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Modulations of Insular Projections by Prior Belief Mediate
the Precision of Prediction Error during Tactile Learning
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"Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany, and *Collaborative
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Awareness for surprising sensory events is shaped by prior belief inferred from past experience. Here, we combined hierarch-
ical Bayesian modeling with fMRI on an associative learning task in 28 male human participants to characterize the effect of
the prior belief of tactile events on connections mediating the outcome of perceptual decisions. Activity in anterior insular
cortex (AIC), premotor cortex (PMd), and inferior parietal lobule (IPL) were modulated by prior belief on unexpected targets
compared with expected targets. On expected targets, prior belief decreased the connection strength from AIC to IPL,
whereas it increased the connection strength from AIC to PMd when targets were unexpected. Individual differences in the
modulatory strength of prior belief on insular projections correlated with the precision that increases the influence of predic-
tion errors on belief updating. These results suggest complementary effects of prior belief on insular-frontoparietal projec-
tions mediating the precision of prediction during probabilistic tactile learning.

Key words: dynamic causal modeling; functional magnetic resonance imaging; hierarchical Bayesian modeling; predic-
tion; tactile learning
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In a probabilistic environment, the prior belief of sensory events can be inferred from past experiences. How this prior belief
modulates effective brain connectivity for updating expectations for future decision-making remains unexplored. Combining
hierarchical Bayesian modeling with fMRI, we show that during tactile associative learning, prior expectations modulate con-
nections originating in the anterior insula cortex and targeting salience-related and attention-related frontoparietal areas (i.e.,
parietal and premotor cortex). These connections seem to be involved in updating evidence based on the precision of ascend-
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ing inputs to guide future decision-making.
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Introduction

The expectation for the occurrence of tactile events is modulated
by prior experiences (Lovero et al., 2009; van Ede et al., 2010,
2014). In a probabilistic environment, prior belief about the
causes of relevant stimuli, such as imminent tactile inputs, is con-
tinuously updated based on past experiences following the prin-
ciple of predictive coding (Rao and Ballard, 1999) and free
energy (Friston and Kiebel, 2009). In this framework, bottom-up
sensations and top-down predictions are integrated by precision-
dependent computational processes, where the precision or con-
fidence increases the influence of ascending prediction error
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(PE) signals on perceptual inference via postsynaptic gain (i.e.,
cortical gain control or excitation-inhibition balance; Feldman
and Friston, 2010).

Awareness of surprising or unexpected tactile sensations is
thought to depend on interactions within a hierarchically organized
somatosensory system. Somatosensory mismatch negativity, as a PE
equivalent, elicited by an unexpected deviant has been shown to fol-
low Bayesian rules (Ostwald et al., 2012; Allen et al., 2016; Fardo et
al., 2017). These rules seem to be encoded by recurrent processing
loops in a network encompassing primary/secondary somatosen-
sory cortices (S1/52), inferior frontal cortex, and anterior cingulate
cortex (Ostwald et al., 2012). Unexpected tactile events particularly
increase recurrent connectivity among S1/S2, inferior/middle fron-
tal, and inferior parietal regions (Allen et al, 2016; Fardo et al,,
2017), while the anterior insular cortex (AIC) seems crucial for the
integration of afferent sensory inputs with top-down control arising
in the frontal and cingulate cortex (Allen et al., 2016).

Behavioral performance and neural responses to expected
and unexpected outcomes are modulated by prior beliefs about
future states of the tactile environment. The degree of anticipa-
tion has been shown to improve the precision of tactile
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sensations (van Ede et al, 2014), whereas uncertainty (Rossi-
Pool et al., 2016; Schroder et al., 2019) or the constitutive ele-
ments of perceptual inference (i.e., prediction error and precision
weighting; Ostwald et al., 2012; Allen et al,, 2016; Fardo et al.,
2017) are well reflected by neural responses in the insular, cingu-
late, and premotor cortices. Despite all this evidence, how prior
belief regulates effective connectivity in the somatosensory net-
work for future decision-making remains unknown.

In an associative learning task, the association strength of
the decision and the corresponding feedback is continuously
updated on the basis of recent observations. Considerable evi-
dence has shown that this inference can be conceptualized by
hierarchical Bayesian modeling (Iglesias et al., 2013; Vossel et al.,
2015; Kuhns et al., 2017; Weilnhammer et al., 2018). Here, we
applied an adapted tactile associative learning task where partici-
pants had to learn the changing predictive strength of a sample
stimulus in forecasting a subsequently presented target. Trialwise
prior belief about the sample-target contingency were used as
modulators of effective connectivity for expected and unexpected
targets.

We hypothesized to identify a hierarchically organized soma-
tosensory network, consisting of the insular cortex and frontopa-
rietal regions, in which predicted outcomes (i.e., the awareness
for expected and unexpected targets) are differentially modulated
by prior belief. Since the insular cortex is considered as a core
hub regulating the interaction of bodily, attentional, and antici-
patory tactile signals (Sridharan et al., 2008; Lovero et al., 2009;
Menon and Uddin, 2010; Allen et al., 2016), we further expected
that efferent projections originating in the insula may change as
a function of prior belief for expected and unexpected targets,
which, in turn may signal the precision weighting for belief
updating.

