
LARGE-SCALE BIOLOGY ARTICLE

Meta Gene Regulatory Networks in Maize Highlight
Functionally Relevant Regulatory Interactions[OPEN]

Peng Zhou,a Zhi Li,b ErikaMagnusson,a Fabio Gomez Cano,c Peter A. Crisp,a JaclynM. Noshay,a Erich Grotewold,c

Candice N. Hirsch,b Steven P. Briggs,d and Nathan M. Springera,1

a Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
bDepartment of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
cDepartment of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
dDivision of Biological Sciences, University of California, San Diego, La Jolla, California 92093

ORCID IDs: 0000-0001-5684-2256 (P.Z.); 0000-0002-6572-7935 (Z.L.); 0000-0001-7868-6215 (E.M.); 0000-0002-2624-0112 (F.G.C.);
0000-0002-3655-0130 (P.A.C.); 0000-0002-7438-193X (J.M.N.); 0000-0002-4720-7290 (E.G.); 0000-0002-8833-3023 (C.N.H.); 0000-
0002-7226-8618 (S.P.B.); 0000-0002-7301-4759 (N.M.S.)

The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link
transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed
a large number of publically available maize (Zea mays) transcriptome data sets including >6000 RNA sequencing samples to
generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in
different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are
all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological
processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships
in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene
expression are more likely associated with changes in target gene expression. Integrating information from our TF-target
predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74
previously identified trans-eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of
developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential
targets for breeding or biotechnological applications.

INTRODUCTION

A central goal in linking genotype to phenotype is to understand
howa limited number of transcription factors (TFs) drive dynamic
gene expression changes in different cell types and environ-
mental conditions. Based on the genomes of well-characterized
model systems, multicellular organisms dedicate a substantial
portion of their protein-coding genes (6 to 8%) to the expression
of TFs (Babu et al., 2004). TFs recognize specific cis-regulatory
elementsandactivateor repress the transcriptionof specificsets
of target genes by interacting with other TFs, coregulators,
chromatin modifiers, and the basal transcription machinery. TFs
are crucial for many important cellular processes and are widely
involved in development, responses to the environment, cell
cycle control, and responses to pathogens (Lee and Young,
2013). Therefore, characterizing the TF regulatory landscape

within an organism is critical to expanding our knowledge of
complex phenotypic traits and gene expression networks.
However, genome-wide characterization of TF-target asso-
ciations are only available for a handful of TFs in most crop
species, such asmaize (Zeamays; Ravasi et al., 2010;Nègre et al.,
2011; Gerstein et al., 2012; Araya et al., 2014; Bartlett et al., 2017).
In some cases, a specific TF can regulate multiple genes that
are part of the same biochemical pathway, providing higher
level control of cellular functions. This can make TFs an attrac-
tive target for modulation through breeding or biotechnology
approaches.
A variety of approaches are available to link TFs to target

genes (Springer et al., 2019). Chromatin immunoprecipitation
sequencing (ChIP-seq) is a powerful approach to discover the
binding sites of a particular TF (Johnson et al., 2007; Kheradpour
and Kellis, 2014). In combination with transcriptome profiling of
mutant stocks, ChIP-seq has been widely used to elucidate the
regulatory functions of specific TFs (Robertson et al., 2007).
However, ChIP-seq experiments have been generally limited in
scale due to the difficulty in their execution, sensitivity to an-
tibody quality, and inability to work when using rare or poorly
expressed proteins (Kidder et al., 2011). As a result, compared
to the humanEncyclopedia ofDNAElements (ENCODE) project
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in which ChIP-seq was conducted for 694 TFs (Davis et al.,
2018), even in a well-studied plant model such as Arabidopsis
(Arabidopsis thaliana), there are fewer than 50 TFs with ChIP-
seq/Chip data (Mathys et al., 2006; Weirauch et al., 2014; Khan
et al., 2018). In maize, only eight ChIP-seq data sets have been
published to date (Bolduc et al., 2012; Morohashi et al., 2012;
Eveland et al., 2014; Pautler et al., 2015; Yang et al., 2016; Li
et al., 2018; Zhan et al., 2018; Dong et al., 2019). The recently
developed DNA affinity purification sequencing (DAP-seq)
technique using an in vitro–expressed, affinity-tagged TF in
combination with high-throughput genomic DNA sequencing
offers a promising approach to efficiently generate genome-
wide TF-target interaction maps (O’Malley et al., 2016; Bartlett
et al., 2017). However, this approach has not yet been com-
prehensively applied to study maize regulatory landscape
(Galli et al., 2018; Ricci et al., 2019) and may not reflect in
vivo regulatory interactions that occur in a native chromatin
context.

Homology-based attempts to computationally predict TF
binding sites (TFBSs) based on existing TF bindingmotifs and the
conservation of TFBSs among species have provided predictions
of binding sites in many plants (Yilmaz et al., 2009; Chow et al.,
2016; Jin et al., 2017). However, these approaches typically have
a high false positive discovery rate, as there is accumulating
evidence that supports thewidespreadcontributions of sequence
context in modulated sequence recognition, including flanking
sequences, DNA secondary structures, and chromatin status
(SiggersandGordân, 2014).AlthoughTFsare frequently classified
as activators or repressors, gene regulation is typically controlled

through the combinatorial control of different TFs, where context
dependency specifies how TFsmodulate the expression of target
genes (Mejia-Guerra et al., 2012; Siggers and Gordân, 2014; Li
et al., 2015b).
An alternative yet powerful approach to infer regulatory net-

works is through the use of statistical inference algorithms or
machine learning techniquesapplied togeneexpressiondata.The
coexpression-based gene regulatory network (GRN) is an effec-
tive tool for identifying geneswith essential biological functions or
genes involved in a specific pathway or process (Hecker et al.,
2009; Krouk et al., 2013). Inference methods that utilize transcript
abundance data and reveal connections between genes have
been used to construct GRNs and find important genes and
regulatory relationships involved in plant growth and de-
velopmental processes, such as cell wall synthesis (Taylor-
Teeples et al., 2015), regeneration (Ikeuchi et al., 2018), and
root hair growth (Shibata et al., 2018). In addition, the computa-
tional inference of GRNs can help prescreen in silico potential
interactions to allow focused validation of high-confidence in-
teractions (Bassel et al., 2012). While there have been notable
successes in applying coexpression-based GRNs to identify
important regulatory networks in plant species, there remains
a substantial gap in our knowledge of how to develop GRNs from
large-scale transcriptome data sets that are currently available for
optimal use in crop improvement.
Maize is an important crop specieswith substantial genetic and

genomic resources. The B73 reference genome (AGP_v4) is
a chromosome-level, high-quality assembly with well-curated
gene ontology (GO)–based functional annotations (Jiao et al.,
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2017; Wimalanathan et al., 2018). The maize TFome project
provides an invaluable resource of more than 2000 maize TF
clones to facilitate high-throughput studies, including a recent
yeast one-hybrid screen that identified more than a thousand TF-
target interactions in the maize phenolic metabolic pathway
(Burdo et al., 2014; Yang et al., 2017). Previous efforts in char-
acterizing GRNs in maize have provided insights into regulatory
networks (Li et al., 2010; Zhan et al., 2015; Walley et al., 2016;
Huang et al., 2018). A maize leaf network constructed along a leaf
developmental gradient revealed a dynamic transcriptome, with
transcripts for basic cellular metabolism at the leaf base tran-
sitioning to transcripts for secondary cell wall biosynthesis andC4
photosynthetic development toward the tip (Li et al., 2010).
Similarly, a maize endosperm network constructed using nine
different endosperm, embryo, and kernel tissues/developmental
stages identified an unexpected close correlation between the
embryo and the aleurone layer of the endosperm (Zhan et al.,
2015). Regulatory networks constructed using23different tissues
sampled across maize developmental stages show very different
topology at the mRNA level versus the protein (phosphoprotein)
level, with more than 85% of regulatory hubs not conserved
between the RNA network and the protein network (Walley et al.,
2016). By utilizing publicly available RNA-seq data sets and the
GENIE3 algorithm (Huynh-Thu et al., 2010), four tissue-specific
(leaf, root, shoot apical meristem, and seed) networks were
constructed, identifyingwell-studied key TFs in each network and
revealing very different regulatory functions for many TFs (Huang
et al., 2018).

