nucleic Acids

Res., 33 (Suppl. 1), D233–D237.

Ireland,S.M. and Martin,A.C.R. (2019) ZincBind—the database of zinc bind-

ing sites. Database, 2019, baz006.

(a) (b)

Fig. 3. (a) A comparison of parsing speed between atomium, BioPython (both Python) and BiopLib (C) for the PDB file format. With occasional deviations, the two Python

libraries are broadly equivalent. As expected, BiopLib is faster, particularly at higher atom counts, as it is written in a compiled language. (b) Time taken to parse the same

1000 randomly chosen single-model structures in the three file formats using atomium. Time as a function of atom count is linear and it can be seen that mmCIF structures

take the longest, followed by PDB structures and MMTF structures

The atomium Python structure parser 2753

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa072#supplementary-data


Lafita,A. et al. (2019) Biojava 5: a community driven open-source bioinfor-

matics library. PLoS Comput. Biol., 15, e1006791.

Porter,C.T. and Martin,A.C.R. (2015) BiopLib and BiopTools—a C program-

ming library and toolset for manipulating protein structure. Bioinformatics,

31, 4017–4019.

Rose,P.W. et al. (2010) The RCSB Protein Data Bank: redesigned web site and

web services. Nucleic Acids Res., 39 (Suppl. 1), D392–D401.

Westbrook,J. et al. (2005) PDBML: the representation of archival macromol-

ecular structure data in XML. Bioinformatics, 21, 988–992.

Westbrook,J.D. and Fitzgerald,P.M.D. (2005) The PDB format,

mmCIF formats, and other data formats. In: Structural Bioinformatics,

Methods of Biochemical Analysis, Vol. 44. Bourne,P.E. and Weissig,H.

(eds.) John Wiley & Sons, Ltd., Hoboken New Jersey. Chapter 8, pp.

159–179.

2754 S.M.Ireland and A.C.R.Martin


