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Maize (Zeamays) is one of themost important crops in the world. However, few agronomically important maize genes have been cloned
and used for trait improvement, due to its complex genome and genetic architecture. Here, we integrated multiplexed CRISPR/Cas9-
based high-throughput targetedmutagenesiswith geneticmapping and genomic approaches to successfully target 743 candidate genes
corresponding to traits relevant for agronomy and nutrition. After low-cost barcode-based deep sequencing, 412 edited sequences
covering 118 genes were precisely identified from individuals showing clear phenotypic changes. The profiles of the associated gene-
editing events were similar to those identified in human cell lines and consequently are predictable using an existing algorithm originally
designed for human studies. We observed unexpected but frequent homology-directed repair through endogenous templates that was
likely caused by spatial contact between distinct chromosomes. Based on the characterization and interpretation of gene function from
several examples, we demonstrate that the integration of forward and reverse genetics via a targetedmutagenesis library promises rapid
validation of important agronomic genes for crops with complex genomes. Beyond specific findings, this study also guides further
optimization of high-throughput CRISPR experiments in plants.

Introduction

Global cropproductionwill need todoubleby2050 inorder to feed
the increasing world population. As one of the most important

crops for food, feed, and fuel in agriculture, raising the yield of
maize (Zea mays) will contribute to meeting our needs for food
production beyond current projections (Ray et al., 2013). Most
maize yield traits are quantitative, and cloning the causal genes
and dissecting the underlying mechanisms affecting these traits
are both key to continuous genetic improvement.
As a classical model system for genetic studies, hundreds of

quantitative trait loci (QTL) for many traits have already been
mapped inmaize (Xiaoetal.,2017;LiuandYan,2019).Nonetheless,
the number of causal genes confirmed within these QTL regions is
relatively small compared to rice (Oryza sativa) and Arabidopsis
(Arabidopsis thaliana). Large-scale efforts aimed at genome-wide
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mutagenesis based on the random insertion of various elements in
the genome (transposon, T-DNA, or the Tos17 retrotransposon)
have been a key resource employed widely in rice and Arabidopsis
over the last two decades (Jeon et al., 2000; Alonso et al., 2003;
Wang et al., 2013). Although transposon tagging andmutagenesis
by the Activator (Ac) and Dissociation (Ds) transposable elements
(Cowperthwaite et al., 2002; Vollbrecht et al., 2010) andUniformMu
(May et al., 2003; McCarty et al., 2005; Settles et al., 2007) or
chemical mutagens such as ethyl-methanesulfonate (Lu et al.,
2018) have all been used inmaize, the exact identification of causal
gene(s) among the tens or even hundreds of loci within a line that
might havebeenmutatedbut arenot responsible for thephenotype
under question is still costly due to the complexity of the maize
genome. The laborious and low-throughput nature of classical
forward genetics approaches that rely on the segregation of the
causal mutation(s) in a mapping population hinders the successful
and rapid application of these resources in many plant species.

The RNA-guided CRISPR/Cas9 (clustered regularly interspaced
short palindromic repeats/CRISPR-associated protein 9) system
represents a massive breakthrough both in terms of simplicity and
efficiency (Cong et al., 2013; Mali et al., 2013) and has been ex-
tensively applied in plant genome editing since 2013 (Li et al., 2013;
Nekrasov et al., 2013; Shan et al., 2013). Although more difficult to
apply to plant species than to human cell lines (Yin et al., 2017),
CRISPR/Cas9-based genome editing has recently been suc-
cessfully applied to large-scale mutagenesis efforts in rice (Lu
et al., 2017; Meng et al., 2017) and soybean (Bai et al., 2019). Due
to its convenience, low cost, high specificity, and high-throughput
scalability, CRISPR/Cas9-basedediting therefore holds great promise
for functional crop genomics. However, a proof-of concept study that
demonstratesthefeasibilityandefficiencyofsuchanapproachissofar
lacking for complex genomes such as maize.

In this study, we report the development of a CRISPR/Cas9-
based editing platform adapted to high-throughput gene targeting
in maize, and its application in functional gene identification by
integrating over 1000 candidate genes derived from genetic mapping
and comparative genomic analysis (Figure 1). Through the use
of state-of-the-art sequencing technologies and validation by
Sanger sequencing, we established low-cost optimized and
quality-controlledpipelines for eachstep, from thedesignofguide
RNAs (sgRNAs) to the identification of targeted genes and edited
sequences. Our study also expands on two key aspects that are
critical during large-scale plant genome-editing research. First,
general properties and insights for outcomes of plant genome
editing were obtained and could serve as a reference for other
crops. Second, knowledge-driven candidate genes were se-
lected, and a large number of mutants were screened using lines
from T1 or follow-up generations. Our results indicate that the
integration of high-throughput gene-editing and forward-genetic
approaches has great potential in rapid functional gene cloning
and validation.

RESULTS

Establishment of CRISPR/Cas9-Based Batch
Targeting System

Based on existing and tested vectors formaize (Li et al., 2017) and
rice (Lu et al., 2017) transformation, three vectors were opti-
mized to allow one-step construction via overlapping PCR
combining homologous recombination or T4 DNA ligase ligation
(Supplemental Figure 1; seeMethods). These vectors are suitable
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for pooled CRISPR/Cas9-based knockout for individual sgRNAs
or paired sgRNAs in each plasmid.

For all three vector types (Supplemental Figure 1), we used the
maize inbred line KN5585 for Agrobacterium tumefaciens-mediated
transformation of immature embryos, with an average 14%
transformation efficiency (Supplemental Table 1). To explore the
gene-targeting efficiency of our constructs, we designed four
sgRNAs within a single plasmid to target the ZmPLA1 (PHOS-
PHOLIPASE A; Liu et al., 2017a), resulting in a mutation rate
ranging from 79% (23/29) to 83% (24/29) in the T0 generation
(Supplemental Figure 2). This high-targeting frequency is con-
sistent with a previous study (51 to 91%; Li et al., 2017) andmay
beaconsequenceofusingamaizeendogenousRNApolymerase III
promoter todrive theexpressionof the sgRNA (Qi etal., 2018). Even
thoughthe relatively lowtransformationefficiency inmaizepresents
amassivechallenge, thehigh targetingefficienciesof these vectors
rendered subsequent experiments possible.

Choice of Candidate Genes for Batch Editing

A total of 1244candidategeneswerecollected forpooledknockout
experimentsand functional validation.Thecandidatesweredivided
into two sets. Set no. 1 included 98 genes that had been either (1)
fine-mapped to regions with one to a few candidate genes by
linkagemappingor (2)derived fromcomparativegenomics,aseach
individual gene showed a high probability of being associated with
various traits. Set no. 2wasmadeupof 1181 genes,mainly from70

mapped QTL regions corresponding to 27 agronomically relevant
traitsand including35genes thatoverlappedwith those fromsetno.
1 (see Methods; Supplemental Figure 3). These candidate genes
served as a springboard for building the batch editing pipeline. This
study also intended to establish a preliminary targeted mutant li-
brary for maize functional genomic studies.
Since the KN5585 line originates from the tropics, its genome

differs significantly from the B73 reference genome. We therefore
established a new pseudoreference by deep sequencing of ge-
nomic DNA (to ;603 coverage) and RNA samples collected
from seven diverse tissues. Assembled contigs were used for
genotype-specific sgRNA design (see Methods; Figure 1B).
sgRNAs obtained by this method were confirmed by Sanger
sequencing on all set no. 1 candidates, ensuring high reliability of
sgRNA design. Double sgRNAs in one vector were designed
primarily for set no. 1 genes (double-sgRNA pool, DSP), with the
expectation that this would increase the probability of obtaining
knockout lines. Individual sgRNAsper vectorwereused for set no.
2 genes (single-sgRNA pool, SSP). These two sets were used
separately, leading to a total of 1290 vectors consisting of 1368
sgRNAs for 1244 genes.

High Uniformity and Coverage of sgRNAs during Pooled
Construction and Transformation

Coverage and uniformity are two key factors during pooled
transformations, so that all cloned vectors are represented within

Figure 1. Pipeline of High-Throughput Genome-Editing Design.