Materials and Methods

Participants

We recruited 33 healthy male participants (mean * SD age, 25.1 =
3.8 years). Only male participants were included to avoid the influences
of hormonal fluctuations over the menstrual cycle on learning and asso-
ciated blood oxygenation level-dependent (BOLD) signals (Dreher et al.,
2007; Sacher et al., 2013; Wetherill et al., 2016). Five participants were
excluded due to >20% invalid trials (i.e., missed or late response >1300
ms) or <60% correct responses. Consequently, 28 participants were
included for further data analysis (mean * SD age, 25.3 * 3.9 years).
All participants were right handed, as assessed by the Edinburgh
Handedness Inventory (Oldfield, 1971), and had normal or corrected to
normal vision, no history of psychiatric/neurologic disorders, or received
regular medication. The study was approved by the ethics committee of
the Ruhr-University Bochum.

Tactile stimuli

The tactile stimuli were generated and delivered using an MRI-compati-
ble piezoelectric Braille stimulator (Metec). It consisted of eight plastic
pins, aligned in two series of four (Fig. 1A; pin diameter, 1.2 mm;
rounded top; interpin spacing, 2.45 mm). The Braille stimulator was
controlled using Presentation software (version 20.1; Neurobehavioral
Systems) through Metec Virtual Braille Device by TCP-IP (transmission
control protocol/internet protocol) commands. The index fingertip of
the right (dominant) hand was positioned over the Braille stimulator.
We applied the following two alternative tactile stimulation patterns: ei-
ther the upper four pins (distal) were raised or the lower four pins (prox-
imal) were raised. To ensure that both tactile stimulation patterns (distal
or proximal) were perceived correctly, participants performed an initial
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test before MRI scanning in which they had to distinguish both tactile
stimulation patterns 100% correctly.

Experimental design

We used a tactile associative learning task where participants were
instructed to learn the predictability of a sample stimulus in fore-
casting the subsequently presented target stimulus (Fig. 1A). In each
trial, participants first received the sample stimulus for 500 ms (dis-
tal or proximal). A red fixation cross was simultaneously presented
on the screen together with the tactile stimulus via fMRI-compatible
LCD goggles (VisuaStim Digital, Resonance Technology). Following
the sample, the red fixation cross turned green and participants had
to press one of two buttons (LumiTouch keypads, Photon Control)
with the index or middle finger of the left hand to indicate which of
the two target stimuli (distal or proximal) would follow. After the
button press and a short interval of 500-1500 ms, the target stimulus
(distal or proximal) was presented for 500 ms. Trials were presented
with randomized intertrial intervals ranging between 1500 and
3000 ms, in 100 ms steps.

Throughout the experiment, participants were asked to maintain
central fixation and to indicate their decision by pressing the button
within 1300 ms. Moreover, they were instructed to learn the predictabil-
ity of the sample stimulus (i.e., how much they believed that the target
matches the sample). The predictability of the sample was manipulated
by changing the strength of the sample-target contingency over time.
The task consisted of strongly predictive (90% and 10%), moderately
predictive (70% and 30%), and nonpredictive (50%) blocks (Fig. 1B).
The whole experiment comprised 10 blocks, 2 blocks for each of the five
sample-target contingencies. Each block based on one sample-target
contingency and consisted of an equal number of the two tactile pat-
terns, presented in random order as either sample or target stimulus.
The sequence of blocks was pseudorandomized and fixed across partici-
pants to ensure intersubject comparability of the learning process
(Iglesias et al., 2013; Vossel et al., 2014). Participants were informed that
the sample-target contingency would change over time, but the exact
probabilities (i.e., 90%/10%, 70%/30%, and 50%) were unknown to the
participants. To avoid the prediction of a new block onset, the two
blocks for each prediction strength were once presented with 30 trials,
and the other time with 40 trials. The fMRI experiment consisted of 350
trials in total, which we split into three runs, each lasting ~10 min.
Overall, the fMRI session was 30 min long.

To motivate constantly high performance throughout the fMRI
experiment, we offered a monetary reward of 1€ added to the general
reimbursement (5€/run) for a 5% increase in correct predictions in each
fMRI run. After each run, the participants were given a visual feedback
(10 s) about the amount of correctly or incorrectly predicted trials, how
many were missed, and how much money they made during the preced-
ing run. After the reward feedback, the participants had a short rest of 60
s in which the word “pause” was shown on the display.

Modeling of behavioral data

The invalid trials with missed responses or excessively long reaction
time (>1300 ms) were excluded from further analyses. The behavioral
data were applied to a three-level hierarchical Gaussian filter (HGF), as
implemented in the HGF version 5.2 toolbox (https://www.tnu.ethz.ch/
de/software/tapas.html), to calculate the individual differences in trial-
wise prior belief about external states at different levels (Mathys et al.,
2011; Iglesias et al, 2013; Vossel et al, 2014; Kuhns et al, 2017;
Weilnhammer et al., 2018). The HGF consists of a perceptual and a
response model, which describes a framework where an agent receives a
sequence of inputs (stimuli) and generates behavioral responses based
on perceptual inference. It describes how hidden states (y®) of the
world generate sensory input (Mathys et al., 2011). The first level of the
model represents tactile perception during each trial, y{°. In our study,
it was represented by a binary input, with y{” = 1 for when the target
matched the sample and y{” = 0 for when the target mismatched the
sample. The second level, x5, represents the sample-target contingency
(ie., the estimation of the predictive strength of the sample stimulus
with respect to the target on a trial-by-trial basis). The probability
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Figure 1.  Experimental design and participants’ behavioral performance. A, Experimental design. Participants were instructed to predict the target stimulus as accurately as possible based

on the predictability of the sample stimulus. Both sample and target stimuli were delivered to the dominant (right) hand. B, The sample-target association and a subject-specific example of
prior belief (£t,). Black line, Time-varying sample-target association strengths consisting of strongly predictive (90% and 10%), moderately predictive (70% and 30%), and nonpredictive (50%)
blocks; red line, example of a subject-specific trajectory of prior beliefs about sample-target contingencies; orange dots, trial outcomes (or tactile inputs); green dots, participant’s observed
responses; green cross, participant's missing responses. €, The proportion of expected targets (Correct) over time for each of the five sample-target contingencies (i.e., 90%, 70%, 50%, 30%,
and 10%). The colored lines show the difference in proportion of Correct trials between blocks with high predictability and low predictability indicating successful learning of sample-target

contingendies.

