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Streaming of Repeated Noise in Primary and Secondary
Fields of Auditory Cortex
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Statistical regularities in natural sounds facilitate the perceptual segregation of auditory sources, or streams. Repetition is one
cue that drives stream segregation in humans, but the neural basis of this perceptual phenomenon remains unknown. We
demonstrated a similar perceptual ability in animals by training ferrets of both sexes to detect a stream of repeating noise
samples (foreground) embedded in a stream of random samples (background). During passive listening, we recorded neural
activity in primary auditory cortex (A1) and secondary auditory cortex (posterior ectosylvian gyrus, PEG). We used two con-
text-dependent encoding models to test for evidence of streaming of the repeating stimulus. The first was based on average
evoked activity per noise sample and the second on the spectro-temporal receptive field. Both approaches tested whether dif-
ferences in neural responses to repeating versus random stimuli were better modeled by scaling the response to both streams
equally (global gain) or by separately scaling the response to the foreground versus background stream (stream-specific gain).
Consistent with previous observations of adaptation, we found an overall reduction in global gain when the stimulus began
to repeat. However, when we measured stream-specific changes in gain, responses to the foreground were enhanced relative
to the background. This enhancement was stronger in PEG than Al. In Al, enhancement was strongest in units with low
sparseness (i.e., broad sensory tuning) and with tuning selective for the repeated sample. Enhancement of responses to the
foreground relative to the background provides evidence for stream segregation that emerges in Al and is refined in PEG.
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To interact with the world successfully, the brain must parse behaviorally important information from a complex sensory
environment. Complex mixtures of sounds often arrive at the ears simultaneously or in close succession, yet they are effort-
lessly segregated into distinct perceptual sources. This process breaks down in hearing-impaired individuals and speech recog-
nition devices. By identifying the underlying neural mechanisms that facilitate perceptual segregation, we can develop
strategies for ameliorating hearing loss and improving speech recognition technology in the presence of background noise.
Here, we present evidence to support a hierarchical process, present in primary auditory cortex and refined in secondary audi-
tory cortex, in which sound repetition facilitates segregation. /

Introduction overlapping in both time and frequency. The auditory system
groups these dynamic spectro-temporal sound features into per-
cepts of distinct sources, in a process known as auditory streaming
(Bregman, 1990; Griffiths and Warren, 2004). Streaming requires
statistical analysis of sound sources: streams that come from the
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timbre (Singh and Bregman, 1997; Cusack and Roberts, 2000;
Roberts et al., 2002), spatial location (Singh and Bregman, 1997;
Cusack and Roberts, 2000; Roberts et al., 2002; Carlyon, 2004;
Micheyl et al,, 2007; Mesgarani and Chang, 2012), common
onset (Elhilali et al., 2009; Shamma et al., 2011), and temporal
regularity (Agus et al., 2010; Bendixen et al., 2010; Andreou et
al.,, 2011; Szalardy et al., 2014). McDermott et al. (2011) specifi-
cally tested for the benefit of temporal regularity with a set of
naturalistic noise samples that lacked other cues for streaming.
Nonrepeating samples could not be distinguished from back-
ground noise, but humans could identify these samples when
they were repeated. The neural basis of this perceptual pop-out
remains unknown.

In contrast to the robust perceptual enhancement reported
for a repeating foreground stream, studies of neurophysiologi-
cal activity in auditory cortex demonstrate a suppressive effect
of repetition (Pérez-Gonzalez and Malmierca, 2014). Single
neurons undergo stimulus-specific adaptation (SSA), where
responses to repeated tones adapt, but responses to an oddball
stimulus, such as a tone at a different frequency, are less
adapted or even facilitated, reflecting perceptual pop-out of
the oddball sound (Ulanovsky et al., 2003; Nelken, 2014). In
human electroencephalography, a possibly related phenom-
enon is observed in a late event-related component, called the
mismatch negativity (MMN). Although the dynamics are slower
than SSA, MMN is also elicited by rare deviant sounds randomly
interspersed among frequent standard sounds (Naitinen, 2001).
There is no evidence that links SSA or MMN with repetition-
based grouping, but it is possible that these processes share some
of the same neural circuits. How the brain might use adaptation
to a repeating sound to enhance its perception is not known.