In this study,weuseda largenumberofRNA-seqdata sets from
maize to develop45different coexpression-basedGRNs. Theuse
of coexpression-based GRNs that are based upon sampling of
many tissues for a single genotype (developmental atlases) or
many different genotypes for a single tissue (genotype surveys)
allows for widespread sampling of potential gene regulatory re-
lationships and the detection of GRNs that are only found in some
networks. We provide evidence that these networks are enriched
for biologically meaningful connections and that different net-
works sample distinct processes or TFs. By comparing the pre-
dicted networks with data from natural variation surveys or
expression quantitative trait loci (eQTLs), we identified a subset of
regulatory interactions that are experimentally supportedandmay
be important for explaining trans-eQTLs and the regulation of
metabolic pathways.

RESULTS

Construction of Maize GRNs

ManyRNA-seqdatasetsareavailable formaize, includingsurveys
of different tissues within a single genotype as well as surveys of
expression in a single tissue across diverse germplasm. We used
these data sets to generate putative GRNs based upon the ex-
pression patterns of TFs and their target genes. The set of maize
TFs were obtained from PlantTFDB (Jin et al., 2017). In total, 45
putative GRNs were developed for 25 different maize RNA-seq
expression data sets that were all aligned to the B73_v4 genome
and normalized using consistent methods (see Methods;

Figure 1). We evaluated several methods for GRN construction
and found that the random forest approach (Huynh-Thu et al.,
2010) provided the best performance (see Supplemental Figure 1
and Supplemental Methods for details). The expression data sets
includeeightdevelopmental networksbuilt usingdifferent tissues/
developmental stages of the same genotype (five independent
data sets for B73, one forMo17, and one for B73xMo17 aswell as
one combined data set including 247 different tissues or stages of
B73; see Methods), 28 tissue-specific networks built using the
same tissuesampled frommultiple inbred lines, 5 tissue-genotype
networks that include multiple tissues sampled from a panel of
inbred lines, and 4 networks built using recombinant inbred
populations (B73xMo17, B73xH99, maize x teosinte and multi-
parent advanced generation intercross [MAGIC] recombinant
inbred lines [RILs]; see Figure 1 for details of networks and ref-
erences). For comparison purposes, we also included maize
coexpression-based GRNs generated in two recent studies
(Walley et al., 2016; Huang et al., 2018). These include a maize
developmental network (Walley et al., 2016) as well as four tissue-
specific networks (leaf, root, shoot apical meristem, and seed;
Huang et al., 2018). For these previously generated networks, we
downloaded and mapped the raw sequence reads and built the
regulatory networks using the samepipeline used in this study. By
including networks focused on specific tissues or genotypes as
well as meta-networks, we were able to investigate the relative
utility of focused networks as well as networks that use a more
comprehensive set of data.

Evaluation of Maize GRNs Using TF Knockouts and
Functional Annotations

We used several approaches to evaluate whether the putative
GRNs were enriched for biologically significant edges. One ap-
proach that can be used to document the validity of GRNs is to
assess the enrichment of known targets based on analysis of TF
mutant RNA-seq and ChIP-seq data. Previous studies have
characterized direct targets of six maize TFs using the mutant/
wild-type RNA-seq combined with ChIP-seq experiments
(Supplemental Table 1; Bolduc et al., 2012; Eveland et al., 2014;
Pautler et al., 2015; Li et al., 2015a, 2018; Dong et al., 2019); these
datasetswerepreviouslyusedtovalidatemaizeGRNs(Walleyetal.,
2016;Huangetal., 2018).Weassessed theTF-target interactions in
each coexpression-basedGRN (rows in Figure 2) against TF-target
interactions from ChIP-seq studies (columns in Figure 2A).
Therewassignificantenrichment fordirect targets inat leastone

network for four of the six TFs (Figure 2A; Supplemental Figures 2
and3). However, the level of enrichment varied substantially, likely
due towhether the TF is expressed or exhibits variable expression
in each network based on the tissues or genotypes that are
contained in the data set used to generate the network. It is worth
noting that there are relatively few examples in which the TFs
exhibit variable expression that do not show enrichment for tar-
gets (yellow cells in Figure 2A). Instead, the lack of significant
enrichment often reflects either the lack of expression or lack of
variable expression levels. For example, the Opaque2 (O2;
Zm00001d018971) TF gene is only expressed in endosperm
tissue and therefore theO2 interactions are not detected in GRNs
built using only vegetative tissues. There is also enrichment for
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Figure 1. Data Sets and GRNs Developed for This Study.

Each of the coexpression-based GRNs created for this study is listed. They are separated into GRNs that utilize different tissues of B73 (blue), different
genotypes (red), combinations ofmultiple tissues andgenotypes (green), and recombinant inbred panels (purple). For eachGRN,wedescribe the reference
study, the tissue or genotype, the number of samples, and the number of TFs and targets that are classified within the top 100k edges for the GRN. The
network labels from this figure are used for the remaining figures.
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some sets of TF-targets identified by DAP-seq (Supplemental
Figure 4; Galli et al., 2018; Ricci et al., 2019). While these direct
targets were identified by overlaying ChIP-seq binding evidence
with RNA-seq data for differentially expressed genes (DEGs)
between the TF mutant and the wild type, it is likely that
coexpression-based GRN predicted TF-target interactions in-
clude both direct and indirect regulatory relationships.

Weusedaslightlydifferentapproach toutilizeallDEGs (withand
without ChIP-seq binding evidence) from the TF mutants relative
to the wild type to evaluate enrichment for both direct and indirect
targets. We obtained paired RNA-seq data with at least two bi-
ological replicates (separate experiments) for both the mutant
and the wild type from public databases for 17 maize TFs
(Supplemental Table 2). Formost TFs (14 of 17), at least one of the

Figure 2. TF-Target Interactions Predicted by GRNs Are Supported by Experimentally Derived TF Targets and Knockout Mutant RNA-Seq Experiments.

(A) Direct targets of published TF studies derived from ChIP-seq and mutant RNA-seq experiments.
(B) For each of the 17maize TFs with knockout mutant RNA-seq data available, DEGs between themutant and the wild type were identified using DESeq2
(P-value<0.01).Wilcox rank testswere thenperformedusing thepredicted (TF-target) interactionscores (top100kedges) between thegroupof true targets
(DEGs) andnontargets (non_DEGs).P-valueswereadjustedby theBenjamini–Hochbergmethod implemented inR.Numbers in eachcell show theadjusted
test P-value (2log10 transformed). Supplemental Figure 2 provides the actual number of true targets captured by each GRN during each evaluation. Light
yellow cellswith no numbers indicate not significant (P > 0.05), while blank (white) cells indicatemissing datawhere the TFbeing evaluated is not expressed
or not variable (i.e., zero variance) in the correspondingGRN. The y axis labels correspond to the different networks listed in Figure 1. The x axis labels (e.g.,
KN1_ear (272) or KN1_ear [1576] [7.0%]) represent the common name for each TF, the tissue inwhich the TF is expressed, followed by the number of direct
targets (A) or number and proportion of DEGs in TF mutant (B).
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coexpression-based GRNs assigns significantly higher interaction
weights to true targets (DEGs between the TF mutant and the wild
type) thannontargets (non-DEGs;Figure2B;SupplementalFigure5).
Developmental networks tend to capture regulatory relationships for
many TFs,while tissue-specific networks typically generate the best
performance at predicting TFs that are specific to the corresponding
tissue. For example, the combined developmental network accu-
rately predicts targets for severalmaize TFs including ear-expressed

fasciated ear4 (fea4; Zm00001d037317), pericarp-expressed
ufo1 (Zm00001d000009), and endosperm-expressed bZIP22
(Zm00001d021191), O2, and nkd (Zm00001d002654). However,
O2, which ismostly expressed in kernels and endosperm (Li et al.,
2015a; Zhan et al., 2018), is best predicted by a kernel network
built by 368 different inbreds (Fu et al., 2013). Likewise, the
Hirsch2014 seedling network only shows enrichment in the
meristem-expressed KN1 (Figure 2B; Supplemental Figure 5).