distribution of y{* = 1 was a Bernoulli distribution, determined by
higher-level " through sigmoid transformation. The value of x{” was
based on the previous trial (f — 1) and changed from trial to trial as a
Gaussian random walk. The changing rate of yi” was determined by
both the third level, )(é'), and a subject-specific parameter, w. )(3“) rep-
resented the volatility of tactile observation (i.e., how fast the predictive
strength of the sample stimulus changed over time). The step size of
Gaussian random walk on y5” was determined by a second subject-spe-
cific parameter, ws. So, the variance of these environmental hidden
states depended on the state at the next higher level, changing as a
Gaussian random walk (Mathys et al., 2011).

To infer the subject-specific probabilistic representations from envi-
ronmental states, the perceptual model needed to be inverted, which
yields the posterior densities over the three hidden states . The poste-
rior belief is denoted by (") on a given trial ¢. The hat symbol (A) was
used to denote predictions before the observation of three hidden states
)((t) on a given trial ¢ (i.e., prior belief). In the present study, we focused
on trialwise [/,Zt at the second level; that is, the prior belief about the
sample-target contingency. Prior belief i} evolves from the posterior

belief of the previous trial (t — 1), as follows:

=

Posterior belief (/.Lgt)) in this model is updated after each trial based
on the weighted prediction error. These update equations provide
Bayes-optimal rules for updating belief trial by trial. The update equation
of belief is as follows:

w' = +ey

g(zt) _ d/(zz)ggt).

where precision-weighted prediction error (&;) is the outcome predic-
tion error (&) weighted by the precision of predictions (¢,). At the sec-
ond level of the HGF, the precision weight (i/,) is updated with every
trial, so that it also can be considered as the equivalence of a dynamic
learning rate in reward-learning models (Preuschoff and Bossaerts, 2007;
Mathys et al., 2011). The outcome PE 8, is the difference between the
actual and the predicted outcome on trial £, as follows:

We used the absolute value of prior belief about sample-target con-
tingency (| ,u,(; |) to create regressors that entered the general linear
model (GLM), which we estimated for each participant. In addition, we
also added prior belief about the volatility (,&gt)) at the third level as
another regressor to investigate the potential effect of prior belief about
the volatility. For the derivation of mathematical details about prior
belief at the third level, please see the study by Mathys et al. (2011).

To check whether the model-fitting procedure derives meaningful
parameter values when fitting simulated response data where the “true”
parameter values are known, we performed a parameter recovery analy-
sis using the HGF model. First, we simulated fake data with known pa-
rameter values (w2 and w3 were chosen as variable parameters). Next,
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we fitted the model to fake data to “recover” parameters. Finally, we
compared recovered parameters to the true values used to simulate fake
data. If there is only a weak correlation between the simulated and recov-
ered parameters and/or a significant bias, the model might be problem-
atic or the experimental design is underpowered to assess the model
(Wilson and Collins, 2019). A range of w, and w; from 0 to —10 was
chosen based on the range of estimates observed in the analysis of exper-
imental data. We then repeated these steps 1000 times using new values
for w, and w5 each time.

To test whether a simpler reinforcement learning model better fits
participants’ performance, we compared the hierarchical Bayesian model
with a standard Rescorla-Wagner (RW) learning model with a fixed
learning rate (Rescorla and Wagner, 1972). The central idea behind the
RW learning model is that it quantifies the evaluation of a choice option
updated by the difference between the actual outcome and the expected
outcome, as follows:

Vi=Vi,+ CV(rt—l - Vt—l)y
where « is the learning rate, which takes a value between 0 and 1, and
captures the extent to which the prediction error, the difference between
the actual outcome (r,_;) and the expected outcome (V,_;), updates the
value of an option V.

For each model estimation, we calculated the log-model evidence as
a measure of model goodness, which can also be used for model compar-
ison. The log-evidence of a model is calculated as the negative variational
free energy under the Laplace assumption. It represents a generic trade-
off between the accuracy and complexity of a model that can be derived
from first principles of probability theory (Penny et al., 2004; Stephan et
al,, 2009). To assess the relative plausibility of our models at the group
level, we used random-effects Bayesian model selection (BMS), which
evaluates the relative plausibility of competing models in terms of their
log-evidence (Stephan et al., 2009), to identify the model with the higher
likelihood.

fMRI data acquisition and preprocessing
fMRI data were collected on a Philips Achieva 3.0 T X-series scanner
using a 32-channel head coil. For functional imaging, we used a T2*-
weighted echoplanar imaging (EPI) sequence (voxel size, 2x2 X 3
mm?; field of view, 224 x 224 mm? interslice gap, 0.6 mm; TR=
2800 ms; TE=36ms) to acquire 36 transaxial slices parallel to the ante-
rior commissure-posterior commissure covering the whole brain. As
anatomic reference, high-resolution T1-weighted structural images were
acquired using an isotropic T1 turbo field echo sequence (voxel size,
1x1x 1 mm>; field of view, 240 x 224 mm2) with 220 transversally ori-
ented slices covering the whole brain.