In this study, we investigated neural correlates of streaming
induced by the repetition of complex sounds in primary auditory
cortex (A1) and secondary auditory cortex [posterior ectosylvian
gyrus (PEG)]. We first established the ferret as an animal model
for the streaming of repeating noise sounds by designing a be-
havioral paradigm that assessed the ability of animals to detect
repetitions embedded in mixtures. We then recorded neural
activity in Al and PEG of passive, unanesthetized ferrets. We
tested the prediction that auditory cortical neurons facilitate
stream segregation by selectively enhancing their response to the
repeating (i.e., foreground) stream. We used context-dependent
sound-encoding models to quantify the relative contribution of
the two overlapping streams to the evoked neural response
(David, 2018). We found that neural responses to the repeated
stimuli were reduced overall in both areas, relative to the nonrepeat-
ing stimuli, consistent with previous studies that reported adapta-
tion for a single repeating stream (Ulanovsky et al., 2003). However,
in addition, neurons in both cortical fields displayed foreground-
specific responses that were enhanced relative to responses to the
background stream. These results provide evidence for a mecha-
nism of streaming cued by repetition that is present in primary and
is refined in secondary fields of the auditory cortex.

Materials and Methods

All procedures were approved by the Oregon Health and Science
University Institutional Animal Care and Use Committee and conform
to the United States Department of Agriculture standards.

Surgical procedure

Animal care and procedures were similar to those described previously
for neurophysiological recordings from awake ferrets (Slee and David,
2015). Five spayed, descented young adult ferrets (two females, three
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males) were obtained from an animal supplier (Marshall Farms).
Normal auditory thresholds were confirmed by measuring auditory
brainstem responses to clicks. A sterile surgery was then performed
under isoflurane anesthesia to mount a custom stainless steel head-post
for subsequent head fixation and expose a 10 mm? portion of the skull
over the auditory cortex where the craniotomy would be subsequently
opened. A light-cured composite (Charisma, Heraeus Kulzer) anchored
the post on the midline in the posterior region of the skull. The stability
of the implant was also supported by 8-10 stainless self-tapping set
screws mounted in the skull (Synthes). The whole implant was then built
up to its final shape with layers of Charisma and acrylic pink cement
(AM Systems).

During the first week postsurgery, the animal was treated prophylac-
tically with broad-spectrum antibiotics (10 mg/kg; Baytril). For the first
2 weeks, the wound was cleaned with antiseptics (Betadine and chlorhex-
idine) and bandaged daily. After the wound margin was healed, cleaning
and bandaging occurred every 2-3d through the life of the animal to
minimize infection of the wound margin.

Experimental design

Stimuli and acoustics

Repeated embedded noise stimuli used in the present study were gener-
ated using the algorithm from McDermott et al. (2011). Brief, 250 or 300
ms duration samples of broadband Gaussian noise were filtered to have
spectro-temporal correlations matched to a large library of natural sound
textures and vocalizations but without common grouping cues, such as
harmonic regularities and common onsets. The spectral range of the
noise (125-16,000 or 250-20,000 Hz) was chosen to span the tuning of
the current recording site. Thus, the duration and spectral range of the
stimuli differed from previous work in humans, but other statistical
properties were identical (McDermott et al., 2011). An experimental trial
consisted of continuous sequences of 10-12 noise samples (0 ms inter-
sample interval) drawn randomly from a pool of 20 distinct samples
(Figs. 1B, 2A). The order of samples varied between trials. Either one
stream of samples was presented (single stream trial) or two streams
were overlaid and presented simultaneously (dual-stream trial). At a ran-
dom time (after 3-11 samples; median, 6 samples), the sample in one
stream (target sample) began to repeat. In dual-stream trials, this repeti-
tion occurred only in one of the two streams, while samples in the other
stream continued to be drawn randomly. In human studies, the repeating
sample has been shown to pop out perceptually as a salient stream
(McDermott et al., 2011). Thus, the stream containing the repeated sample
is referred to here as the foreground, and the nonrepeating stream as the
background (Fig. 1B). The period of the trial containing only random
samples is referred to as the random segment, and the segment starting
with the first repetition of the target sample is referred to as the repeating
segment (Figs. 1B, 2A). With the exception of the spectro-temporal recep-
tive field analysis, the first sample of the random segment was excluded
from all analyses to minimize the effect of onset-related adaptation, which
was consistently complete by 250 ms following trial onset.