Figure 3. Enrichment of Coannotated GO/CornCyc Terms in Coregulated Network Targets.

For each network, the top 1 million predicted TF-target associations were binned to 10 bins and assessed for enrichment of GO/CornCyc functional
annotation. Fold enrichment is calculated as the observed number of shared GO/CornCyc terms (by targets regulated by a common TF) divided by the
expected number of shared annotation terms (determined by permutation).
(A) GO/CornCyc enrichment is shown for four selected networks.
(B)Heatmap showing enrichment of coannotatedGO/CornCyc terms in the first bin (i.e., top 100k) of edges in theGRNs. See Supplemental Figure 7 for the
enrichment in all bins of all newly built GRNs. A total of six sources of GO annotation were used, but only three are shown here: GO_HC (high-quality hand-
curated terms transferred from maize AGP_v3 annotation), GO_arabidopsis and GO_uniprot.plants (see Supplemental Figure 6 for a complete list).
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The second approach used to evaluate potential functional
enrichments within the coexpression-based GRNs was to in-
vestigate how often a GRN would contain multiple genes anno-
tated to the same GO categories or genes that are in the same
metabolic pathway. For eachof thenetworks,wedocumented the
frequency of targets of a shared TF that are annotated with the
sameGOterm (Wimalanathanetal., 2018)orwereannotated in the
same CornCyc metabolic pathway (see Methods; Andorf et al.,
2016). We performed a permutation test of annotation terms to
determine the expected number of shared terms among targets.
Enrichment (observed shared terms/expected shared terms) was
assessed for each GO/CornCyc category in each network (see
Methods; Figure 3; Supplemental Figure 6). We performed en-
richment analyses of shared GO terms or metabolic pathways for
10 bins of 100,000 (100k) edges in each network (based on
predicted edge score). All networks exhibit significant enrichment
for shared annotations of multiple targets of the same TF, and
these remained significant when GO terms based on expression
evidence were omitted (Supplemental Figure 6). In all cases, the
enrichment was much greater for the higher ranking edges
(i.e., with stronger interaction scores), with the top 100k edges
showing the greatest enrichment (Figure 3A; Supplemental Fig-
ure 6). Among the developmental networks, the level of enrich-
ment for shared annotations was generally related to the number
of samples in the network, with the combined set exhibiting the
greatest enrichment (Figure 2B). Within the networks that utilized
diverse genotypes, there was significant variability for the en-
richments for shared annotations; this variability was not clearly
related to specific tissue types or the size of the networks. These
observations suggest that many of these GRNs capture in-
formation that can predict pathways or biological functions that
are regulated by specific TFs.

A third approach used to assess the ability of the GRNs to
capture biologically relevant data was to transfer documented
transcriptional regulations from Arabidopsis. We obtained
1431 high-confidence TF-target interactions in Arabidopsis from
Arabidopsis Transcriptional Regulatory Map, which were col-
lected based on systematic literature mining (Jin et al., 2015).
Among these, 285 TF-target interactions could be mapped to
homologousmaize genes requiring both TF and targetmapped to
their least divergent homolog in maize. Despite the significant
evolutionarydistancebetweenmaizeandArabidopsis, 75 (26.5%)
TF-target interactions are supported by at least 1 of the 45 GRNs
(100k top edges), which is 5.8-fold higher than expected by
chance (1000 permutations of the same number of 285 TF-target
pairs show an average of 12.93 pairs of GRN support; Figure 4).
Examples include the well-studied Elongated Hypocotyl5 (HY5;
AT5G11260) TF-mediated pathway (Figure 3C; Supplemental
Figure 7B) and the abscisic acid signaling pathway (Figure 3B;
Supplemental Figure 8A). These two examples highlight the value
ofusingmultipleGRNs. Inbothcases, there is substantial variation
in which TF-target interactions are detected in different GRNs
(Figures 4B and 4C; Supplemental Figures 7A and 7B).

Together, the analysis of annotations and previously docu-
mented TF-target interactions suggests that the coexpression-
basedGRNsbuilt formaizeareenriched for functional interactions
and provides evidence that the new set of networks generated for
this study have equivalent or improved performance relative to

previouslypublishedmaizeGRNs (Walleyetal., 2016;Huangetal.,
2018). We also found evidence for enrichment of predicted TF
binding sites at the targets predicted by the GRNs (for details, see
supplemental Methods and Supplemental Figure 8). These
analyses also suggest that there is significant variability among
networks in terms ofwhich types of annotations, orwhich TFs, are
effectively captured.

Comparison of GRNs

In thisstudy,wedevelopedanumberofGRNsbasedonsubsetsof
the data rather than simply making one larger meta-network or
even a handful of meta-networks. Clearly, there are differences in
GRNs that were predicted from different data sets, as some of the
TFs are not expressed (or do not show variation) in some tissues
and therefore will not have predicted targets. We sought to
compare the information from different networks to evaluate
the similarities/differences and to determine whether the meta-
networks routinely provided advantages over networks focused
on single tissues or genotypes.
A clustering of the 45 networks identified some patterns of

shared or distinct information (Supplemental Figure 9). However,
there is also evidence for relatively distinct information in many of
the networks, suggesting that pushing toward meta-networks
may lose GRNs predicted in specific tissues or genotype pan-
els (see supplemental Methods and Supplemental Figures 9 and
10 for details). There is also evidence that GRNs vary substantially
in terms of the enrichment of specificGO terms (see supplemental
Methods and Supplemental Figure 11). This suggests that dis-
tinct networks are likely capturing different information about
potential biological functions. In order to highlight the potential
value of using multiple GRNs, we selected several specific ex-
amples in which a TF is linked to multiple target genes within the
same pathway to assess the information content in different
coexpression-based GRNs (Figure 5; Supplemental Figures 12 to
14). Theanthocyaninbiosynthesispathway iswell characterized in
maize, and there are knownTFs that regulatemultiple steps of this
pathway (Figure 5A; Dooner et al., 1991; Petroni et al., 2014). Two
of the TFs that are known to regulate structural genes in the
anthocyanin biosynthesis pathway were identified in multiple
GRNs (Figure 5B). However, any single network only detects
a subset of these interactions (Supplemental Figure 12).
The 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)

biosynthetic pathway has been well characterized in maize (Gierl
and Frey, 2001), but there is little information about potential
TFs that may regulate this pathway (Figure 5C). We identified four
TFs with connections to multiple DIMBOA biosynthetic genes
(Figure 5D). Often a single TF is linked to multiple structural genes,
but the information content varies substantially between networks
(Figure 5D; Supplemental Figure 13). In the case of the chlor-
ophyllide biosynthesis pathway, there is a single TF that was
identified as putatively regulating 15 genes in this pathway (Figures
5E and 5F). Often the associations were identified in many different
GRNs, but in some cases, the association was only detected in
a small number of GRNs (Supplemental Figure 14). Similar patterns
are observed for putative TFs that may regulate multiple genes
involved in zealexin biosynthesis, glycolysis, methylerythritol
phosphate, and growth repression pathways (Supplemental
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Figure 15). These pathways provide examples of the relative value
of collecting information frommultiple networks to reveal potential
connections between TFs and metabolic pathways.