Across the three fMRI runs, we acquired a total of 644 EPI volumes.
To allow for T1 equilibration, five dummy scans preceded data acquisi-
tion in each run. These scans were removed before further processing.
Each participant’s EPI volumes were preprocessed and analyzed with the
Statistical Parametric Mapping software SPM12 (Wellcome Department
of Imaging Neuroscience, University College London, London, UK;
http://www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB R2017b
(MathWorks). For preprocessing, images were first applied to slice time
correction using sinc interpolation to the middle slice. Then, the T1-
weighted image was normalized to the Montreal Neurologic Institute
(MNI) reference space using the unified segmentation approach
(Ashburner and Friston, 2005). Subsequently, the resulting transforma-
tion was applied to the individual EPI volumes to transform the images
into standard MNI space and resample into 2 x 2 x 2 mm’ voxels.
Finally, normalized images were spatially smoothed using a Gaussian fil-
ter with a full-width at half-maximum kernel of 8 mm. Data were high-
pass filtered at 1/128 Hz to remove low-frequency signal drifts.

General linear modeling of fMRI data

The GLM in SPM 12 was used to analyze fMRI data. For each partici-
pant, we conducted a first-level GLM. Events were time locked to the
onset of the target stimulus. Two regressors of interest were defined at
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the single-subject level, one for Correct (expected targets) and the other
one for Wrong trials (unexpected targets). For each of these two regres-
sors, two parametric modulators of prior belief were defined. The first
parametnc modulator was prior belief about the sample-target contin-
gency (,u,2 ). The second modulator was prior belief about the volatility
(,u,;) orthogonalized with respect to Mg). Onsets were convolved
with the canonical hemodynamic responses function in an event-
related fashion. Invalid trials (i.e., missing or late responses) were
modeled separately. Functional data from the three runs were con-
catenated using the spm_fmri_concatenate.m function in SPM12.
Using this function, the high-pass filtering and temporal nonspher-
icity calculations were corrected to account for the original session
length (Berron et al., 2018; Ross et al., 2018). Furthermore, six head
motion parameters, as estimated during the realignment procedure,
were added as regressors of no interest to minimize false-positive
activations due to task-correlated motion.

With the GLM, we aimed to identify brain areas in which BOLD
responses were differentially modulated by prior belief for expected and
unexpected targets. To this end, the comparison of the two main regres-
sors (contrast Wrong > Correct for the main HRF regressor) were first
analyzed to identify significant neural activity related to unexpected tar-
gets. Then, in the analyses of prior belief-related neural activity, we
assessed the positive or negative effects with the contrasts [1, —1] and
[—1, 1] applied to the two regressors representing the parametric
modulation by prior belief /i ,u,2 or ,u,3) The respective t-contrast sin-
gle-subject images were applied to the group-level one-sample ¢ test.
All analyses were thresholded at p <0.05 familywise error (FWE)
corrected for the whole brain.

Dynamic causal model

To investigate effective connectivity and compare different network
models, we performed the bilinear deterministic dynamic causal model
(DCM,; Friston et al., 2003) using SPM12. DCM serves to compare dif-
ferent hypotheses about the mechanisms (in terms of neuronal coupling)
that underlie regional neural responses detected in conventional analyses
(Stephan et al., 2010).

Time series extraction

Following our GLM results and a priori hypotheses, we selected those
brain regions as network nodes in which neural responses were modu-
lated by prior belief [i.e., AIC, inferior parietal lobule (IPL), and dorsal
premotor cortex (PMd) in the right hemisphere]. Subject-specific time
series were extracted from the nearest local maximum within a sphere
with a radius of 12 mm centered on the group maxima. The first
Eigenvariate was then extracted across all voxels surviving p=0.05
uncorrected within a 6 mm sphere centered on the individual peak
voxel. The resulting BOLD time series were adjusted for effects of no in-
terest (e.g., invalid trials and movement parameters). Following these
procedures, time series for all three areas could be extracted in 26 of the
28 participants. Right AIC (rAIC) time series in one participant and
right IPL (rIPL) time series in another participant could not be obtained
because of a failure to meet the above criteria in the target regions. These
two participants were excluded from DCM analyses.

Specification of DCMs and model space

DCMs are specified in terms of fixed (endogenous) connections between
brain areas and condition-specific changes in the strength of these con-
nections (i.e., modulatory or bilinear effects). Since our DCM model
considered the contrast of the main regressors (Wrong > Correct) as the
input and prior belief-related brain activity as the modulatory factor, we
only included the three regions that significantly overlapped at p=0.05
(FWE corrected) in both contrasts (main regressor: Wrong vs Correct
and parametric regressor: Wrong vs Correct by prior belief). All three
regions (i.e., IPL, AIC, and PMd) were found in the right hemisphere.
This finding is supported by empirical evidence suggesting that body-
related awareness and attentional reorientation are mainly localized in
right-lateralized brain networks (Craig, 2005; Vossel et al., 2015; Allen et
al, 2016). Given that every brain region is connected reciprocally
(Friston, 2011), we assumed reciprocal endogenous connectivity among
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Parameter recovery for the HGF model and differences in log-model evidence for the HGF model as compared to the RW model. A, Parameter recovery for the HGF model. Grey

dots correspond to points where parameter recovery for w3 is bad (i.e., when |wsim — wfit |>1). As shown in the figure, there is fairly good correlation between the simulated and fitting
parameter values, which indicates that the parameter values can be recovered with good precision using the HGF model. B, Individual difference of log-model evidence between the HGF model
and the RW model. Positive values index participants who presented higher model evidence for the HGF model.