(A) Candidates selected from QTL fine mapping, genome-wide association mapping studies (GWAS), and comparative genomics.
(B) Line-specific sgRNA filtering based on assembled pseudo-genome of the receptor line KN5585.
(C) Different vector construction approaches of double sgRNA pool (DSP) and single sgRNA pool (SSP).
(D) Measuring the coverage and uniformity during plasmid pool by deep-sequencing.
(E) to (G) Transformation and assignment of targets to each T0 individual by barcode-based sequencing.
(H) to (J) Identification of mutant sequences by Sanger sequencing.
(K) and (L) Identification of mutant sequences by Capture-based deep-sequencing.
(M) Measuring phenotype changes and identification of functional genes.
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pools. Since only the spacer sequences (e.g., 20 bp) of sgRNAs
differed between vectors, primers from flanking sequences were
used to amplify these sequences for next-generation sequencing
(NGS) inorder toevaluate the relativepresenceofdifferent sgRNAs.
No significant differences were observed between the two pooling
strategies, that is either pooling after construction for the DSPgene
set (mixing the vectors separately) or pooling after ligation for the
SSP gene set (mixing ligation reagents first, followed by pooled
construction). Indeed, both had acceptable uniformity and cover-
age for sgRNAdistribution. Nevertheless, pooling after ligationwas
easier to implement. The uniformity and high coverage for sgRNA
distribution was also stable following different culture periods and
after Agrobacterium transfection (Figures 2A and 2B).

The coverage of pooled sgRNAswas high, 98%on average. Only
a fewsgRNAscould not bedetected at any given stage. Thismaybe
caused by sequencing bias, since undetected sequences usually
could be found at other stages. For example, 52 of the 1181 gRNAs
from SSP were not detected before the transformation but were
subsequently identified in T0 plants. Together, these results implied
thatcoveragewasuniformandsufficient toconstructamutant library.

A Barcode-Based NGS Approach Reveals the Uniformity
and Coverage of sgRNAs in T0 Plants

Six CRISPR libraries of sgRNAs were separately transformed into
immature embryos via cocultivation with Agrobacterium tume-
faciens, and a total of 4356 T0 seedlings resistant to the herbicide
glyphosate were transplanted (Table 1). DNA from leaves of each
T0 seedlingwassampled at least in duplicate, andsgRNA-specific
PCR followed by barcode-based deep sequencing was per-
formed to identify the corresponding target(s) within each plant
(Figure 1D; Supplemental Figure 4). Carewas taken to ensure high
reliability of target determination (see Methods; Supplemental
Figure 5). In total, 3695 (or 85%)of T0 plantswere reliably assigned
to 778 vectors corresponding to 743 target genes and used for
further analysis, while unconfirmed plants were verified in addi-
tional experiments. Most positive T0 plants (2704, or 73.2%)
carried single event, while double and triple coinfections were
found in 21.5% and 3.8% of cases (Figure 2C), respectively.

The number of T0 plants isolated for a given sgRNA was pos-
itively correlated (P<2.0E-5)with theamountof eachsgRNA in the
plasmid pool, although differences were slightly magnified in the
transgenic lines (Figure2D), implying thatabalancedvectorpool is
necessary to obtain a balancedmaizemutant library. On average,
4.3 T0 individuals were obtained for each target sgRNA (Table 1).
We used a simulation analysis to model that 4 to 10 T0 plants
(relative to gene/vector number) were required to cover at least
98% of the chosen candidate genes (see Methods). Interestingly,
our simulation analysis suggested that the number of mixed
vectors in each batch should be over 50 in order to avoid large
deviations from the expected coverage (Supplemental Figure 6).

Efficient Identification of Sequence Variation in
Edited Plants

Identification of induced sequence variants with high sensi-
tivity and accuracy remains a challenge for high-throughput

experiments. Using Sanger sequencing, we found 449 (out of
a total of531,or;85%)T0 individuals fromtheDSPwithmutations
at target loci, and 118 (26%) had large deletions between two
sgRNAs. Sanger sequencing was inadequate for accurate variant
identification, especially for individuals with multiple variants, and
was also time consuming and labor intensive when many lines
and/or genes were analyzed.
We therefore developed an improved method based on the

MassARRAY system, which is usually used for genotyping known
variants (Ellis and Ong, 2017), with sequential primer combina-
tions to infer the as-yet-unknown mutated alleles. This method
was particularly suitable for efficient medium-scale (20 to 50)
gene identifications (Supplemental Figures 7 and8; Supplemental
Table 2) and was used in a single experiment to successfully
identify24 lineswithexactmutationsamong30 randomlyselected
T0 individuals from the SSP experiments. These results were
consistentwithSanger sequencing.Theobservedmutation rate in
the SSPwas estimated to be around 80% (24 of 30), slightly lower
than that of DSP (83%;85%).
In order to scale up the method to allow for high-resolution

detection of induced mutations to many genes and to render the
method capable of estimating allele-specific mutation efficiency,
we turned to target-region capture-based sequencing (TRC-seq;
seeMethods). We designed 113 primers for 106 genes to capture
regions flanking sgRNA target sites from T1 lines with obvious
morphological changes. Since we had already identified their
respective individual target genes during the T0 generation, 20 to
25 individuals with different targets could be combined into
a batch for TRC-seq without compromising on sensitivity. A total
of 1208 unique T1 lines from 60 pools were assayed by this
method, of which 656 were also characterized by Sanger se-
quencing. We used the improved biologically informed alignment
algorithm CRISPResso2 (Clement et al., 2019) for deconvolution
of edited alleles from deep-sequencing data. Mutated alleles
identified by TRC-seq included all the homozygous mutations
that we had identified by Sanger sequencing, indicating its high
sensitivity.
While a median of 81% of edited genes identified by TRC-seq

was consistent with previous target assignment, the remaining
19% of mutations, from 19 genes, were newly identified, com-
pared with previously assigned individuals/targets. These results
demonstrated (1) the highly reliable but conservative target as-
signment and (2) the superior efficacy of the TRC-seq method in
mutation identification. Even though CRISPResso2 has multiple
advantages in the identification of mutant alleles, it also had
a propensity for false-negative discovery, since a large number
(130 of 292, or 39%) of lines, covering a total of 32 genes, were
identified as homologous alleles exclusively by the Sanger
method. To explore the contribution of rigorous filtering and
alignment procedures, a standard variant calling pipeline followed
by global mapping of short reads to the pseudogenome was
additionally integrated in order to detect mutant alleles (see
Methods). With an acceptable reliability of only three lines (out of
166, ;2%) differing from the overlapped homologs called by
Sanger method, this method remedied nearly 40% (51 of 130) of
the CRISPResso2 false negatives. However, 27% (79 of 292)
false-negative discoveries (compared to Sanger sequencing) still
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remained, possibly causedby thebiasedmixingof individuals and
asymmetrical capture during deep sequencing.

Pattern and Predictability of Mutations Generated by Editing

Considering the complementary ways in which our different
methods addressed mosaicism (described below in detail), the
mutations identified from SSP and DSP pools using Sanger se-
quencing andTRC-seqweremerged for further analysis. A total of
326 uniquemutant sequences in 109 genes corresponding to 135
individual sgRNAswere collected. An additional 86 nonredundant
structural variants between paired sgRNAs of 53 genes were also
identified (Supplemental Data Set 1), providing a representative
resource to understand the genome-wide distribution of editing
in maize.

For the individual target mutated sequences, most (60%)
were deletions (DELs) of 1 bp to 65 bp, with a median of 3 bp.
Breakpoints were enriched within a 4-bp window 3 to 6 bp up-
stream of the NGG PAM (protospacer-adjacent motif) sequence.
Insertion-type (INS) mutants accounted for nearly one-third
(32.5%), with 90% being single bp insertions and usually oc-
curring within the predicted nuclease cleavage site (three to four
nucleotides upstream of the PAM; Figure 3A). Most of the re-
maining mutations (8%) were single nucleotide polymorphisms
(SNPs), transversions being twice as frequent as transitions. In-
dividual sgRNAs sometimes produced large deletions or in-
sertions. In contrast, when using paired sgRNAs, we often
observed structural variants between the target sites, with dele-
tions being the most frequent (91%; Supplemental Figure 9A).
For genes targeted with two sgRNAs, whether a large deletion

Figure 2. High Coverage and Uniformity from Plasmid Pool to T0 Individuals.