Evaluation of Maize GRNs Based on Differential Gene
Expression among Maize Genotypes

One goal in generating coexpression-based GRNs is to predict
key TFs that could be modulated in order to affect changes in

expression for setsof targetgenes.Thiswouldenableapproaches
that could control traits in a fashion that is often not achievable
through changes in single enzymes (Grotewold, 2008).We sought
to assess how often coexpression-based GRN-predicted asso-
ciations would be supported using natural variation in gene ex-
pressionbasedoncomparisonsof pairedgenotypesofmaize.We
selected four published transcriptomic studies that included at
least twomaize genotypes. These studies explored differences in
transcriptome response between seedling leaf tissues of B73 and

Figure 4. GRN Predictions Show Enrichment of Documented Transcriptional Regulation Interactions from Arabidopsis.

(A) Permutation analysis showing the number of random TF-target interactions supported by at least one of the 45 GRNs (histogram) compared with the
actual transcriptional regulation (transferred from Arabidopsis) with GRN support (red dashed line).
(B) Abscisic acid pathway transferred from Arabidopsis showed support for 12 of 20 edges.
(C)Sixof 11HY5 targets transferred fromArabidopsis showedsupport in at least oneGRN.The letters along theedgesof thenetworks in (B)and (C) indicate
significant support from a specific GRN, as indicated in the key.
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Figure 5. Different Coexpression-Based GRNs Capture Distinct Aspects of Classic and CornCyc Metabolic Pathways.

(A) and (B) Anthocyanin biosynthesis pathway (A) regulated by R1 (Zm00001d026147) and PL1 (Zm00001d037118; see [B]).
(C) and (D) DIMBOA biosynthesis pathway (C) and four potential regulators (D): G2 (Zm00001d039260), D8 (Zm00001d033680), NACTF21
(Zm00001d036050), and MYB112 (Zm00001d046632).
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five other genotypes under control, cold, and heat conditions
(Waters et al., 2017), between B73 and Mo17 root tissues under
control and drought conditions (Marcon et al., 2017), between five
tissues of B73 and Mo17 under standard growth conditions (Sun
et al., 2018), anda tissueatlasspanning23paired tissuesbetween
B73 and Mo17 (Supplemental Table 3; Zhou et al., 2019). We
obtained data for a total of 42 paired tissue/treatment samples
with at least three biological replicates per sample between B73
and a different genotype (Supplemental Table 3) and identified
DEGs between the two genotypes in each of the 42 paired tissue/
treatment samples. In theory, if a regulator (TF) exhibits differential
expression (DE) between the two genotypes in a certain tissue/
condition, we anticipate that the targets of this TF (as predicted by
coexpression-basedGRNs)will alsoexhibitDE in thesame tissue/
condition. For every comparison, we classified each TF into dif-
ferent DE categories (non_DE, DE1-2, DE2-4, and DE41 and
single parent expression [SPE], where one genotype is not ex-
pressed) and assessed the proportion of predicted targets also
exhibiting DE (Figure 6; Supplemental Figure 16). In addition, we
binned the TF-target predictions in each network into 10 groups
according to their interactionscorepredictedby the randomforest
regression model with the assumption that stronger TF-target
interactions may receive stronger support from the paired ge-
notype data sets (see Methods).

Our initial analysis focused on testing the predictions of the
coexpression-based GRNs built using the combined tissue atlas
representing 247 samplesofB73. As expected, for TFs that donot
exhibit DE (non_DE) or only showminor changes (DE1-2) between
the two tested genotypes, the predicted targets show very little or
no enrichment for DE (Figure 6; Supplemental Figure 9, blue lines).
However, when the TF exhibits high levels of DE (e.g., DE41) or
SPE between the two genotypes, there is a markedly increased
likelihood that the putative targets exhibit DE levels (Figure 6;
Supplemental Figure 16, red and purple lines). In addition, the TF-
target interaction score has a strong impact on the validation rate
in paired genotype data sets, as observed for the functional an-
notation enrichments. The TF-target predictions with rank 10 (top
10% of predictions) exhibit a much higher proportion of targets
being DE (60 to 80%) for TFs in the SPE groups (Figure 6;
Supplemental Figure 16). These observations suggest that (1)
presence/absence (i.e., SPE) rather than quantitative (i.e., DE1-2,
DE2-4) changes in TF gene expression are much more likely to
result in changes in target gene expression levels and (2) only the
top network predictions with the highest interaction scores have
high predictive power in paired genotype data sets. Therefore, we
only utilized the rank 10 edges (TF-target interactions) in each
network and focusedon thegroupof TFsshowingSPEpatterns to
compare the validation performance of different networks in each
of the paired genotype data sets (by calculating the enrichment
P-value of target DE proportion for TFs showing SPE pattern
versus the background genome-wide DE rate; see Methods).

Several patterns emerge when comparing the levels of support
for different GRNs based on paired genotype data sets. De-
velopmental networks built within a single genotype generally
have low power in predicting targets that are DE, with the ex-
ception of the combined atlas data set including 247 different
tissues/stages (Figure 7, networks in blue). Despite being built
usingonly tissues fromthe referenceB73genotype, thecombined
tissue network shows significant predictive power in almost all
paired genotype data sets regardless of the two genotypes being
compared (Figure 7). Not surprisingly, the strongest enrichment
was observed using the paired B73 and Mo17 developmental
atlas network (tissue atlas combined in Figure 7; Zhou et al., 2019)
to predict DEGs between B73 and Mo17 samples, likely because
the variation between these two genotypes was included within
the information used to generate the GRNs. Indeed, this B73-
Mo17 paired developmental network shows poorer predictive
power whenever the genotypes compared in the validation data
set include adifferent genotype such asOh43or PH207 (Figure 7).
The same is true for the four RIL networks, with theB73xMo17RIL
network doing the best on comparisons between B73 and Mo17
samples and the B73xH99 RIL network showing the greatest
performance on comparisons between B73 and non-Mo17
samples. The MAGIC RIL network, which is based on seven in-
bredparents, showedenrichment in awider rangeof comparisons
spanning more genotypes, while the maize W22-teosinte RIL
network rarely predicts the transcriptional variation within maize
populations with the exception of some B37 and Oh43 samples
(Figure 7).
Single-tissue networks generally show low predictive power

unless the two genotypes in the validation data set being ex-
amined are among the genotype panel that was used to build the
network (e.g., Li2019 endosperm network at predicting endo-
sperm samples, Leiboff2015 shoot apical meristem network at
predicting seedling and meristem samples). Meta-networks built
frommultiple tissues and multiple genotypes sometimes perform
better than individual single-tissue networks (such as Li2017
networks), but in other cases show worse performance (such as
the Huang2018 and Li2019 networks). Surprisingly, the largest
network (Kremling2018 and subnetworks) rarely shows any pre-
dictivepower insurveyedpairedgenotypedatasets. Thiscouldbe
due to thedifferent library creationmethodsusedcompared to the
rest of the networks [39 RNA-seq versus poly(A) RNA-seq], the
relatively lowsequencingdepth (onaverage, three tofive times), or
the dilution of B73-Mo17 variation in the larger genotype panel
(Figure 7).

Overlap with Trans-eQTL Hotspots

Three eQTL studies in maize have been published to date: one
using 105 B73xMo17 RILs (Li et al., 2013), one using an associ-
ation panel of 368 inbred lines (Fu et al., 2013; Liu et al., 2017), and

Figure 5. (continued).