the three regions; that is, all forward connections were accompanied by
respective backward connections. Driving input was assumed to enter
the terminals of the dorsal (rIPL) or ventral somatosensory pathway
(rAIC). We specified three model families to determine the following
tactile input drives: (1) rIPL; (2) rAIC; or (3) rIPL and rAIC. For each of
these three families, we specified models with different modulatory (bilin-
ear) effects. Specifically, we tested whether the source of prior belief-
related neural activity was represented by the rIPL, rAIC, or right PMd
(rPMd), and how self-connections or efferent connections between those
regions changed as a function of prior belief for unexpected (Wrong) and
expected (Correct) targets. This resulted in 12 models for each driving
input family (see Fig. 4). Finally, 36 models were evaluated.

Model selection and parameter inference

We used a two-step fixed-effects Bayesian model comparison to infer the
best fitting model for our observed responses in rIPL, rAIC, and rPMd.
The fixed-effect analysis was applied as we assumed that all participants
were best described by the same brain network, but with different con-
nection strengths. To this end, we selected the model with the best bal-
ance between accuracy and complexity. First, we used family-level
inference (Penny et al., 2010) to determine whether models with tactile
input to rIPL, rAIC, or both regions best explained the observed data.
Second, the models of the winning family were compared to identify the
most plausible model explaining prior belief-related effects. The parame-
ters of the winning model were summarized by Bayesian parameter aver-
aging, which computes a joint posterior density for the entire group by
combining the individual posterior densities (Neumann and Lohmann,
2003; Garrido et al,, 2007). A posterior probability criterion of 90% was
considered to reflect significant effective connectivity.

Correlate the modulation strength with updating parameters

To investigate whether the modulatory influences on the connections by
prior belief could serve the updating process based on a precision-
weighting mechanism, we tested the relationship between individual dif-
ferences in the change ratio of the modulated connection strengths and
the two crucial updating parameters (precision ¢, and prediction error
81). For each participant, we averaged the two trialwise updating parame-
ters of Wrong and Correct trials separately. The connections that were dif-
ferently modulated by prior belief, namely, rAIC — rPMd and rAIC —
rIPL (see Results), were separately correlated with the two averaged updat-
ing parameters across participants. For the connection rAIC — rPMd, the
change ratio of modulation strength was defined by (Wrong-Correct)/
Wrong. For the rAIC — rIPL connection, the change ratio of modulation
strength was defined as (Correct-Wrong)/Correct. The change ratio of the
two averaged parameters guiding the update process (precision ¢, and
prediction error &) for Wrong and Correct trials was defined in the same
way as for the connection strengths. Finally, data were applied to Pearson
correlation analyses together with a Bonferroni-corrected threshold at
p=0.025 (i.e., corrected for the two parameters ¢, and 81).

Results

Behavioral results

Before data analyses, each participant’s behavioral data were
examined for invalid trials (i.e., missed or late responses >1300
ms). Participants with >20% invalid trials or <60% correct
responses were excluded from further analyses. These criteria led
to the exclusion of five participants. The remaining 28 partici-
pants were included for further data analysis. The trials with
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missing or late responses (2.19 *
0.53%, mean *= SEM) were excluded
from the analysis of behavioral data
and were modeled separately as a
regressor of no interest in the analysis
of the fMRI data. The proportion of
expected targets (Correct) was analyzed
across the five different sample-target
contingencies (90%, 70%, 50%, 30%,
and 10%; Fig. 1B) to assess whether
probabilistic learning was successful.
Figure 1C shows increases in expected
targets over time and a significantly
higher proportion of expected targets in
blocks with high predictability (ie.,
90%/10%) than in blocks with low pre-
dictability (i.e., 70%/30%; t(1 57 = 20.75,
p<<0.001, Bonferroni corrected) or
unpredictable blocks (i.e., 50%; t27)=
24.70, p < 0.001, Bonferroni corrected).

The parameter recovery analysis
revealed that the parameter values
(i.e., subject-specific parameters w,
and w;) can be recovered with good
precision using the HGF model (Fig.
2A). Comparing relative log-model evi-
dence between the HGF and RW model
showed that HGF was superior in 21 of
28 participants (Fig. 2B). BMS revealed
posterior model probabilities of 90% for
the winning HGF (posterior probabil-
ities, 0.90; exceedance probability, 1.00).
This result provides evidence that our
participants did learn the task-relevant
conditional probabilities of sample stimuli and updated their
learning rate dynamically.

A Wrong > Correct

Figure 3.

FMRI results

First, we investigated the neural substrates of unexpected targets
(Wrong > Correct contrast). In line with our a priori hypotheses,
the fMRI GLM analysis revealed bilateral activations in AIC, sup-
plementary motor area (SMA), IPL, and PMd (p <0.05, FWE
whole-brain corrected; Fig. 34, Table 1).