(A) and (B)Plasmid sequencing in quality-control process (A), results of measuring the coverage and uniformity of sgRNA amount (B). T1, Primary plasmid
pool beforeAgrobacterium transfection, at t0. T2, Plasmid pool extracted from the firstAgrobacterium colonies. T3, Plasmid pool randomly extracted from
20%of colonies of secondAgrobacterium transfections. T4, Plasmid pool specifically taken from33 to 50%of fresh andmore vigorous colonies of second
Agrobacterium transfection for further embryo transformation. t0, The primary plasmid pool beforeAgrobacterium transfection; t48/t60, 48 h or 60 h culture
on solidmediumafterAgrobacterium transfection. The sgRNAs are ordered along the x axis based on their ID number. The "DSP1-T1" and "DSP1-t0" in the
top panel here were equivalent to technical repeats.
(C) Ratio of coinfection events in six batches (three SSPs and three DSPs) and total.
(D)Correlation of sgRNA relative amount betweenplasmidpool (black) andT0 individuals (red). Proportion lineswere smoothed. All sgRNAs along the xaxis
were sorted according to their relative proportion in the plasmid pool.
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between the two sgRNAs or a small insersion or deletion (InDel) at
each individually sgRNA target site was induced could not be
predicted (Supplemental Figure 9B), although the distance be-
tween paired sgRNAs was found to slightly affect the outcomes
(Supplemental Figures 9C and 9D).

Recent studies suggest high predictability of genome editing in
humancell lines (Shouet al., 2018;Chakrabarti et al., 2019), andan
algorithm to predictmutational outcomes usingonly flankingDNA
sequences has been described (Allen et al., 2018). Interestingly,
even though thealgorithmwasrefinedusinghumancell linedata, it
was able to predict the outcome of 72% of the observed alleles in
this study, and this increased to 85% for DELs (Figure 3C). Fur-
thermore, the algorithm estimated allele frequencies for true
observed variants much better than background (P 5 2.3E-16;
Figure 3D), suggesting that primary alleles were readily captured.
Despite the fact that many of the mutants not predicted by the
algorithm were large (for example, 24% of such nonpredicted
DELs were longer than 10 bp) and the presence of cell-line-
dependent bias (Allen et al., 2018), the predictions developed
from human data are therefore largely transferable to plants. Even
though plants have unique mechanisms for repair of double-
strand breaks (Spampinato, 2017) and somewhat different mu-
tation signatures are observed between animals and plants
(Bortesi et al., 2016), our study provides the justification to apply
mutant allele prediction in advance of sgRNA design to guide
precise editing in plants.

We next used a tree-basedRandomForest algorithm to test the
effect of sgRNA sequences in predicting the outcomes produced
in this study. Given the limited data size, the general accuracy on
classifying the mutant types (INS, DEL, or SNP) from sgRNA se-
quences was low (Supplemental Figure 10). To ask what additional
factors beyond sgRNAs and their flanking DNA sequences might
affect editing outcomes, we also considered the expression
patterns of the candidate genes as an additional explanatory
variable (Supplemental Figure 10A). Interestingly, the expression
variability of target genes along diverse tissues affected the size
of InDel events and the position of DELs, as higher expression
variability was associated with smaller mutations that were more

proximal to the predicted nuclease cleavage site (Supplemental
Figures 10D and 10G). SNPs in target genes with higher ex-
pression in the shoot apical meristem also appeared to be more
proximal to thepredictednucleasecleavage region (Supplemental
Figure 10F and 10G). Previous studies also found that chromatin
states and active transcription affect Cas9 binding (Verkuijl and
Rots, 2019) and editing mutant profiles (Chakrabarti et al., 2019)
and thus further exploration onhowexpression changes influence
mutational outcomes could lead to improved predictability.

Homology-Directed Repair with Endogenous Templates as
a Means of Mutant Generation

Programmable nucleases introduceDNAdouble-strandbreaks at
user-defined target sites and thus engage the inherent repair
systemssuchaserror-pronenonhomologousend joiningor, in the
presence of a DNA template, homology-directed repair (HDR).
Among the mutants identified from TRC-seq of SSP T1 lines, we
identified two clear cases of HDR that used interchromosomal
endogenous templates (Supplemental Figure 11). Given the total
of 154 mutated InDels covering 63 genes, these two cases ac-
counted for 1.3% and 3.2% of total mutations and genes, re-
spectively, suggesting a much higher frequency than previous
reports in plants (Puchta, 1999; Ayar et al., 2013). Evidence for the
hypothesis that nonhomologous end joining repair occurred se-
quentially after initial cleavage, resulting in HDR, was also ob-
served (Supplemental Figure 11B). The estimated mutant
frequencies caused by HDR were 1% and 20% for these two
genes, respectively. These ratioswere comparable to studies that
improved HDR efficiency using exogenous templates in plants
(Gil-Humanes et al., 2017; Wang et al., 2017a; Li et al., 2019b). An
improved genomeassembly of themaize transformation recipient
line used here (KN5585) will improve the detection of more en-
dogenous HDR events.
The targets and corresponding templates for the two docu-

mented cases of HDR were homologues with highly correlated
expression patterns (Supplemental Figure 11C). Interestingly,
for one case, the chromatin bearing the homologous template

Table 1. Statistics of the Genome-Editing Experiments

Pool Batch sgRNAs Vector No. (Vn)
a V9n in Plasmidb T0 No. Assigned T0 (Pn)

c V9n in T0 Plants
d Genotyped Linese Edited Lines

DSP DSP1 90 49 48 157 125 38 95 79
DSP2 78 40 37 342 296 34 263 224
DSP3 191 100 98 387 379 75 173 146
DSP 191 104 103 886 800 93 531 449

SSP SSP1 959 959 936 940 860 340 – –

SSP2 1186 1186 320 1374 1016 257 – –

SSP3 1186 1186 1173 1156 1019 466 – –

SSP 1186 1186 1178 3470 2895 685 1,290 693
Total 1368 1290 1281 4356 3695 778 – –

Dashes indicate no data. Bold text represents the sum of each pool and the total of them.
aTotal vector number (Vn) pooled in this study.
bObserved vector number (V9n) in plasmid pools.
cT0 individuals successfully assigned to linked targets.
dVector number covered by those successfully assigned T0 individuals.
eThe number genotyped for DSP is indicated by the total T0 lines. The number of T1 lines with phenotypic change were selected for SSP genotyping
(thus it is inappropriate and not used for estimation of general mutant ratio).

1402 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1
http://www.plantcell.org/cgi/content/full/tpc.19.00934/DC1


and the target gene were shown to come in close proximity to
each other, although they are located on different chromosomes
(Supplemental Figures 11C and 11D; Peng et al., 2019), sug-
gesting that higher-order chromatin structure contributes to the
high frequency of endogenous HDR. This finding supports the
hypothesis that low frequency of precise gene replacement
through HDR in plants might be due to an inefficient targeting of
exogenous templates, as opposed to a difference in endoge-
nous repair mechanisms compared to mammals (Schuermann
et al., 2005; Lieberman-Lazarovich and Levy, 2011; Fauser et al.,
2012). Further study of these endogenous HDR events might
provide clues toward optimizing HDR efficiency, and thus im-
proving the efficiency of precise introduction of specific variants.

Rare Off-Target versus Common Mosaic Mutations

Consistent with previous studies that found rare off-target events
in plants when using CRISPR/Cas9 (Tang et al., 2018; Li et al.,
2019a), we identified only 10 InDels among a total of 39,328
potential off-target genes via whole-exome sequencing in 19
mixed T1 blocks covering 25mutated genes (seeMethods). Thus,
off-target effectswill likely haveonly a small effect onplant editing,
at least under our conditions. By contrast, mosaicmutationswere
observed widely in this study. Evidence from SSP T1 lines in-
dicated that (1) most heterozygous alleles called from Sanger
sequencing were biallelic, and only 1.4% (2 of 148) included one
wild-type copy; (2) only 46% of variants from capture sequencing
(TRC-seq) were matched to one of the heterozygous alleles

Figure 3. Mutation Pattern and Predictability of Variants Generated by Genome Editing.