(E) and (F) Chlorophyllide biosynthesis pathway (E) potentially regulated by HB26 (Zm00001d008612; see [F]).
(G) Network key mappings used in (B), (D), and (F). Mappings of reference gene IDs to aliases were obtained from MaizeGDB (https://maizegdb.org/
associated_genes?type5allandstyle5table). For genes without aliases, the reference gene IDs were prefix-trimmed (Zm00001d) before displaying.
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oneusing623maizeW22xteosinteRILs (Wanget al., 2018). These
studies identified 96, 518, and 125 significant trans-eQTL hot-
spots, respectively, that each remotely regulate the expression
levels ofmultiple target genes (Li et al., 2013; Liu et al., 2017;Wang
et al., 2018). We asked whether the target genes associated with
each hotspot tend to share a common TF regulator based on the
TF-target predictionsmadeby each coexpression-basedGRN. In
most cases, target genes from the same trans-eQTL hotspot are
more likely to be regulated by a common TF (as predicted by
GRNs) than a simulated data set with randomly assigned eQTL-
eGene associations (see Methods; Supplemental Figures 17 and
18). In addition, the top 100,000 edges of each network consis-
tently showmuch greater enrichment for coregulating trans-eQTL

targets than the rest of the edges (i.e., top 200,000 to 1,000,000
edges; Supplemental Figure 17), which is consistent with the
resultsofGO/CornCyc functional validation.We thusonly focused
on the top 100k edges in each network for subsequent analyses.
Interestingly, the two biparental RIL networks (Li2013 B73xMo17
and Baute2015 B73xH99) show much stronger enrichment for
regulating the trans-eQTL targets than the W22xTeosinte RIL
network and the multi-parent MAGIC network (Supplemental
Figure 18). Fifteen nonredundant networks showing the highest
enrichment among the coexpression-based GRNs were chosen
for subsequent analysis (Supplemental Figure 18).
In total, 372TFswere identified in at least 2of the15high-quality

networks that show significant coregulation with at least one

Figure 6. TF-Target Validation of the Combined Tissue Network in Three Selected Natural Variation Data Sets.

Each panel shows the proportion of differentially expressed targets regulated by TFs showing different DE levels between two genotypes in one tissue/
treatment condition. For eachnetwork, the top 1million TF-target predictionswere binned to 10groups basedon the interaction score in theGRN. Each TF-
target pair is classifiedaccording to theDE level of theTF (non_DE,DE1-2,DE2-4, andDE41, or SPE) in eachnetwork. Theproportion of TF-target pairswith
the target al.so showing DEwas then determined for each category. Within each panel, the actual numbers of TF-target pairs falling into the SPE category
(i.e., purple line) are labeled next to each point. Dashed line in each panel represents the genome-wide (background) proportion of DE genes in each tissue/
treatment setting.
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trans-eQTL hotspot (hypergeometric test enrichment P-value <
0.01; seeMethods). When plotting the physical positions of these
TFs against the corresponding trans-eQTL hotspot locations
(coordinates from older assembly versions were all lifted over to
the AGP_v4 assembly), we found frequent colocalization of these
two coordinates (Supplemental Figure 19). This suggests that
many TFs fall within previous trans-eQTL hotspots and are pre-
dicted by multiple GRNs to regulate the same set of target genes
(as eQTL targets; i.e., eGenes). Sixty-eight TFs were found to
colocalize with 74 previously identified trans-eQTL hotspots
(within 50 Mbp on the same chromosome), each showing sig-
nificant overlap between their GRN-predicted targets and eQTL

targets (seeMethods; Figure 8A; Supplemental Data Set). In other
words, GRN predictions led to the identification of the candidate
regulator TF underlying 74 trans-eQTL hotspots.
Inspecting these 68 TF regulators validated by trans-eQTL

hotspots, we found both well-studied TFs with characterized
functions and a number with yet unknown functions. One well-
studiedexample is thecolored1gene (R1; Zm00001d026147) that
regulates the anthocyanin biosynthesis pathway (Figure 8B). A
crucial step in this pathway is the oxidation of the colorless leu-
coanthocyanidins to generate the colored anthocyanidins, which
play important roles as pigments in flowers and fruits in numerous
plants across the plant kingdom to attract insects for pollination

Figure 7. Enrichment in Differentially Expressed Targets Regulated by TFs That Show SPE Patterns.

The color and number in each cell represent the enrichment P-value (2log10 transformed, Benjamini–Hochberg adjusted hypergeometric test P-value) of
(SPE TF regulated) the proportion of the DE target relative to the genome-wide proportion of DEGs for each GRN (row-wise) evaluated against a tissue/
treatment condition in a natural variation data set (column-wise). Only edges in the first bin (top 100k) of each network were taken.
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Figure 8. Identification of TFs Underlying Trans-eQTL Hotspots Identified in Previous Studies.

(A)Colocalization of TFs predicted byGRNs in this study and trans-eQTL hotspots identified in previous studies that regulate the same set of targets. Each
dot represents aTF that is supportedbyat least twohigh-quality networks toshowsignificant coregulationwithat least one trans-eQTLhotspot and iswithin
50-Mbp distance from the trans-eQTL hotspot location.
(B) to (D) Identification of R1, COL11, andMYC7,which colocalize with previously identified trans-eQTL hotspots and act asmaster regulators of themaize
anthocyanin biosynthesis pathway (B), photosynthesis light reaction pathway (C), and JA biosynthesis pathway (D), respectively.
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and act as protectants against UV-B irradiation (Koes et al., 2005;
Grotewold, 2006). A previous study identified a trans-eQTL hot-
spot on chromosome 10 regulating the expression levels of eight
genes in the flavonoid biosynthesis pathway and suggested
that the basic helix-loop-helix (bHLH) family TF gene R1 is the
underlying regulator (Wang et al., 2018). Indeed, R1 is predicted
by at least three independent GRNs in this study to regulate
a set of target genes that are significantly enriched not only in-
flavonoid and anthocyanin biosynthesis pathways but also in
the targets of the previously identified trans-eQTL hotspot
(Figure 8B; Supplemental Data Set). Among the shared targets
are anthocyaninless2 (a2; Zm00001d014914), bronze1 (bz1;
Zm00001d045055), and bronze2 (bz2; Zm00001d052492), which
is consistent with previous findings from functional character-
izations (Figure8B;Grotewoldet al., 1998;Hernandezet al., 2004).

A number of TFs were found to be involved in photosynthesis-
related pathways (Supplemental Data Set). One such example is
the C2C2-CO-like-TF 11 (COL11; Zm0001d003162), which cor-
egulates a similar set of targets with a previously identified trans-
eQTL hotspot (hs014, Li2013; Figure 8C). Regulated genes of the
trans-eQTL showed enrichment for GO terms photosynthesis,
photosystem I, andphotosyntheticmembranecategories (Li et al.,
2013). Targets ofCOL11 in our newly built GRNs are also enriched
in similar GO categories as well as the photosynthesis light re-
action pathways (Supplemental Data Set). Although there is no
direct evidence thatCOL11playsa role in thispathway, theclosest
Arabidopsisortholog (AtCOL3;AT2G24790,BLASTE-valueof8e-
43) is annotated as a positive regulator of photomorphogenesis/
flowerdevelopment (Lameschetal., 2012). Furthermore,COL11 is
among the candidate genes associated with flowering time, ac-
cording to a previous genome-wide nested association mapping
study (Dong et al., 2012; Hung et al., 2012; Jamann et al., 2017).
Therefore,COL11 is a strongcandidateunderlying the trans-eQTL
(hs014) identified in a previous study (Li et al., 2013).