Next, we tested how prior belief modulated neural activation
related to unexpected targets (Wrong > Correct by prior belief).
The interaction between Wrong > Correct and prior belief about
the sample-target contingency £ revealed a significant effect in
right AIC, right PMd, and bilateral IPL (Fig. 3B, Table 1; “para-
metric regressors” for MNI coordinates, cluster sizes, and ¢
scores). The analysis of parametric effects related to prior belief
about trail-specific volatility ([L(;)) did not reveal any significant
effects (p < 0.05, FWE whole-brain corrected). The comparison
of expected and unexpected trials (Correct > Wrong) did not
reveal any significant differences for both /.Alét) and ,a(;’ .

DCM results

DCM was used to unveil context-sensitive interactions between
those regions in which the response was modulated by prior
belief. First, family-level BMS was used to reveal the most likely
region that receives the driving sensory inputs. Results revealed
that models with the tactile input directed to both rAIC and rIPL
were superior (posterior probability,0.88) to models with the
input directed to only one of the two regions. Among the 12

B Wrong > Correct by ﬁgt)

Wang et al.  Insular Projections Encode Precision of Prediction

FWE p<0.05

Results of the GLM analysis. A, Bilateral brain regions that were activated by Wrong > Correct. B, Regions related
to prior belief for unexpected trials as revealed by a t-contrast Wrong > Correct by the modulatory parame-
ters ([L;’)). The blue pattern represents activations revealed by comparing Wrong > Correct, as shown in A. Note that only regions
in the right hemisphere significantly overlapped in both contrasts, as follows: Wrong > Correct by the modulatory parameters
(,[Lﬁ” ) and Wrong > Correct. Since our DCM models were based on both contrasts, we only considered the three regions in the right
hemisphere for DCM, but not left IPL. Significant activations (p << 0.05, FWE corrected) were superimposed on sagittal, coronal, and
axial slices of a standard T1-weighted image, as implemented in SPM. Coordinates next to each slice index their location in MNI
space. Red-yellow coding indexes the t scores of activation intensities.

models in which the tactile input was directed to rAIC and rIPL
(Fig. 4), model 8 was superior to the other 11 models (posterior
probability, 1.00). This model consisted of efferent connections
originating in rAIC and targeting rIPL and rPMd. These efferent
connections were significantly modulated by prior belief when
targets were unexpected (Wrong > Correct).

Bayesian parameter averaging of the winning model across all
participants revealed significant endogenous (fixed) connections
among all three regions and their self-connections (all connec-
tions: posterior probability, 1.00; Fig. 5A). Analysis of the modu-
latory influence of prior belief j1y’ on Wrong and Correct trials
showed complementary effects of prior belief (negative modula-
tion for Correct trials, positive modulation for Wrong trials).
Prior belief on expected targets (Correct) had a specific inhibitory
influence on the connectivity from rAIC to rIPL (posterior
probability, 0.932; Fig. 5B), whereas prior belief on unexpected
targets (Wrong) strengthened the connectivity from rAIC to
rPMd (posterior probability, 1.00; Fig. 5B).

Pearson correlation analyses were applied to explore the rela-
tionship between individual differences in the change ratio of the
modulatory influence of prior belief on rAIC projections [i.e.,
(Wrong-Correct)/Wrong for rAIC — rPMd connection;
(Correct-Wrong)/Correct for rAIC — rIPL connection] and the
change ratio of the two key parameters underpinning the belief
updating process (precision ¢/, and prediction error &), ana-
lyzed in the same way (ie., Wrong-Correct)/Wrong; (Correct-
Wrong)/Correct). The results revealed a significant negative
correlation between prior belief-related changes in rAIC —
rPMd connectivity and the precision of prediction error (r =
—0.597, p=0.002; Fig. 6). These findings suggest that the
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Table 1. Results of fMRI analysis for Wrong versus Correct trials
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Peak coordinates

Regions Hemisphere X y z Cluster size (voxels) t score
Main regressor: Wrong > Correct
Insula R 34 22 4 455 10.92
Insula L —32 26 -2 258 9.40
Premotor cortex R 46 30 34 118 7.59
Premotor cortex L —32 54 20 48 7.12
Supplementary motor cortex Land R 2 22 44 820 10.73
Inferior parietal lobule R 40 —40 46 313 8.20
Inferior parietal lobule L —34 —48 46 36 6.96
Parametric regressor /lgt): Wrong > Correct
Insula R 30 28 —4 64 7.62
Premotor cortex R 28 6 54 30 7.52
Inferior parietal lobule R 46 —38 40 188 7.25
Inferior parietal lobule L —48 —38 56 'y} 7.94
Parametric regressor [Lg’):
n.s.
n.s., Not significant; L, left; R, right.
rIPL rAIC rPMd

M3:

M4:

M8:

Modulation by prior

belief for correct trials

o Modulation by prior

belief for wrong trials

M11:

Figure 4. lllustration of the model space for Bayesian model selection. First, we specified three model families to determine whether the tactile input drives rlPL, rAIC, or both regions (families not
shown in the figure). For each of these three families, we then specified models based on whether prior belief modulates self-connections or efferent connections of the riPL (M1-M4), rAIC (M5-M8), or
rPMd (M9-M12). Bayesian model selection revealed that among the models with the tactile input directed to both rAIC and rIPL, model 8 (surrounded by the box) was superior to the other 11 models.
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B Modulation of connectivity by ﬂgt)

=== Positive coupling
= Negative coupling

Figure 5.