(A) Allele size and position distribution based on all individual events. Position-based, distribution along relative position on sgRNA; event-based, dis-
tribution of individual events. The position along sgRNA (x axis) is relative to predicted nuclease cleavage site, while11 and21 indicate the nucleotides 3 to
4 bp upstream of the PAM. INS, Insertion; DEL, deletion.
(B) Distribution of mutant outcome sizes (in bp) and diversity for different mutant classes.
(C) Ratio of real observed alleles that are being predicted by only flanking sequences, classified by mutant types (DEL, INS, SNP). ALL corresponds to all
mutant types added.
(D) Algorithm-mediated prediction of mutant outcomes based on flanking sequences. The set of alleles observed in real cases display significantly higher
predicted frequency compared with all predicted outcomes (background).
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detected by Sanger sequencing, while the remaining 54% were
different; (3) different homozygous mutations were observed
among T1 individuals from the same self-crossed T0 ear; and (4)
base calls with Sanger sequencing of 41 lines were completely
impossible to interpret,most likely a coexistence ofmore than two
alleles at a given locus. Such chimeras can impair mutant char-
acterization and inference of any genotype-phenotype links. For
example, even though a large deletion was identified for one
flowering-time candidate in a T0 event, no mutation was found in
a large number of derived T1 lines. This finding calls for higher
scrutiny not only for mutation identification but also for further
validation of genotype-phenotype association.

Knowledge-Driven Gene Editing Accelerates the Exploration
of Gene Function

The edited lines provided reliable evidence in causal gene vali-
dations for selected candidates thatwere previously fine-mapped
to individual genes (DSP set). For example, they provided con-
firmation for the validation of ZmDXS2 (1-DEOXY-D-XYLULOSE-
5-PHOSPHATE SYNTHASE 2; GRMZM2G493395) in affecting
kernel color and carotenoid contents (Fang et al., 2020). Although
lines carrying only 32%of themutated genes were planted, some
phenotypes were found to be consistent with predictions from
forward genetics or comparative genomics, even though a large
fractionof candidates (;40%) from theSSPsetwerenotmutated.
We planted 639 T1 families from 445 SSP T0 events covering 246
genes and observed 119 T1 families representing 107 genes with
significant morphological phenotypes. Importantly, we observed
13 genes showing altered phenotypes that were consistent with
their QTLmapping predictions. Each QTL interval covers multiple
genes, only one or very few of which might be expected to be
responsible for the underlying phenotypes. We may have there-
fore missed the causal locus when designing our gene-editing
constructs.

In addition, the mutants we generated are also valuable to
identify new gene functions within classical QTL intervals. Taking
flowering time as an example, the maize anti-florigen gene ZEA
CENTRORADIALIS 8 (ZCN8) is usually assumed to be the causal
locus behind the largest effect QTL on chromosome 8 that was
mapped in various maize populations (Buckler et al., 2009; Coles
et al., 2010; Liu et al., 2016; Guo et al., 2018), given this gene’s role
in flowering regulation (Meng et al., 2011; Lazakis et al., 2011).
However, this QTL region covers over 2 Mbps (Figure 4A) and
suggests that variation ingenesoutsideofZCN8might participate
in the underlying QTL. Interestingly, mutants in ZmTPS14.1
(TREHALOSE-6-PHOSPHATE SYNTHASE 1, GRMZM2G068943,
;100 kbp downstream of ZCN8) also displayed a significant delay
in flowering time (Figure 4B; Supplemental Figure 12A and 12B),
consistent with a previous study in Arabidopsis (Wahl et al., 2013).
Another flowering timeQTLonchromosome3wasalso associated
with ear height (Figure 4A; Supplemental Figure 12A), andwhile the
MADS-box transcription factor ZmMADS69 (GRMZM2G171650)
located within this region was recently validated as a gene un-
derlying flowering time regulation in maize (Liang et al., 2019),
we obtained many mutated alleles of SQUAMOSA promoter
BINDINGPROTEIN gene ZmSBP22 (GRMZM5G878561,;370 kbp
upstream of ZmMADS69) in this study, and all showed late flowering

(Figure 4C; Supplemental Figure 12C and 12D). These findings raise
thepossibility thatmultiple causal genesmightmap to the sameQTL
regions and might contribute, alone or in combination, to the un-
derlying phenotype,which is not easily addressed by routine genetic
mapping analyses.
A loss-of-function allele induced by CRISPR-mediated gene

editing may have different phenotypes from a subtle difference in
protein function resulting from the underlying variation between
naturallyoccurringallelesataQTL.Forexample,GRMZM2G331652
(a gene encoding an aminotransferase-like protein) was located
within a plant height QTL interval but falls outside of a small
effect flowering QTL interval on chromosome 1 (Supplemental
Figure13A). Interestingly, in addition to theexpectedplant height
changes, mutants in this candidate were also characterized by
flowering time differences and varied responses to day length
(Supplemental Figure 13D). Finally, as was our hope, we ob-
tained lines with a large number of unexpected phenotypic
changes, including traits not previously studied (Supplemental
Figure 14) affecting plant size and morphology, reproductive
structures, or susceptibility to disease, demonstrating that our
library of edited genes provides an unprecedented resource for
further detailed functional genomics.
Themutant librarymay also refute standing hypotheses of gene

function and together would promote a new perspective on un-
derlying regulatory mechanisms. An interesting case was for the
BARELYANYMERISTEM1d geneZmBAM1d (GRMZM2G043584),
which was previously found to affect kernel weight and validated by
results from a NIL population and overexpression (Yang et al.,
2019). However, our CRISPR/Cas9-edited lines had no obvious
phenotypic differences compared with the parental line (Figures
4D and 4E). RNA sequencing revealed the up-regulation of two
BAM1d homologues as potential cause for the lack of visible
phenotypes (Figure 4F), suggesting that a compensatory mech-
anism might be the reason for the lack of trait changes in the
genome-edited lines. While gene redundancy is widely recog-
nized as an obstacle to identifying gene function in plants, gene
editing can be multiplexed to address this issue.

DISCUSSION

The CRISPR/Cas9 system is a simple, effective method for
generating targeted mutations, and its capacity for high
throughput has fueled its popularity in large-scale mutagenesis
libraries, first in animals (Peng et al., 2015; Shalemet al., 2015) and
now in plant systems (Lu et al., 2017; Meng et al., 2017; Bai et al.,
2019). These benefits make the CRISPR-based system far out-
weigh other classical plant mutant libraries generated by trans-
poson insertion of chemical mutagens. Here, we provide
a practical workflow for high-throughput genome editing inmaize,
with optimized bioinformatic analysis, that should circumvent
problems associated with its large and complex genome and
difficulty of transformation (Figure 1). We anticipate that our ap-
proach is also applicable to other species. In contrast to human
cell line screening, large-scale exploration of mutants and cor-
responding phenotypic analysis in plants is challenging, mainly
due to the lower associated throughput, labor-intensive pheno-
typing and environmental impact during phenotyping in the field.
This is especially true when large field trials are needed to detect
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small quantitative changes and when different environmental
conditions (stress, nutrition) may reveal additional phenotypes.
However, this will likely be addressed in the future via innovations
in high-throughput phenotyping methods. As technologies for
genome editing rapidly advance, emerging toolkits will be in-
tegrated into such future experiments. While recent studies offer
high transformation efficiency for a wide variety of maize geno-
types (Lowe et al., 2016, 2018; Jones et al., 2019), newmethods in
sgRNA delivery by viral vectors (Wang et al., 2017a) or by clay

nanosheets (Mitter et al., 2017) that avoid the time-consuming
tissue culture may be critical in accelerating functional genomics.
Here, we explored the CRISPR-Cas mutational profiles of a

representative set of genes. Thepatternsof repair outcomes inour
study were in line with those seen in human cell lines (Allen et al.,
2018). Genome-editing events in the form of deletions and in-
sertions largely dominated over SNPs, and the size of deletions
varied more widely than that of insertions. This similarity allowed
a good predictability of mutational outcomes in maize using an

Figure 4. Applied Targeted Mutagenesis for the Validation of Gene Function.