All behavioral and physiological experiments were conducted inside
a custom double-walled sound-isolating chamber with inside dimen-
sions of 8 x 8 x 6 feet (length x weight x height). A custom second
wall was added to a single-walled factory chamber (Professional Model,
Gretch-Ken) with a wooden frame and an inner wall composed of three-
quarter inch medium-density fiberboard board. The air gap between the
outer and inner walls was 1.5 inches. The inside wall was lined with 3
inch sound-absorbing foam (Pinta Acoustics). The chamber attenuated
sounds >2kHz by >60dB. Sounds from 0.2 to 2kHz were attenuated
30-60 dB, falling off approximately linearly with log-frequency.

Stimulus presentation and behavioral control were provided by cus-
tom MATLAB software (MathWorks). Digitally generated sounds were
digital-to-analog converted (100 kHz; PCI-6229, National Instruments)
and presented through a sound transducer (W05, MANGER) driven
with a power amplifier (D-75A, Crown). The speaker was placed 1 m
from the head of the animal, 30° contralateral to the cortical hemisphere
under study. Sound level was calibrated using a one-half inch micro-
phone (4191, Briiel & Kjeer). Stimuli were presented with 10ms cos>
onset and offset ramps.
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Figure 1.  Ferets are sensitive to repetitions embedded in mixtures. A, Ferrets were trained to respond to sound repetition by licking a waterspout. B, Schematic of the go/no-go task and spectro-
grams of repetition embedded noise stimuli from an example behavioral trial. Animals were exposed to the combination (bottom spectrogram) of the following two overlapping streams: a fore-
ground stream containing a target sample (top); and a background stream, a nonrepeating sequence of noise samples (middle). In this example, the target sample (orange boxes, bottom) starts
repeating after three random noise samples (gray boxes). The gray dashed line marks the first occurrence of the target sample (pale orange box), which is included in the random segment for anal-
ysis. The transition between random and repeating segment is marked by the orange dashed line and occurs when the target sample is first repeated. Animals were trained to withhold licking dur-
ing the random segment (4-6 s). To receive a water reward, they had to lick the waterspout following repetition onset. C, Distribution of DI across behavior sessions for ferret O (n = 636; mean,
0.60; gray arrow) and ferret H (n = 504; mean, 0.64; black arrow) after training was completed. For both animals, average performance was significantly better than average performance computed
after shuffling response times across trials (mean shuffled DI = 0.53 for both animals; dashed line, p << 0.0001). D, Mean reaction time relative to the onset of each noise sample slot in the random
segment. Reaction times for target samples appearing in the random phase were identical to nontarget samples appearing at the same time relative to the onset of repetition, indicating that ani-
mals did not preferentially respond to the identity of the target sample. Shading indicates SEM. Only data from 250 ms noise samples are shown.
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Figure 2. Activity in both A1 and PEG was suppressed during the repeating segment. A, Schematic of two trials during electrophysiological recordings. The background stream consisted
entirely of randomly chosen noise samples (gray). The foreground stream contained randomly chosen samples during the random segment, which sometimes included the target sample (T).
The final pair of noise samples in the random segment included the target (light orange) as it had not yet begun to repeat. Average PSTH responses to each pair of samples that contained the
target (thick rectangles) were computed separately for the random segment (black) and repeating segment (dark red). Target samples were subsampled from the repeating segment to match
counts between random and repeating segments (see Materials and Methods). To minimize effects of stimulus onset adaptation, the very first pair of samples at the beginning of the trial was
always excluded from the analysis, even if the pair included the target sample. B, Distribution of observed gain change (G,) between random and repeating segments in A1 and PEG. The ma-
jority of target responses were suppressed (G, << 0) during the repeating segment. Red dashed line indicates 0 (i.e., no difference between segments). Since results may depend on how well
the unit responded to the target, all analyses of neural responses were performed separately for each unique unit—target pair (A1: mean = SEM G, = —0.634 = 0.038; n = 300; one-sample
t test, null hypothesis population mean =0, t statistic = —16.72; p << 0.0001; PEG: mean = SEM G, —0.698 = 0.049; n = 259; one-sample ¢ test, null hypothesis population mean =0, t sta-
tistic = —14.11; p < 0.0001).