====@ Positive modulation on Wrong trials
=@ Negative modulation on Correct trials

’ ‘ Wrong trials | Correct trials ‘
0.479 -0.046
rAlIC>rPMd (1.00) (0.795)
0.101 -0.090
rAIC>rIPL (0.874) (0.932)

Bayesian parameter averaging across participants for the winning DCM model 8 (Fig. 4). A, Endogenous (fixed) connections. Green connections = significant positive coupling

rates, red connections = significant negative coupling rates. The numbers alongside the connections indicate coupling parameters representing the strength of effective connectivity in Hz. All
fixed connections were significant (posterior probability = 1.00). Blue arrows represent the driving inputs. B, Modulation of connectivity by prior belief. Bayesian parameter averaging revealed
that prior belief positively modulated the connection rAIC — rPMd for unexpected targets (green dashed line). For expected targets, prior belief negatively modulated the connection rAIC —
rPL (red solid line). The corresponding gray lines represent the nonsignificant modulation effects. The table depicts the Bayesian parameter averages with posterior probabilities in brackets for

the modulation of connections by prior belief the modulation of connections by prior belief.

A rAlIC to rPMd connection B rAIC to rIPL connection
0.02
r=-0.597 0.07 r=0.420
p =0.002* 0.06 | P =0.030¢ .
c 0 c
] o
3 2 0.05
o 3
2 -0.02 s
5 o 0.04
S 9
S 004 7 003
& P
< ® 0.02 N
& ©
S -0.06 5 o
0.01 s
-0.08 0
-4 -3 -2 -1 0 1 2 3 -4 -2 0 2 4 6 8

Change ratio of modulation strength

Figure 6.

Change ratio of modulation strength

Correlation between change ratio of prior belief-related effective connections and the precision of prediction error. A, rAIC to rPMd connection. The change ratio is defined by

(Wrong-Correct)/Wrong. The stronger the prior belief-related connection strength of rAIC — rPMd was, the lower was the precision of prediction error for unexpected targets. B, rAIC to rIPL
connection. The change ratio is defined by (Correct-Wrong)/Correct. A clear trend for a positive correlation (r = 0.420, p = 0.030) was found for expected targets, suggesting that the stronger
prior belief related connection strength of rAIC — rIPL was, the higher also the precision of prediction error was. The r and p values are based on a linear (Pearson) correlation analysis.

*Significant correlation; *trend level correlation (Bonferroni-corrected (p << 0.025).

stronger the prior belief-related connection strength of rAIC —
rPMd, the lower the precision of prediction error for unexpected
targets. For expected targets, we only found a trend for a positive
correlation, which failed to surpass the Bonferroni-corrected
threshold (p=0.025). This clear trend (r=0.420, p=0.030)
nevertheless suggests that the stronger the prior belief-related
connection strength of rAIC — rIPL, the higher also the preci-
sion of prediction error (Fig. 6). For the prediction error &,,we
revealed no significant relationship, not even at trend level.

Discussion
In the present study, we demonstrate that neural responses to
unexpected versus expected tactile targets are modulated by

probabilistic inference through changes in effective connectivity.
Unexpected compared with expected targets provoked bilateral
activity in regions involved in attentional allocation (ie., AIC
and IPL) as well as areas involved in coordinating attention and
cognitive control (i.e., SMA and PMd). Among these regions, the
activity in right AIC, IPL, and PMd correlated with prior belief
from trial to trial. DCM revealed that prior belief specifically
modulated the effective connectivity either from AIC to PMd or
from AIC to IPL, depending on whether the target was unex-
pected or expected. The connection strength from AIC to IPL
decreased with prior belief on expected targets, whereas the con-
nection strength from AIC to PMd increased with prior belief on
unexpected targets. These context-sensitive changes in effective
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The schematic summarizes the processing of expected and unexpected targets under different levels of environmental uncertainty (i.e., prior belief). The dashed lines indicate trend

level correlation between the connection strength and the precision of PE. Strong prior belief was associated with a low influence of the prediction error on belief updating, especially when
the target was unexpected. It also increased the strength of connectivity from the AIC to the PMd on unexpected targets, whereas it decreased the connectivity from AIC to IPL when targets
were expected. Tactile targets in combination with weak prior belief were associated with a strong influence of the prediction error on belief updating, again especially for unexpected targets.
Weak prior belief also decreased the strength of connectivity from the AIC to the PMd on unexpected targets, whereas it increased the connectivity from AIC to IPL when targets were

expected.

connectivity seem to signal the decision outcome depending on
whether the concurrently presented tactile target was expected or
not.

Unexpected compared with expected outcomes provoked ac-
tivity in a hierarchically organized network assumed to serve the
interactions of ascending body-related sensations and top-down
prediction signals (Downar et al., 2000, 2002). Our observed acti-
vation pattern markedly overlapped in the AIC, IPL, SMA, and
PMd with previously reported effects related to the encoding of
deviant stimuli in the oddball task (Huang et al., 2005; Allen et
al., 2016; Fardo et al, 2017). While processing surprising or
unexpected tactile sensations, AIC and IPL were assumed to be
specifically involved in guiding the orientation of attention to sa-
lient sensory events (Allen et al, 2016; Fardo et al, 2017),
whereas SMA and PMd were, rather, expected to coordinate
attention and cognitive control (Downar et al., 2000; Rossi-Pool
et al., 2016). These functional implementations appear at the
crossroad between processes that support awareness for the
physical properties of a tactile input and their further cognitive
implementation.