(A) Two large-effect flowering time QTLs for days to tasseling (DTT) identified by genome-wide association mapping studies (GWAS) and targeted by
genome editing. Corresponding results for days to anthesis (DTA) and days to silking (DTS) are shown in Supplemental Figure 12A. Both QTL intervals
include well-known causal genes (shown in gray), while novel genes identified in this study are shown in red. Significant flowering time differences are seen
forZmtps14.1 (B)andZmsbp22 (C). Phenotypic values fromwild-type linesare indicated inblack, andall colors showmutant lines. Trait values forZmtps14.
1 and Zmsbp22 were measured as Jilin (northeast China, temperate climate) and Hainan (south China, tropical climate), respectively. H04-3, H05-6, and
H60-2 refer to three independent T2 populations carrying the sameallele. Corresponding edited alleles along the x axis are detailed in Supplemental Figures
12B and 12C.
(D) to (F) Gene redundancy from homologous genes can skew the results of a targeted gene.
(D) Two sgRNAs were designed to target the first exon of ZmBAM1d and caused a large deletion between sgRNAs. Both sgRNAs were specific for
ZmBAM1d without affecting homologous genes.
(E) Selfing T3 edited lines carrying the deletion were used to measure kernel weight (HKW); only a marginal phenotypic difference was seen at both Yunan
(year 2018, labeled as 18YN) andWuhan (year 2019, labeled as 19WH). Overexpression lines have significantly higher HKW, and near-isogenic lines show
significant differences in HKW (Yang et al., 2019), leading to the expectation that Zmbam1d edited lines would demonstrate smaller HKW.
(F)Expression ofZmbam1d and its homologous genes across three edited lines andcorrespondingwild-type segregants. Twoof the three close homologs
show higher expression that might compensate for the loss of Zmbam1d.
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algorithm refined for human cell lines using only local sequences
as input. Our findings suggest that themechanisms of bothCas9-
induced double-strand break and subsequent DNA repair are
highly conserved between humans and plants. The prediction
algorithmcan thusbe incorporatedwithsgRNAdesignandvariant
effect prediction to help prioritize sgRNAs based on expected
mutant alleles and/or expected effect (such as frameshift or
missense) on the target gene. This is important, since the precise
introduction of given variants through repair of exogenous tem-
plates is still difficult, and a prescreening step of all possible
sgRNAs for accurate prediction followedby screening of a smaller
pool of mutated descendants is more tractable. Furthermore, this
study provides evidence that the chromatin state (open chromatin
being associated with higher expression and accessibility) at
a targeted gene may have an impact on editing efficiency and on
mutational outcomes, which can be further integrated for pre-
diction improvement.

Cloning and validating genes affecting important agronomic
traits remains key to crop genetic improvement, especially when
implemented to target multiple traits each with multiple candi-
date regions; it is essential to meet future food demand. Mutants
created by CRISPR/Cas9 are highly valuable in functional
genomics, especially when used in a multiplex fashion. As
screening phenotypic changes in a genome-widemutant library is
challenging in crops, access to candidate regions for corre-
sponding traits identified by forward-genetic approaches is thus
highly valuable. In this study, we integrated candidates from
genotype-phenotype associations and CRISPR/Cas9 early on in
our pipeline, and we provide a practical roadmap for the rapid
detection of gene function through an informed mutagenesis li-
brary. In addition to the validation of high-confidence candidates,
the approachmay allow us to rule out other predicted candidates.
At the same time, other mutants derived from the present design
will be a valuable resource in functional gene discovery. Since
candidates from natural variation have greater utility in crop im-
provement, such knowledge-driven targeted mutagenesis based
on QTLs, pathways, and gene families will dramatically improve
future studies.We anticipate that all candidate genes froma given
QTL region can thus be mutated simultaneously in one im-
plementation. Of course, complete gene loss of function alleles
induced by genome editing may display drastic phenotypes that
go beyond the range conferred by natural alleles: these valida-
tion experiments should be interpreted carefully. The heritable
transmission ratio is also an important issue to test genotype-to-
phenotype linksbut couldnotbeexplored in this studysince theT0

and T1 populations were descended from unrelated individuals.
However, previous studies in maize indicate that CRISPR/Cas9-
derived mutations in T0 individuals were stably transmitted to the
next generation (Zhu et al., 2016; Li et al., 2017), one ofwhich used
the same vector we did (Li et al., 2017). We also found that off-
target mutations may not be common in plants, although editing
at nontarget homologous sequences deserves attention and
stresses the need for high-quality genomes of the parent lines.

The knowledge-informed mutagenesis design we present here
is not only helpful in accelerating gene discovery; it will also be
valuable to characterize the effects of specific genes or alleles, to
study regulationmechanisms, to evaluate pleiotropic effects, and
to create novel useful haplotypes. Amultitude of CRISPR-derived

alleles, with effects other than complete loss of function (a non-
exhaustive list includes knockin, knock-down, or knock-up at
specific developmental stages, base editing, or modifying epi-
genomic, transcriptional, or posttranscriptional processes) canbe
flexibly incorporated into fine tuning of regulatory networks (Chen
et al., 2019; Hua et al., 2019; Zhang et al., 2019). The knowledge
andmaterials available here therefore represent important tools in
the acceleration of high-precision crop breeding (Fernie and Yan,
2019).

METHODS

Collection of Candidate Genes

The candidates selected for this study were from multiple sources:

(1) Genes that have been fine-mapped using various recombinant inbred line
populations. Most traits mapped to single genes, and a few mapped to
intervals with several (less than five) genes. Additional genes included four
related to tocopherol content, four to carotenoid content/composition,
three to kernel dehydration rate, three to maize (Zea mays) leaf blight
susceptibility, three related to ear yield, and one to tassel length.

(2) 19 genes from the CCT (CONSTANS, CO-like, and TOC1) domain-
containing family with high potential for affecting maize flowering time
(14 of which were orthologs from rice [Oryza sativa] and Arabidopsis
[Arabidopsis thaliana]), located within QTLs for flowering time identified by
genome-wide association mapping studies in a recently developed
population (Liu et al., 2020). Together with 14 genes associated with ear
leaf width and length, 25 genes were associated with plant height. One
other ortholog for a gene shown to affect phosphorus content in rice
(Yamaji et al., 2017) was also included in this study.

(3) A large number of candidates derived from initially mapped QTLs for 23
important agronomic traits, identified by genome-wide association map-
ping studies using the recently developed population (Liu et al., 2020). For
each trait, the top one or two large-effect QTLs were integrated, and genes
were filtered if additional evidence (expression relevance, expression QTL
associations, or ortholog information) was available; all candidates within
the QTL interval were included if there was no other reliable evidence and if
the interval contained less than 10 candidates. These included 243 genes
associated with flowering times, 540 genes related to plant architecture
traits, and another 229 and 422 genes affecting the ear and kernel-related
yield traits, respectively.

(4) 270 genes from QTLs associated with dehydration rate and another seven
genes potentially affecting lipid content identified by association mapping.
These two studies were performed using a natural population consisting of
over 500 unrelated individuals (Liu et al., 2017b).

Genes from sources (1) and (2) formed set no. 1, and two sgRNAs were
designed for eachgene to form theDSP.Genes fromsources (2), (3), and (4)
comprised set no. 2, with individual sgRNA per gene for (3) and (4) and the
two sgRNAs per gene for (2) also being separately constructed; all were
mixed as individual sgRNA per vector to form the SSP.

Non-Reference-Based sgRNA Design

The sgRNAoligo design criteria were fully implemented according to Lu et.
al. (2017) to obtain an initial sgRNA library based on the B73 reference
genome.However,due to the largegeneticdifferencebetween theB73and
the transformation receptor KN5585 (a tropical line) used here,we required
anadditionalfilteringstep toselect thosesgRNAsalsosuitable forKN5585.
Whole-genome sequencing (;603) and deep mRNA sequencing (RNA-
seq) on a mixture of seven tissues were used to obtain the de novo as-
sembled contigs of KN5585, based on canonical pipelines using ABySS
(Jackman et al., 2017; contig N50 5 3162) and Platanus (Kajitani et al.,
2014; N50 5 565) for whole-genome sequencing and Trinity (Grabherr
et al., 2011) for RNA-seq (N505 2167). These raw assembled contigs can
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be available at http://maizego.org/Resources.html (see the section “High-
Throughput CRISPR/Cas9 Gene Editing”). All sgRNAs designed from the
B73 genome with acceptable on-target scores were filtered by the Basic
Local Alignment Search Tool (Camacho et al., 2009) against the locally
assembledcontigs toobtain theuniquelymatchedset.When thealignment
between gene and sgRNA did not fully match, the sgRNAs with only one
SNV or InDel were retained after replacing the given variants fromKN5585.
In addition, the nearly complete genomic sequences for all set no. 1 genes
were PCR amplified and sequenced by the Sanger method, providing
confirmation for all of their sgRNAs using this filteredmethod. Tomake this
analysis friendly to a broad range of users, we developed a tool (Sun et al.,
2019)withbothacommand-lineandgraphical user interface (implemented
in Java) that can be easily implemented.