Behavior

Two ferrets (one female, ferret O; one male, ferret H) were trained to
report the occurrence of repeated target noise samples in the repeated
embedded noise stimuli using a go/no-go paradigm (David et al., 2012).

Starting 2 weeks after the implant surgery, each ferret was gradually
habituated to head fixation by a custom stereotaxic apparatus in a
Plexiglas tube. Habituation sessions initially lasted for 5min and
increased by increments of 5-10 min until the ferret lay comfortably for
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at least 1 h. At this time, the ferret was placed on a restricted water
schedule and began behavioral training. During training and physiologi-
cal recording sessions that involved behavior, the ferret was kept in water
restriction for 5 d/week, and almost all the daily water intake (40-80 ml)
was delivered through behavior. Their diet was supplemented with 20
ml/d high-protein Ensure (Abbott). Water restriction was to be discon-
tinued if weight dropped to <20% of the initial weight, but this did
not happen with either ferret. Water rewards were delivered through a
spout positioned close to the nose of the ferret. Delivery was controlled
electronically with a solenoid valve. Each time the ferret licked the water-
spout, it caused a beam formed by an infrared LED and a photograph-
diode placed across the spout to be discontinued (Fig. 1A). This system
allowed us to precisely record the timing of each lick relative to stimulus
presentation.

After trial onset, animals were required to refrain from licking until
the onset of the repeating segment (i.e., after the occurrence of a repeated
sample). Licks during the random segment were recorded as false alarms
and punished with a 4-6 s time-out. Licks that occurred in the repeating
segment were recorded as hits and always rewarded with one to two
drops of water (Fig. 1B). Each behavioral block was defined as a continu-
ous presentation of trials. For behavioral sessions, more than one block
was acquired on a single day if the animal was performing well. For pas-
sive sessions (i.e., physiology), one block was typically acquired per re-
cording site, but multiple recording sites may have been acquired on any
given day. Each block contained two target samples presented randomly
across trials. Target identity varied from block to block to prevent ferrets
from learning to detect specific spectro-temporal features of the target.
False alarm trials in which licks occurred before the target were repeated
to prevent animals from simply responding with a short latency on every
trial. The repeated trials were excluded from behavioral analysis (see
below) to prevent artifactual increase in performance from a strategy in
which response time was gradually increased following each false alarm
(David et al., 2012).

To shape the behavior of the animal, training started with a high sig-
nal-to-noise ratio (SNR) between random and repeating segments. SNR
was then gradually decreased over subsequent training sessions to 0 dB
(i.e., random and repeating segments were presented at the same inten-
sity). Parameters such as spectral modulation depth of the two streams
and length of the random segment/false alarm window were also
adjusted over the training period.

Electrophysiology

Single-unit and multiunit neural recordings were performed in one
trained animal (ferret O) and four task-naive animals. A small (~1- to
2-mm-diameter) craniotomy was opened over the right auditory cortex,
in a location chosen based on stereotaxic coordinates and superficial
landmarks on the skull marked during surgery. Initial recordings
targeted the ferret Al, and recording location was confirmed by charac-
teristic short-latency responses to tone stimuli and by tonotopic organi-
zation of frequency selectivity (Bizley et al, 2005). Recordings in
secondary auditory cortex (PEG) were then performed in the field ven-
trolateral to Al. The border between Al and PEG was identified func-
tionally by a reversal in the tonotopic gradient.