Another less-studied TF (myc transcription factor7 [MYC7];
Zm0001d030028) was predicted to regulate many of the same
target genes as a previously identified trans-eQTL hotspot
(Figure 8D; Supplemental Table 3). Among the targets regulated
by MYC7 are two lipoxygenase genes (TS1 or LOX8, and LOX10)
and three allene oxide synthase genes (AOS1, AOS2, and AOS3),
all of which are involved in the jasmonic acid (JA) biosynthesis
pathway (Figure 8D). Although no previous study has suggested
that MYC7 plays a role in the JA biosynthesis pathway, one study
showed thatMYC7mRNA levels increased in response to iron (Fe)
starvation and that homologous expression ofMYC7 restored the
growthof theyeast fet3 fet4mutant,which isdefective inboth low-
andhigh-affinityFe transport (Loulergueetal., 1998). Interestingly,
JAs play an important role in the response to Fe-deficiency stress
(Maurer et al., 2011; Hindt and Guerinot, 2012; Kobayashi and
Nishizawa, 2012). Therefore, it is possible thatMYC7 is induced in
Fe-deficient environments to activate the JA biosynthesis path-
way. Indeed, the closest ortholog of ZmMYC7 in Arabidopsis,
ATMYC2 (AT1G32640, BLAST E-value of 8e-142), is induced by
dehydration stress and abscisic acid treatment and regulates
diverseJA-dependent functions (Lameschetal., 2012).Moreover,
it should be noted that although previous eQTL analysis mapped
two of the pathway genes (aos1 and aos2) to an eQTL hotspot
(qtl0035) spanning theMYC7 gene, it was not able to fine-map the

actual TF regulator, nor was it possible to identify the involved
pathway due to lack of power to map other pathway genes to this
hotspot (Figure7C;Wangetal., 2018). Therefore,GRNsbuilt in this
studyoffer apowerful andefficient approach topinpoint theactual
regulator underlying the trans-eQTL hotspot and complement
previous eQTL studies in finding true TF-target associations.

DISCUSSION

The Value of Multiple Networks

One approach often used to generate coexpression networks and
coexpression-based GRNs is to include as many different sam-
ples as possible in a single large network. We were interested in
determining whether we would obtain distinct insights from dif-
ferent networks developed from specific subsets of the larger
available data sets. By consistently analyzing a large number
of maize RNA-seq data sets, we generated many different
coexpression-based GRNs. The comparison of GRNs generated
from many tissues for a single genotype (developmental atlases)
ormany different genotypes for a single tissue (genotype surveys)
can allow for widespread sampling of potential gene regulatory
relationships.While thesenetworksareall enriched forbiologically
meaningful connections, different networks capture distinct TF-
target associations (Figure 1) and show enrichment in distinct
processes and functions (Figures 2 and 4). Increasing sample
size was reported to generally have a positive effect on network
performance (Ballouz et al., 2015; Huang et al., 2017), consistent
with our comparison of tissue-specific or genotype-specific
(i.e., developmental atlas) networks of different sizes. In-
terestingly, this is not always the case when comparing networks
constructed from samples spanning multiple tissues of the same
genotypepanel (i.e.,meta-networks) to the various tissue-specific
networks (i.e., using only samples from the same tissue for the
genotype panel). For most ubiquitously expressed TFs and
general processes, meta-networks perform better than individual
tissue-specific networks (Figures 2, 3, and 5). However, for certain
TFs or processes with tissue-specific expression patterns (Fig-
ure 2, KN1 or O2), the transcriptional variation specific to a tissue
will be diluted in themeta-networkwith amuch larger sample size,
leading to a weaker signal of true TF-target associations, which
was also observed in a previous study comparing different co-
expressionnetworks in rice (Oryzasativa;Childsetal., 2011). Thus,
which typeof network (a tissue-specificnetworkwith largesample
size, or ameta-network spanningmultiple tissueswithmoderately
large sample size) should be used depends on the goal of the
analysis (general interactions or tissue-specific interactions).

Network Predictions Contain Many False Positives

While these coexpression networks contain useful information
and show significant enrichments for specific annotations or
pathways, they are also very prone to false positive predictions,
especially when sample sizes are small. By binning network
predictions according to their interaction scores, we found
that top-scoring network predictions (top 100,000) consistently
show better performance (enrichment in functional annotation,
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validation rate in paired genotype data sets, and so on) than the
rest of the predictions (Figures 2 and 5). Across networks built in
this study, we found that the top 100,000 predictions (or top 0.2 to
0.3%predictions fromeachnetwork, assuminga total of 2000TFs
by 20,000 targets5 40 million possible edges) is a good cutoff to
control for false positives while also keeping a high true positive
rate (Supplemental Figure 6), although a previous study com-
paring network topologies in yeast (Saccharomyces cerevisiae),
Caenorhabditis elegans, and fruitfly (Drosophila melanogaster)
suggests that 3.5 to 11.7% (i.e., 1.4 to 4.7 million) of all possible
edges shouldbeused (Oumaet al., 2018).While thisworkswell for
most small- to moderate-sized networks where a steep drop of
fold enrichment is typically observed from rank-10 to rank-9
predictions, it is not true for some well-powered networks with
large sample size, such as the tissue atlas combined (Huang2018
four tissues, Li2019 six tissues, and Zhou2018 B1M1F1 net-
works), inwhichastrongenrichment isobserved for rank-9oreven
rank-8 network predictions (Supplemental Figure 6). Therefore,
the level of functional enrichment in different-sized networks
can be used as an empirical indicator to inform proper network
filtering.

Presence/Absence Rather Than Quantitative Changes in TF
Expression Are More Likely to Result in Changes in Target
Gene Expression

By examining the power of our coexpression-based GRNs to
predict covarying TF-target relationships in paired genotype data
sets that include natural variation for gene expression, we found
that presence/absence expression changes of a TF (i.e., no ex-
pression versus moderately expressed) are very likely to result in
significant expression changes in target genes (Figure 6). On the
other hand, more subtle quantitative changes in TF expression
(e.g., differentially expressed but less than fourfold change) are
less likely to be associated with measurable changes (e.g., sig-
nificant DE) in the targets. This finding has potential implications
for how to best manipulate TFs in order to affect downstream
pathways and ultimately traits: overexpressing or under-
expressingaTF that isalreadymoderately expressedwill notbeas
effective as complete knockout of an actively expressing TF or
activating a TF that is normally repressed. However, changing
tissue-specific expression patterns of a TF may result in novel
changes to target gene expression in specific tissues.

We also explored different options to identify potential TF-
target associations in the context of natural variation (Figure 7).
The genotype panel used to build a cross-genotype network in
large determines the performance of this network in predicting
expression variation in a validation data set. In theory, the more
genotypes that go into network construction, thewider the range
of expression variation that will be captured by the network.
However, genotype-specific signals for rare alleles may be di-
luted in such large genotype networks as the panel size con-
tinues increasing (e.g., the poor performance of Hirsch2014 and
Kremling2018). The ideal network for a specific validation data
set is always a network spanning the compared genotypes or
their close relatives (phylogenetic neighbors). On the other hand,
a comprehensive developmental network—although built solely
withB73samples—hadstrikinglygoodperformance inalmost all

validation data sets, indicating that developmental covariation is
a good predictor of allelic variation in TFs that will affect GRNs
among genotypes. However, it should be noted that when the
genotype for which the developmental network is made
(i.e., B73) lacks a functional TF that is present in other lines, the
GRN for this TF will not be predicted in the B73 developmental
network.