Vector Design, Construction, and Pooling

Three different vectors (Supplemental Figure 1) were used in this study: (1)
pCPB-ZmUbi-hspCas9 came from Chuanxiao Xie (Li et al., 2017). We
modified the vector construction by combining overlapping PCR and
homologous recombination to obtain a single-sgRNA vector (SSV) or
double-sgRNA vector in one step (Supplemental Figures 1A and 1B). In
detail, pCPB-ZmUbi-hspCas9 was first linearized by HindIII. Separately,
ZmU6 and the sgRNA scaffold of insertion elements were amplified
through overlapping PCR with a homologous arm or sgRNA scaffold and/
or 20-bp gene-specific target-attached primers. Additionally, homologous
arms that match linearized pCPB-ZmUbi-hspCas9were also added to the
insertion fragment in the overlap PCR. Finally, different gene-specific in-
sertion fragments were incorporated into pCPB-ZmUbi-hspCas9 as SSV
and double-sgRNA vector. It is worth noting that the HindIII restriction
enzyme recognition site was maintained in each construct so that gene-
specific elements can be inserted (Li et al., 2017). pCXB052 was modified
from a vector designed for genome-wide editing in rice (Lu et al., 2017) by
replacing the rice promoters with the RNA polymerase II promoter of the
maize ubiquitin gene (ZmUbi ) and the RNA polymerase III promoter ZmU6
(Supplemental Figure 1C). pCXB053 was extended from pCPB-ZmUbi-
hspCas9 through the preassembled ZmU6 and sgRNA scaffold. The dif-
ference between pCXB052 and pCXB053 was that both hspCas9 and the
selection marker Basta gene (BlpR) are expressed by ZmUbi in pCXB052,
and alternatively expressed by ZmUbi and enhanced Cauliflower mosaic
virus35Spromoters inpCXB053.Unlike theconstructionapproach inDSP,
SSV of SSP was produced by oligo annealing and T4 ligase ligation.
pCXB052orpCXB053wascleavedbyBsaI to ligatewith the sgRNAanneal
products. Only the positive strains survive since the toxin ccdB gene was
replaced by sgRNA. Self-ligated vectors were eliminated, which ensured
that all of the clones obtained were positive and allowed for a pooled
plasmid cloning. In brief, CPB-ZmUbi-hspCas9 was used for DSP, which
was suitable for a single vector containing one or multiple sgRNAs. Thus,
DSP was a uniform concentration (ng/ml, measured by NanoDrop2000)
mixture of each Sanger-validated plasmid. The pCXB052 and pCXB053
vectors were designed for pooled CRISPR/Cas9-based knockout, since
this allowed pooled ligation reaction cloning, so SSPwas pooled prior to
E. coli transformation.

Plasmid Pool Sequencing

The Tn5 transposase (Nanjing VazymeCompany of China, cat. no. TD501)
was used to fragment mixed plasmids. For each reaction, 50 ng DNA was
aliquoted with 10 mL 53 TruePrep Tagment Buffer L, 5 mL Tn5. Double-
distilled water was added to 50 mL, mixed well, then incubated at 55°C for
10 min. DNA was purified with VAHTS DNA clean beads (Nanjing Vazyme
CompanyofChina, cat. no.N411-03-AA). ForPCRamplification,wemixed
24 mL purified DNA, 10 mL 53 TruePrep Amplify Buffer, 5 mL PCR Primer
Mix, 5 mL N5 primer, and 5 mL N7 primer, added 1 mL TruePrep Amplify

Enzyme, andmixedwell. The PCRprogram consisted of (1) 72°C for 3min,
(2) 98°C for 30 s, (3) six cycles of 98°C for 15 s, 60°C for 30 s, 72°C for 1min,
(4) 72°C for 5 min and hold at 4°C. Finally, purification was done with two
rounds of VAHTS DNA clean beads (Nanjing Vazyme Company of China,
cat. no. N411-03-AA), first round with 0.63 (30 mL) and second round
0.153 (7. 5mL) to collect the 300;700 bp PCR products. The beads were
eluted in 16 mL double-distilled water. The libraries that passed quality
checks were subjected to the Illumina X-Ten sequencer with pair-end
150 bp.

Agrobacterium-Mediated Pooled Transformation

The plasmids were electroporated into Agrobacterium tumefaciens strain
EHA105. Agrobacterium-mediated maize transformation is illustrated in
Supplemental Figure 15. Maize immature embryos (IEs) of 1.5 to 1.8 mm
were isolated from ears harvested 10 d after pollination into 2.0-mL tubes
with 1.8 mL inoculation medium (Sidorov and Duncan, 2009) and were
infectedwith Agrobacterium suspension (inoculationmediumwith 200mM
of acetosyringone and Agrobacterium cells) for 5 min, then poured onto
cocultivation medium. The extra liquid was removed with pipettes. Im-
mature embryos were placed with scutellum side up on the medium and
incubated in the dark at 23°C for 48 to 72 h of cocultivation. After co-
cultivation, immature embryos were transferred to the resting medium and
cultured for 5 to7d.Calluseswere then transferred to theselectionmedium
(glufosinate-ammonium10mg/L), incubated in thedarkat28°C for2weeks
and transferred to fresh selection medium for another 2 weeks. Resistant
calluses obtained were placed on the regeneration medium, incubated
under 5000 lux at 25°C for 14 to 21d.Regenerated shootswere transferred
to rooting medium under 5000 lux at 25°C for 14 d. Leaves were sampled
for PCR analysis before the plantlets were planted into greenhouse. The
transformation experiments were conducted by Wimi Biotechnology.

Assigning Associated Targets to T0 Plants

The minimum number of T0 plants was determined to be ;4 times of the
number of vectors to cover most of the targets, as below simulation
analysis suggested. For high-throughput detection of gene-edited plants
(T0 generation), we added different barcode sequences (at least two
mismatches between any two) to the endsof the universal primers (forward
primer, CGTTTTGTCCCACCTTGACT; reverse primer, TTCAAGTTGATA
ACGGACTA) to produce amplicons, and the length of PCR amplification
products was 165 bp (Supplemental Figure 4). A total of 30 forward and 96
reverse amplification primers ligated with barcodes designed to represent
a maximum of 2880 lines for each batch (Supplemental Data Set 2). A
forward amplification primer and 96 reverse amplification primers were
used to amplify the DNA of gene-edited plants in a 96-well PCR plate. PCR
products purified with DNA clean kit (ZYMO RESEARCH, cat. no. D4013)
were used for library construction. DNA libraries were constructed ac-
cording to theTruseqDNA low-throughputsamplepreparationkit (Illumina,
FC-121-3001), end repair, “A” base addition, Illumina adapters ligation,
and PCR enrichment followed with purification by AMPure XP beads
(Supplemental Figure 4). All the DNA was extracted from seedling leaves
unless otherwise specified.

The matched barcode sequences and amplified sgRNA were obtained
by pair-end short-reads sequencing, so that the T0 individuals can be
associated with their corresponding candidate genes, as long as con-
tamination is avoided. To reduce the potential for contamination, we have
focused on experimental design and bioinformatic analysis parameters
affecting the reliability. Through mixing several lines with individually
transformed sgRNA and negative controls (wild-type tissue, water, and
empty wells), iterative sequencing with various coverage was performed.
Four parameters were considered (Supplemental Figure 5A), including
supported reads (count_cutoff from 5 to 200), relative ratio of supported
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reads at givenwell (ratio_cutoff, from0.01 to 0.2), inflection point of relative
amount (fold change between ratios) between sorted targets (the largest
fold change of N11th target compared to the Nth target for all targets that
meet the requirements of count_cutoff and ratio_cutoff, named as
peakFC), and the fold enrichment of target among the whole 96-plates,
relative to mean (measured as contamination, the targets would be iter-
atively removed with cutoff decreasing from 5 decreases to 1.5 with a step
of 0.5).

Adequate sequencing coverage is essential for eliminating background
noise. While the false-negative rates were usually low, the false-positive
rate is sensitive to floating count and ratio cut-offs and highly correlated to
total effective discovery number (Supplemental Figures 5B to 5E). That is,
astrict cut-offwould lead to lower falsepositives,butat thecostof reducing
total effective assignments. By sequencing multiple biological and tech-
nical replicates, a stricter cut-off is possible, increasing reproducibility.
Taken together, targets that passed the relatively strict cut-offs (count_
cutoff 5 100, ratio_cutoff 5 10%, targets ranked above the peakFC,
contamination_cutoff 5 23 mean coverage of each individual) and were
identified in at least two repeats were used to ensure high-confidence
assignments. However, all of the remaining sgRNAs identified in only one
experiment were also incorporated in mutated sequence detection, even
though very few were validated by mutants.

