Skip to main content
. 2020 May 7;20:108. doi: 10.1186/s12874-020-00977-1

Table 4.

MC-MedGAN configurations tested

Hyper-parameter Model 1 Model 2
Autoencoder Code size 64 128
Encoder hidden size 256, 128 512, 256, 128
Decoder hidden size 256, 128 512, 256, 128
GAN Generator hidden layers 64, 64 128, 128, 128, 128
Discriminator hidden size 256, 128 512, 256, 128
# of generator/discriminator steps 2/1 3/1

For both models we used batch size of 100 samples, trained the autoencoder for 100 epochs and the GAN for 500 epochs. We applied L2-regularization on the neural network weights (weight decay) with λ=1e-3, and temperature parameter (Gumbel-Softmax trick) τ=0.66. We tested learning rates of [1e-2, 1e-3, 1e-4]