Identification of TFs That May Regulate Important
Metabolic Pathways

By integrating information from our network predictions with
knownmetabolic pathwaysor previous eQTLmapping results,we
wereable to linkTFswithpotentialpathways.Using informationon
metabolic pathways inmaize,we identifiedmany examples of TFs
that regulatemultiple structural genes in these pathways. In some
cases, this identified TFs known to regulate the pathway, but in
other cases this resulted in prediction of TFs that may regulate
these pathways. By comparing the edges between the TF and
putative targets in the pathway in the different GRNs, it became
clear that the compilation of information from many different
networksprovidedamuchmorecomplete set of linkagesofTFs to
pathways than using single GRNs. The analysis of trans-eQTL
hotspots identified 68 TFs as the putative sources underlying 74
previously identified trans-eQTL hotspots. These putative trans-
regulators span a variety of metabolic pathways, including the
well-studied bHLH TF R1, which regulates the anthocyanin bio-
synthesis pathway, as well as the less-studied CONSTANS-LIKE
TF COL11 and the bHLH TF MYC7, which might act as crucial
regulators for the photosynthesis light reaction pathway and JA
biosynthesis pathway, respectively. This highlights the utility of
a large set of coexpression-based GRNs for identifying TFs that
may underlie trans-eQTL hotspots. These are potential targets for
breeding or biotechnology applications to influence specific
pathways or traits.
In summary, we compiled a comprehensive resource of maize

regulatory networksusing adiversecollectionof publicRNA-seq
data sets. These networks are supported by previous charac-
terizations of TF knockout mutants (Figure 1), show different
levels of enrichment in functional annotation including GO and
CornCyc metabolic pathways (Figure 3), and greatly expand the
breadthanddepthof previousworkonmaizeGRNs (Walley et al.,
2016; Huang et al., 2018). When evaluated against external data
sets of natural variation, some of the newly built GRNs achieve
high predictive power in predicting transcriptional changes in
targets (Figures 6 and 7). In addition, GRN predictions show
significant overlap with the results of previous eQTL studies, in
many cases allowing the finemapping/pinpointing of themaster
regulators underlying trans-eQTL hotspots (Figure 8). Among
these potential master regulators are well-studied TFs such
as R1 as well as TFs with uncharacterized functions yet prom-
ising external evidence (Figure 8). These validated regulators, as
well as other high-confidence network predictions, provide
excellent candidates for accurate and efficient manipulation of
valuable traits and pathways. We have constructed a dedicated
web portal (maizeGRN, https://maizeumn.github.io/maizeGRN)
for sharing these predicted TF-target interactions with the
community.
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METHODS

RNA-Seq Data Sets, Mapping, and Normalization

Raw sequencing reads from 21 published RNA-seq studies (9 de-
velopmental atlas/tissue time-course studies [Liu et al., 2013; Chen et al.,
2014; Chettoor et al., 2014; Li et al., 2014; Yu et al., 2015; Stelpflug et al.,
2016; Walley et al., 2016; Yi et al., 2019; Zhou et al., 2019], 11 population
studies [Eichtenet al., 2013; Fuet al., 2013;Hirschet al., 2014; Leiboff et al.,
2015; Lin et al., 2017; Kremling et al., 2018; Schaefer et al., 2018; Li et al.,
2019; Mazaheri et al., 2019; Zhou et al., 2019), and 4 RIL studies [Li et al.,
2013; Baute et al., 2015, 2016; Wang et al., 2018]) were downloaded from
the National Center for Biotechnology Information Sequence Read Ar-
chive, trimmed using fastp (Chen et al., 2018), and mapped to the maize
B73 AGP_v4 genome (Jiao et al., 2017) using hisat2 (Kim et al., 2015).
Uniquely mapped reads were assigned to and counted for the 46,023
reference gene models (Ensembl Plants v41) using FeatureCounts (Liao
et al., 2014). Raw read counts were then normalized using the trimmed
mean of M-values normalization approach (Robinson et al., 2010) to
give counts per million (CPM) reads and then further normalized by gene
coding sequence lengths to give fragments per kilobase of exonpermillion
reads values. Hierarchical clustering and principal component analysis/
t-distributed stochastic neighbor embedding analysis was used to explore
sampleclusteringpatterns.Outlier replicateswith lowmapping rateorpoor
correlation with other replicates from the same sample were discarded.
Replicates (technical or biological) were merged into a single sample with
the resulting expression matrix re-normalized. All tissue/developmental
atlas data sets (Liu et al., 2013; Chen et al., 2014; Chettoor et al., 2014; Li
et al., 2014;Yuet al., 2015;Stelpfluget al., 2016;Walleyet al., 2016;Yi et al.,
2019;Zhouetal., 2019)werecombinedand re-normalized tocreatea larger
developmental expressiondata set. The threepopulation studies spanning
multiple tissues in panels of inbred lines (Lin et al., 2017; Kremling et al.,
2018; Zhou et al., 2019) were separated by tissue to create five, seven, and
six tissue-specific networks, respectively. Pipeline scripts, normalization
code, and expressionmatrices are available at Github (https://github.com/
orionzhou/rnaseq).

GRN Construction

Normalized CPM matrices from the 21 aforementioned RNA-seq data
sets were filtered to remove silent (CPM < 1 in all samples) and in-
variable (SD of CPM5 0) genes. A set of 2289 maize TFs were obtained
from PlantTFDB (Jin et al., 2017) and converted to 2211 AGP_v4 gene
models using the v3_to_v4 mapping table from maizeGDB (Andorf
et al., 2016). All GRNs were built using the Python machine learning
library scikit-learn and XGBoost (Pedregosa et al., 2011; Chen and
Guestrin, 2016). TransformedCPMmatrices and the list of putative TFs
were used to train three regression models (random forest, extra trees,
and xgboost) for each data set using the RandomForestRegressor(),
ExtraTreesRegressor(), and XGBRegressor() classes, respectively. Ran-
domForest and ExtraTrees regression models were built using the param-
eters “–n_estimators51000–criterion5mse–max_features5sqrt” and
XGBoost regressionmodels were built using parameters “–n_estimators
51000–max_depth53–learning_rate50.0001–reg_alpha50–reg_lambda51”
(Pedregosa et al., 2011; Chen and Guestrin, 2016). For each regression ap-
proach, 44 GRNs in total were constructed, including four developmental
networks built using different tissues/developmental stages of the B73 line
(three independentdatasetsandonecombineddataset including237different
tissues or stages of B73), 23 tissue-specific networks built using the same
tissue sampled from multiple inbred lines, 4 tissue-genotype networks that
includemultipletissuessampledfromapanelof inbredlines,and1networkbuilt
usingshootapicalmeristemsampled from108B73xMo17RILs (Figure1). Five
GRNs generated in two recent studies including a maize developmental

network (Walley et al., 2016) and four tissue-specificnetworks (leaf, root, shoot
apical meristem, and seed; Huang et al., 2018) were also included (Figure 1).

GRN Evaluation Using Results from Existing TF Functional Studies

Previous studies have characterized several maize TFs including KNOT-
TED1 (KN1; Bolduc et al., 2012), RAMOSA1 (RA1; Eveland et al., 2014),
FEA4 (Pautler et al., 2015), O2 (Li et al., 2015a), HDA101 (Yang et al., 2016),
and bZIP22 (Li et al., 2018) through ChIP-seq and/or knockout mutant
RNA-seqanalysis. Thepredicted targetsof theseknownTFsserveasgood
candidates to evaluate the biological relevance of the GRNs built in this
study. The performance of each GRN was evaluated using the receiver
operating characteristic (ROC) curve space, defined over quantities de-
rived from a confusion matrix that consists of four basic numbers that
represent the correctness of link predictions: the number of correctly
recognized true network links (true positives [TP]), number of correctly
recognized absent links in the true network (true negatives [TN]), and links
that either have been incorrectly predicted to be present (false positives
[FP]) or true network links that were predicted as absent (false negatives
[FN]). The ROC curve then depicts the relative trade-offs between TP rate
(i.e.,

TP
TP1FN

) and FP rate (i.e.,
FP

FP1TN
). Area under the curve was then

evaluated for each GRN, which integrates the area below the two-
dimensional ROC curve. Area under the receiver operating characteris-
tic (AUROC)values range from0 to1,withavalueof1 representingaperfect
classifier, values of ;0.5 indicating that the classifier is no better than
a default (random) classifier, and values below 0.5 indicating even worse
performance than a random classifier.