Simulation of Target Coverage as a Function of the Number of
T0 Individuals

Considering the transformation and planting limitation, it is important to
balance the plant pool size and gene/target coverage of each pooled
transformation assay. To decide how many genes/vectors (Vn) should be
mixed in a pool, we performed a simulation, with Vn from 1 to 200 and the
number of T0 individuals (Pn) from 1 to 10 times Vn. Fifty replicates of the
primary vector pool were created as follows. Vectors were randomly se-
lected from the amplified vector pool without replacement, to obtain Vns.
Finally, the coverage was calculated as the ratio to Vn. The simulation for
a given vector pool and plant library was repeated 100 times, and three
values (mean,minimum, and standard value) were considered to select the
primary vector mixture size and the number of plants needed.

From the simulation analysis and the observed cases of coverage of
sgRNAsalongvariousT0 lines, four times thenumberofT0plants (relative to
gene/vector number) were required to cover most of the candidates,
comparable with observed results. Given a 50-vector pool as an example,
98.7%of genes on average (with amin of 94%) canbe covered by 200 (43)
T0 lines (Supplemental Figure 6), and the coverage was better for a larger
number of vector pools. However, over half of the genes (or vectors) were
present in fewer than three plants, and 30% were represented by a single
individual. This distribution represented a risk in further experiments (in-
cluding the identification of effective mutant alleles, independent cross
validations, or even collection of sufficient seeds for next generation);
10 times the number of T0 plants would then be needed to represent more
than 85% of genes by at least three lines.

Identification of Mutated Alleles by Sanger Sequencing

Sanger sequencingwas applied for all amplicons to obtain “.ab1” files, and
the R package sangerseqR (Hill et al., 2014) was used for base calls and
plotting chromatograms. By using the Poly Peak Parser, this package can
separate ambiguous base calls into two sequences. A ratio5 0.2 was set
for separating signal and noise base calls, and the 20 bp at the beginning
and end of the sequence were trimmed when generating chromatogram
plots. The obtainedprimary and secondary sequenceswere considered as
two haplotypes, which are identical for homozygous mutations. Further
analyses were the same for homozygous or heterozygous mutations. The
primary and secondary sequences together with the wild-type genomic

and sgRNA sequenceswere used as input tomultiple sequence alignment
by Clustal programs (Larkin et al., 2007) to call specific variants. It is im-
portant to note that both the forward and reverse amplicons help identify
exact alleles or at least to clarify the mutated position/intervals. However,
for those lines containing more than two mutated alleles, this method will
not uncover separate alleles.

Identification of Mutated Alleles by MassARRAY

WeusedMassARRAY technology to genotype known variants for multiple
loci in large populations. An introduction to MassARRAY, laboratory
protocol, and analysis is available at http://agenabio.com/products/
massarray-system. Based on the conventional MassARRAY process,
we applied a sequential primer combination strategy (Supplemental
Figures 7 and 8) to detect if given nucleotides are altered, resulting in an
opportunity to infer the likely mutants by integrating all the sequential
outcomes. All the experiments in this study were performed by Agena
Bioscience in Beijing. Based on the design of a primer covering the
predicted nuclease cleavage region (3 to 6 bp upstream of the NGG
PAM sequence), this method is preferable to the determination of
whether individuals of interest were mutated at given genes or to the
identification of known variants at the T1 or later generations in a large
number of individuals. A full comparison of the advantages and dis-
advantages of Sanger sequencing, the MassARRAY method, and
capture sequencing are described in Supplemental Table 2.

Identification of Mutated Alleles by Capture Sequencing

Targeted capture was realized by GenoPlexs technology, which captures
multiple target regions using a set of primer pairs and a single polymerase
chain reaction. All the capture primers were designed byMOLBREEDING.
After removing geneswith difficulties in primer design andprimerswith low
efficiencyornonspecificity,we retaineda totalof106geneswith113primer
pairs (Supplemental Data Set 3) for further analysis. Deep pair-end (PE)
sequencing (>5003) on the captured products was performed on an Il-
luminaHiSeq3000. All readswere trimmedbyTrimmomatic (Bolger et al.,
2014) with the following parameters: LEADING:5 TRAILING:5 SLI-
DINGWINDOW:3:20MINLEN:50, and only cleanPE readswere used in the
next analysis.

Asall theT0 individuals hadbeenassigned to corresponding targets, lines
with different targets can be mixed in capture sequencing to reduce library
constructioncost.Byapplyingmodelingwith threewild-type line repeatsand
varying numbers (5;50) ofmixed individuals,we found amix of 20;25 lines
would be best, with a 0.3% ratio of background mutant error, presumably
because of aerosol contamination and PCR or sequencing errors.

The CRISPResso2 software (Clement et al., 2019) was applied for the
identification of mutated alleles and estimation of their frequencies. Only
themutations thatoverlappedwith the20-bpwindowbefore theNGGPAM
were considered unless the subsequent analysis detected likely alleles
caused by HDR, in which case flanking variants were also considered. The
abridgedsequenceswithin the20-bpwindowweremergedwhen identical.
The alleles supported by less than three reads and those present in wild
samples (including three technical repeats) were discarded in further
analysis, andallele-specific frequencieswere re-estimatedwhen therewas
more than one allele. A variant-calling pipeline was also integrated in allele
identification: the clean PE reads were first mapped to pseudogenome
(derived from replacing specific variants to B73 genome) by bwa-mem (Li,
2013), followedbySNPand InDel calling using thempileup command from
samtools (Li et al., 2009) at all target regions.

To avoid assigning identical mutants to different alleles as a result of
ambiguous alignments, entiremutated sequenceswere used to determine
whether the alleles called were consistent between different methods. All
the different alignments from the identical alleles were assumed to be the
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one with overlap (or close) to the predicted nuclease cleavage site, as
CRISPResso2 (Clement et al., 2019) suggested.

Testing the Predictability of Edited Outcomes

All of the alleles with precise variant sequences from both SSP and DSP
pools and both Sanger and capture sequencing methods were merged as
two data sets, one containing all of the mutants occurring at individual
sgRNA, the other containing large fragment mutants (deletion, insertion,
and reversion) between pair sgRNAs. The mutant type (DEL, INS, or SNP),
position (relative topredictednuclease cleavagesite), andsize (forDELand
INS) were considered to be characteristic of a variant, while the 20-bp
sgRNA nucleotides and the PAM sequences, as well as the target gene’s
expression quantification (data from Chen et al. [2014]), number of tissues
with expression of fragments per kilobase of exon model per million reads
mapped > 0.5) and expression variability along developmental period
(measured by coefficient of variation) were all regarded as predictive
variables (Supplemental Figure 10A). TheRandomForest algorithm,which
is nonparametric, interpretable, and compatible with many types of data
with high prediction accuracy, was applied in prediction tests from sgRNA
sequencesand target expressionvariables.Theout-of-bagerror andmean
of squared residuals were used to evaluate the predictability for classifi-
cation (mutant type) and the regression variables (mutant position and
size), respectively. The Gini decreases (MeanDecreaseGini) and node
purity increase (IncNodePurity) values for each variable over all trees were
used to evaluate the variable importance for classification (mutant type)
and the regression variables (mutant position and size), respectively.

ThepredictionalgorithmFORECasT (favoredoutcomesof repair events
at Cas9 targets; Allen et al., 2018), fine-tuned using over 109 mutational
outcomes from over 40,000 human sgRNAs, was used in predicting likely
repair outcomes by flanking DNA sequence. First, the effect of the lengths
of flanking sequences (10, 20, 50, 100) on allele prediction was examined.
While they generally produced highly replicable results, a longer flanking
region led to a higher number of predicted alleles with rare frequency.
Nevertheless, therewasnoeffectwhen theflanking regionwasgreater than
50 bp, as predictions with 50 bp and 100 bp being identical. Thus, all the
results from this set were used in further analysis. The entire mutated
sequence incorporated with variants together with corresponding pre-
dicted frequencies were used to compare with those real observed alleles.

Discovery of Alleles Likely Derived from HDR

Thosemutatedhaplotypeswith concurrent InDels at the sgRNA region and
at least two SNPs within flanking sequences were considered a possible
consequence of HDR. These mutated sequences were then compared by
theBasicLocalAlignmentSearchTool toall thedenovoassembledcontigs
to search for a likely template source.