Analogous to the visual or auditory domain, Dijkerman
and de Haan (2007) formulated a somatosensory model of
perception and action, in which a perception/recognition-
related ventral pathway terminates in the insular cortex after
passing S1 and S2. A motor output-related dorsal pathway ter-
minates in the posterior parietal cortex to relay event-related
information to the corresponding motor output region. In our
study, Bayesian comparison of different model families revealed
that tactile inputs evoked by the target stimulus were primarily
conveyed to terminal nodes of both somatosensory pathways, the
dorsal one (represented by the IPL) and the ventral one (repre-
sented by the AIC), instead of a sole propagation of inputs from
the ventral to the dorsal pathway, or vice versa. This suggests that
both dorsal and ventral somatosensory pathways were required
for the propagation of perceptual representations to higher atten-
tional and cognitive implementation of tactile information.

Our findings also identified the AIC as the source region of
prior belief-dependent effects projecting to IPL and PMd. In a

probabilistic environment, activity in SI1 and S2 mainly repre-
sents the transformation from physical to perceptual representa-
tions, whereas activity in the insular cortex is assumed to reflect
the degree of perceptual uncertainty (Schroder et al, 2019).
Empirical findings demonstrated that AIC, together with IPL
and middle frontal gyrus, were involved in stimulus-driven, bot-
tom-up control of attention, likely reflecting perceptual inference
(Uddin, 2015; Fardo et al., 2017). These findings agree well with
studies showing that the insular cortex acts as a core hub regulat-
ing the interaction of bodily, attentional, and anticipatory tactile
signals (Sridharan et al,, 2008; Craig, 2009; Lovero et al., 2009;
Menon and Uddin, 2010; Allen et al., 2016). In line with these
previous studies, our results suggest that the AIC also relays cru-
cial decision outcome-related information to frontoparietal
regions involved in attentional reorienting and perceptual infer-
ence (i.e., IPL and PMd).

In association with unexpected compared with expected out-
comes, we found activity in the IPL. On expected outcomes, the
IPL was furthermore the target of inhibitory prior belief-related
AIC projections. These findings agree with several human stud-
ies, emphasizing that the IPL supports modality-independent
attentional allocation to surprising (i.e, odd) sensory events
(Kiehl and Liddle, 2001; Ardekani et al., 2002; Huang et al., 2005;
Fardo et al, 2017). Violation of expectations was shown to
strengthen recurrent connections from S1/S2 to the IPL, which
supports the assumption that the IPL serves the reorientation of
spatial attention (Limanowski and Blankenburg, 2015; Fardo et
al.,, 2017).

The PMd, as the target of AIC projections on unexpected out-
comes, was shown to maintain information necessary to evaluate
the consequence of decision-making in the monkey brain (Rossi-
Pool et al,, 2016). This information serves future decision-mak-
ing with respect to the behavioral context and environmental
demands (i.e., whether the active evaluation is required or not).
Electrophysiological studies in humans support these findings,
showing that the comparison and updating of working memory
contents, as required for perceptual decision-making, are well
reflected by beta-band oscillations in the PMd (Spitzer and
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Blankenburg, 2011; Herding et al., 2016). According to the pres-
ent findings, the PMd seems to specifically represent the compar-
ison of predicted outcomes with a stronger sensitivity and
update function when the concurrently presented tactile target is
unexpected as when it is expected.

Prior belief seems to modulate insular projections to IPL and
PMd with respect to the concurrently presented target. Recent
theoretical accounts of predictive coding agree well with our
findings, together assuming a central role for the AIC in integrat-
ing prior belief according to changes in tactile perception (Allen
et al., 2016). In this context, the AIC has also been shown to host
processes that contribute to the encoding of precision-weighted
prediction errors or volatility based on Bayesian inference
(Iglesias et al., 2013). During predictive coding, precision (i.e.,
certainty) of prediction errors has been shown to enhance the
influence of ascending prediction errors on perceptual inference
via the neuromodulatory regulation of postsynaptic cortical gain
(Moran et al., 2013). Within this framework, sensory inputs and
prior belief are jointly integrated and act via precision-weighting
mechanisms to produce context-sensitive responses for percep-
tual inference (Friston, 2009). In our study, we found that strong
prior belief increased the strength of connectivity from the AIC
to the PMd on unexpected targets, whereas it decreased the
connectivity from AIC to IPL when targets were expected.
Individual differences in prior belief-related effective connectiv-
ity were correlated with the precision of the prediction error.
Strong prior belief was finally associated with a low influence of
the prediction error on belief updating, especially when the target
was unexpected (Fig. 7). This increased the probability that the
participant used the same decision strategy on the next trial. Low
prior belief, in turn, was associated with a strong influence of the
prediction error on belief updating (Fig. 7) and an increased
probability for changing the decision strategy on the next trial.
Our results emphasize that these processes are mediated by con-
nections originating in the AIC and targeting salience and atten-
tion-related frontoparietal areas. These connections seem to be
involved in updating evidence arising from expected and unex-
pected tactile targets to guide future decision-making (Vossel et
al., 2015; Allen et al., 2016). These results are consistent with the
concept of predictive coding, suggesting that bottom-up predic-
tion errors and top-down expectations are integrated based on
precision-dependent computational processes.

Together, our study demonstrates that unexpected tactile out-
comes evoke activity in a hierarchic ensemble of somatosensory-,
salience-, and attention-related cortical regions. In a right-lateral-
ized network consisting of insula, parietal, and premotor cortex,
the probabilistic inference differentially modulated effective con-
nectivity from the insula to the parietal cortex, as well as from
the insula to the premotor cortex depending on whether the pre-
diction was confirmed or violated. Our findings suggest that the
insular cortex acts as a gate to control the awareness for predic-
tion outcomes mediated by Bayesian inference.
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