Since ROC curve can be misinterpreted if the problem under consid-
eration is characterized with an imbalanced distribution of class values,
that is, there are far more TN than TP, which is often the case in GRN
reconstruction,weused apartial AUROCscore that only considers the first
part of the curve before an FP rate of 10% is reached. Similarly, a random
classifier will have a score of 0.005 for the partial AUROC, with a higher
score (>0.005) indicating a better classifier.

Instead of using the direct targets for each TF, a slightly different ap-
proach was also taken to utilize all DEGs from the TFmutant relative to the
wild type to evaluate enrichment for both direct and indirect targets. Paired
RNA-seqdatawithat least twobiological replicates forboth themutant and
thewild typewerecollected for 17maizeTFs (Supplemental Table 1).DEGs
between theTFmutantand thewild typewere then identifiedusingDESeq2
(P-value < 0.01; Love et al., 2014). Wilcox rank test was then performed
using thepredicted (TF-target) interactionscoresbetween thegroupof true
targets (DEGs) and nontargets (non_DEGs), with test P-value 2log10
transformed and missing data suggesting the TF being tested (knocked
out) is not expressed in the corresponding GRN.

GRN Evaluation Using GO and CornCyc

GO annotations for maize AGP_v4 were obtained from maize-GAMER
(Wimalanathan et al., 2018), andmaizemetabolic pathway informationwas
downloaded from CornCyc at maizeGDB (Andorf et al., 2016). We eval-
uatedhowoften twogenesannotated to thesameGOtermarepredicted to
be regulated by the same TF in a certain GRN. Specifically, for each GRN,
we counted the number of gene pairs coannotated to the same GO term
that are also coregulatedby the sameTF. Toobtain thebackground level of
GO/regulator sharing,weshuffledtheGOlabelsandcounted thenumberof
such gene pairs again. This process was repeated 100 times to create
a distribution of coregulated gene pairs for each GO term in random
networks, which enables the calculation of a significance P-value for the
observed level of coregulation. A P-value threshold of 0.05 was used to
assess significance level. If a GO term was found to be significantly en-
riched, an enrichment score (fold change) was calculated using the ob-
servednumber of coregulatedgenepairs dividedby theaveragenumber of
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coregulated gene pairs in 1000 permutations. Only GO or CornCyc terms
with more than two members predicted as targets in each GRN were in-
cluded in the analysis. The global enrichment fold change and significance
levelweredeterminedbysummingall coregulatedgenepairs over different
functional categories for each GRN as well as the permuted network.

GRN Evaluation Using Natural Variation Data Sets

Data for a total of 42 paired tissue/treatment samples with at least three
biological replicates per sample betweenB73 and a different genotypewere
obtained from four published transcriptomic studies (Supplemental Table 2;
Marconet al., 2017;Waters et al., 2017; Sunet al., 2018; Zhouet al., 2019). In
order to test the assumption that a regulator (TF) with DE between the two
genotypes in a certain tissue/condition would result in DE for the targets of
thisTF (aspredictedbyGRNs) in thesametissue/condition,we implemented
the following assessment. DEGs between the two genotypes were first
identified ineachpair of tissue/treatment samples usingDESeq2 (Loveet al.,
2014). In each comparison, a TF was classified into different DE categories
(non_DE, DE1-2, DE2-4, DE41, and SPE, where one genotype has com-
pletely lostexpression)andtheproportionofpredictedtargetsalsoexhibiting
DEwasassessed. Inaddition, theTF-targetpredictions ineachnetworkwere
binned into 10 groups according to their interaction score predicted by the
regression model with the assumption that stronger TF-target interactions
may receive stronger support from the natural variation data sets.

eQTL Validation

eQTL-eGene associations were downloaded from three previous maize
eQTL studies (see Supplemental Methods; Li et al., 2013; Liu et al., 2017;
Wang et al., 2018) and converted to AGP_v4 genome coordinates and gene
IDs.cis- and trans-interactionsweredeterminedbasedonwhether theeQTL
andeGene (i.e., targetgene) areon the samechromosomeandwithin 1-Mbp
physical distance. eQTLs that regulate more than 10 target eGenes in trans
were then tagged as trans-eQTL hotspots and kept for further evaluation.
eGenes associated with each trans-eQTL hotspot were checked for en-
richment of being coregulated by common TFs as predicted by each GRN,
using an identical permutation approach described in the GO/CornCyc
enrichment section. In general, target genes within the same trans-eQTL
hotspot aremuchmore likely to be regulated by a common TF (as predicted
by each GRN) than a randomly generated GRN. Whenever an enrichment
wasdetected (i.e., aTFaspredictedby theGRNsharingasignificantnumber
of target geneswith a previously identified trans-eQTL hotspot), the physical
location of the TF was obtained for a colocalization test with the trans-eQTL
hotspot (on the same chromosome and within 50 Mbp).

Accession Numbers

All network predictions are available for download at https://maizeumn.
github.io/maizeGRN. Code used to build and evaluate networks is avail-
able at GitHub (https://github.com/orionzhou/grn). The processed data
sets used to create networks and predicted interactions are deposited at
http://hdl.handle.net/11299/212030.

Supplemental Data

Supplemental Figure 1. Comparison of GRNs built using different
methods according to the enrichment of functional annotations (Gene
Ontology, CornCyc, and so on).

Supplemental Figure 2. Number of true TF targets captured by the
top one million predictions and the top 100K predictions in each GRN.

Supplemental Figure 3. Evaluation of GRNs using support from direct
targets of eight known TFs.

Supplemental Figure 4. Evaluation of GRNs using support from 31
maize TF DAP-Seq data sets.

Supplemental Figure 5. Evaluation of GRNs using support from 17
maize TF knockout mutant RNA-Seq data sets.

Supplemental Figure 6. Enrichment of co-annotated GO/CornCyc
terms in co-regulated network targets.

Supplemental Figure 7. Different GRNs capture distinct parts of
documented transcriptional regulation interactions from Arabidopsis
for the abscisic acid (ABA) pathway and HY5 (Elongated Hypocotyl 5)
regulated pathway.

Supplemental Figure 8. Evaluation (AUROC and Wilcox P-value) of
constructed GRNs using four sets of predicted TF-target interactions
based on TF binding site motif, conserved element of TFBS motif, or
FunTFBS.

Supplemental Figure 9. Hierarchical clustering of 45 GRNs.

Supplemental Figure 10. T-SNE clustering of 45 GRNs.

Supplemental Figure 11. Hierarchical clustering of 98 Gene Ontology
(Uniprot.Plants, level 6) terms using fold enrichment in different GRNs.

Supplemental Figure 12. Different GRNs support different parts of the
anthocyanin biosynthesis pathway.

Supplemental Figure 13. Different GRNs support different parts of the
DIMBOA pathway.

Supplemental Figure 14. Different GRNs support different parts of
the chlorophyllide biosynthesis pathway regulated by homeobox-
transcription factor 26 (HB26, Zm00001d008612).

Supplemental Figure 15. Different coexpression-based GRNs cap-
ture distinct parts of classic and CornCyc metabolic pathways.

Supplemental Figure 16. TF-target validation of the combined tissue
network in all six selected natural variation data sets.

Supplemental Figure 17. Enrichment of co-regulated targets between
previously identified trans-eQTL hotspots and TF-target associations
predicted by GRNs.

Supplemental Figure 18. Enrichment of co-regulated targets between
previously identified trans-eQTL hotspots and TF-target associations
predicted by GRNs.

Supplemental Figure 19. Co-localization of TFs predicted by GRNs in
this study and trans-eQTL hotspots identified in previous studies that
regulate the same set of targets.

Supplemental Table 1. ChIP-Seq and DAP-Seq data sets used in
this study.

Supplemental Table 2. TF knockout mutant RNA-Seq data sets used
in this study.

Supplemental Table 3. Natural variation data sets used for validation
in this study.

Supplemental Data Set. GRN-predicted TFs supported by trans-
eQTL hotspots.

Supplemental Methods.
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