Identification of Expression Compensation of ZmBAM1d Mutant
Lines by RNA Sequencing

ZmBAM1d (Zm00001d028317) was edited with two sgRNAs targeting the
first exon. RNA sequencing on whole kernel (20 d after pollination) was
performed for self-crossed T3 edited lines with homozygous fragment
deletionandwild-type lines, bothwith three replicates.Rawreadswerefirst
trimmed with Trimmomatic (Bolger et al., 2014). All remaining paired-end
clean reads were mapped to the B73_V4 reference genome (Jiao et al.,
2017) using Tophat2 (Kimet al., 2013). TheCuffquant andCuffdiff (Trapnell
et al., 2013) commands from Cufflinks (Trapnell et al., 2010; Roberts et al.,
2011) were used to estimate RNA abundance and to test for differential
expression, respectively. Thegeometricmethodwasused tonormalize the
fragments per kilobase of exon model per million reads mapped across all
libraries (Anders and Huber, 2010) during differential expression analysis.

Off-Target Analysis

A total of 20 T1 blocks with dramatic phenotypic changes were selected to
measure the off-target effect, with at least four individual T1 lines from the
same T0 backgroundmixed to represent each sample. Genomic DNA was
isolated frommature leaves. DNA extraction and library construction were
the same as above, with an additional hybridization process with the
Roche/NimbleGen SeqCap EZ library, which was specifically designed to
capture the exon sequences of maize by high-density biotinylated long
oligonucleotideprobes. TheBGISEQ-500platformwasused inpaired-end
150 bp short-reads sequencing.

All the clean reads trimmed by Trimmomatic (Bolger et al., 2014) were
aligned to theB73_V4 reference genomeby BWA-mem (Li, 2013). Variants
were called by GATK HaplotypeCaller (Poplin et al., 2018) with Genomic
Variant Call Format mode. Only InDels supported with at least three reads
for each sample were conserved. Those variants were discarded in further
analyses if they (1) also were called by wild-type lines against the B73
referencegenome(backgroundgeneticvariations), or (2) “ALT”alleleswere
simultaneously present in over three lines (common variants). The re-
maining InDels located within all potential targets were considered as on-
targets. One sample was abandoned since no likely on-target loci were
found. The remaining 19 samples targeted a total of 25 genes. The Cas-
OFFinder (Bae et al., 2014) was used to predict the corresponding off-
target loci, with at most five mismatches and NGG PAM. Those InDels
locatedwithin these possible off-target regionswere regarded as likely off-
targeting events.

Phenotyping

All the T0 individuals were self-crossed if conditions allowed or back-
crossed to wild lines (KN5585) if self-crossing was not possible due to
phenotypes affecting reproductive structures (of which information was all
recorded). Generally, at least two independent events were planted if
available. For the DSP gene set, all the T0 plants were first inspected for
mutated alleles (DNA from seedling leaf), and those events with clearly
edited sequences resulting in likely nonfunctional alleles were plantedwith
expanded T1 or greater populations. For the SSP gene set, all the T0 events
with seed numbers larger than 10 (including lines that failed target as-
signment) were planted for phenotyping, and the lines with observed
agronomic trait variance were genotyped. We planted 17 genotyped in-
dividuals per cell for phenotyping during the T1 generation. Wild-type
controls were planted every 4 to 30 rows based on specific designs,
variation in the number of total events, and space limitations. Phenotypic
differences relative to wild type and segregating independently within T1

lines that were from the same T0 event were recorded as heritable phe-
notypic changes. Multiple locations (from northeast temperate to south-
west and south tropical zone, including Gongzhuling city, Jilin province,
43°309N 124°499E; Gasa town, Xishuangbanna dai autonomous pre-
fecture, Yunnan province, 21°579N 100°459E; and Foluo town, Sanya City,
Hainan Province, 18°349N 108°439E) were used to evaluate the environ-
mental effect for DSP; however, only the Beijing location (in summer of
2018) was used in the large-scale measurement of the T1 performance
for SSP.

Genetic Materials Module

In addition to the general considerations listed above, the examples used
in interpreting genotype-phenotype links are described in detail here.
Mutants of zmtps14.1 were from DSP (two sgRNAs are simultaneously
designed), whose phenotypic change was supported by large fragment
deletion F2 populations at Hainan (south China; 61mutant lines versus 173
wild lines; Figure 4B; Supplemental Figure 12B). The zmsbp22 was sup-
ported by six independent T1 populations (derived from DSP, 52 positive/
mutant lines versus 20 negative/wild lines) at Yunan (southwest China;
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Figure 4C; Supplemental Figure 12B), and two mutant alleles from SSP
(only one sgRNA is used) along with considering all the other lines as
“control” (10 target gene mutant lines compared to all the other 470 lines
with various mutant genes; Supplemental Figure 12D) were compared for
double confirmation. The example in the aminotransferase-like gene
GRMZM2G331652was supportedbydata frombothT1 (62positive versus
17 negative lines) and T2 data at two locations (39 mutants versus 30 wild
lines at Hainan; 39 mutants versus 45 lines at Jilin; Supplemental Figures
13B to 13D). For the zmbam1d, self-crossed T3 lines with a large fragment
deletion (from two sgRNAs) were used to measure kernel weight (Figures
4Dand4E) at Yunnan (fivemutants versus 13wild ears) andWuhan (central
China; 39 mutants versus 10 wild ears). Detailed phenotypes for these
examples are provided in Supplemental Data Set 4 .

For those “unexpected”mutant lines shown in Supplemental Figure 14,
at least two individuals showing mutant phenotypes and separated within
T1 populations (from same T0) or the whole T1 population displayed sig-
nificant differences relative to wild types are considered as heritable (but
not environmental) phenotypic changes. For T1 or advanced populations,
we did not evaluate for the presence of a transgene, but instead, we detect
the target alleles for all the phenotyped lines usingmature leaves as source
for DNA.

The vectors used in present study can be requested from J.X.
(xjt@wimibio.com). All the information of the mutants are available at the
official website of WIMI Biotechnology (http://www.wimibio.com/tbtk.
asp), which will be continuously updated and the seeds can be requested
with the standard MTA (http://www.wimibio.com/e.doc) and specified
charge.

Software/Custom Scripts

The CRISPR-Local for high-throughput designing sgRNAs for non-
reference lines can be obtained from: https://github.com/sunjiamin0824/
CRISPR-Local.git. And the script to obtain reads that matched both the
barcodes and pooled sgRNAs from trimmed fastq files is available at
https://github.com/heroalone/crispr_pool.git.

Accession Numbers

Raw whole-genome sequencing and RNA sequencing reads of the trans-
formation receptor (KN5585), and raw reads of TRC-seq for 60 batches
have been deposited in the Genome Sequence Archive (Wang et al., 2017b)
of BIG Data Center (BIG Data Center Members, 2017) under the following
accession number: CRA001955 (https://bigd.big.ac.cn/gsa/browse/
CRA001955). Individual fastq files can be downloaded under the “Run
Accession” links. Assembled contigs can be downloaded at http://
maizego.org/Resources.html (“High-Throughput CRISPR/Cas9 Gene
Editing” section).

SUPPLEMENTAL DATA

Supplemental Figure 1. Structure of all constructs.

Supplemental Figure 2. The mutation rate for the ZmPLA1 gene of
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Supplemental Figure 3. Different strategies and relevant data
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Supplemental Figure 4. Barcode-based NGS in target identification.
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Supplemental Figure 7. Use of the MassARRAY method in mutant
sequence identification.

Supplemental Figure 8. Mutant sequences inferred by the MassAR-
RAY method.

Supplemental Figure 9. Mutation patterns and predictability of
deletion occurring between pair sgRNAs.

Supplemental Figure 10. Prediction of mutations within sgRNA
sequences and target expression variables using Random Forest.

Supplemental Figure 11. Identification of mutants caused by HDR.

Supplemental Figure 12. Identification of genes affecting maize
flowering time.

Supplemental Figure 13. Identification of phenotypic changes in
mutants inconsistent with results of association mapping.

Supplemental Figure 14. Identification of a representative set of
unexpected phenotypic variations.

Supplemental Figure 15. Agrobacterium-mediated transformation
using maize immature embryos.

Supplemental Table 1. Transformation frequencies for different
vectors.

Supplemental Table 2. Comparison of the advantages and short-
comings of different methods in mutant sequence identification.
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sequences.
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