Neurophysiological data were collected from animals in a passive
state (i.e., while animals were head fixed and unanesthetized but not per-
forming any explicit behavior). Recording sessions typically lasted 2-4 h.
On each recording day, one to four high-impedance tungsten micro-
electrodes (impedance, 1-5 M(); FHC or A-M Systems) were slowly
advanced into cortex with independent motorized microdrives (Alpha-
Omega). The electrodes were positioned (Kopf Instruments) such that
the angle was approximately perpendicular to the surface of the brain.
Stimulus presentation and electrode advancement were controlled from
outside the sound booth, and animals were monitored through a video
camera. Neural signals were recorded using open-source data acquisition
software (MANTA; Englitz et al., 2013). Raw traces were amplified
(10,000x; 1800 or 3600 AC amplifier, A-M Systems), bandpass filtered
(0.3-10kHz), digitized (20 kHz; National Instruments, PCI-6052E), and
stored for subsequent offline analysis. Putative spikes were extracted
from the continuous signal by collecting all events >4 SDs from zero.
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Different spike waves were separated from each other and from noise
using principal component analysis and k-means clustering (David et al.,
2009). Both single units (>95% isolation) and stable multiunits (>70%
isolation) were included in this study, resulting in a total of 149 Al and
136 PEG units.

Between recording sessions, the exposed recording chamber sur-
rounding the craniotomy was covered with polysiloxane impression ma-
terial (GC America). After several electrophysiological penetrations
(usually ~5-10), the craniotomy was expanded or a new craniotomy
was opened to expose new regions of the auditory cortex. When possible,
old craniotomies were covered with a layer of bone wax and allowed to
heal.

Analysis
Behavior
Performance was assessed by a discrimination index (DI) computed
from the area under the receiver operating characteristic (ROC) curve
for detection of the target in the repeating segment (Yin et al., 2010;
David et al., 2012). DI combines information about hit rate, false alarm
rate, and reaction time. Higher values indicate better performance on
the task. Repeated trials following a false alarm were excluded from DI
measurements to prevent artifactual inflation of DI estimates if animals
used the strategy of gradually increasing their response time following
each false alarm. Criterion was reached as the ferret performed at
DI>0.5, with 0 SNR and 0 modulation depth difference for 4 consecu-
tive days. To determine the statistical significance of the performance of
each animal, we compared the actual DI to the DI computed after shuf-
fling response times across trials. We tested for a difference in mean
actual and shuffled DI across behavioral blocks by a pairwise ¢ test.
Although the identity of the target samples varied from day to day,
the ferrets could have developed a strategy in which, during the first few
trials of a session, they learn to detect the spectro-temporal features asso-
ciated with the target. Since some trials contained the target samples
during the random segment, we predicted that ferrets using a spectro-
temporal feature detection strategy would have a faster reaction time
when the target was present during the random segment, whereas ferrets
using a repetition detection strategy would have similar reaction times
for both target and nontarget samples. To test for this, we computed a
reaction time for every noise sample in each trial. Reaction time was
defined as the time from the onset of the noise sample to the first lick.
We then aligned each trial relative to repetition onset, split the data by
target versus nontarget, and computed the mean reaction time across tri-
als (Fig. 1D). Reaction time was fit using a linear mixed model based on
sample identity, time until repetition, and the interaction between them.
The majority of the experiments included only dual-stream trials,
but a subset contained interleaved dual-stream and single-stream trials
(ferret O,224 of 635; ferret H, 85 of 495). We found a small but signifi-
cant difference in performance favoring dual-stream trials in both ani-
mals (mean DI difference, 0.038; p < 0.001, pairwise ¢ test). Only the
dual-stream data were included in the behavior data reported in the
Results.

Stream-dependent changes in sound-evoked activity

To assess the effect of repetition on overall responsiveness, we first meas-
ured changes in the response to the target sample between random and
repeating trial segments. We computed the peristimulus time histogram
(PSTH) response to each occurrence of a target sample in the stimulus
separately for the random segment and repeating segment, using data
from dual-stream trials only. The spontaneous rate was subtracted from
the PSTH to ensure that the fraction term reflected changes in the
evoked response. We then computed the observed gain change (G,) that
minimized the least-squares difference between evoked responses in the
two segments. Log of the measured gain is reported to allow for direct
comparison with the results of subsequent modeling analysis (see
below).

PSTH-based models
Auditory cortical neurons could support the segregation of both streams
either by changing the overall gain of their response to the repeating
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Schematic representation of the stream-dependent PSTH-based encoding model. During the random segment of each trial, the time-varying response of a neuron was modeled as

the sum average responses to the two samples composing the stimulus at each point in time. During the repeating segment, responses to the foreground (repeating) and background samples
were scaled by gain terms, Grand G, respectively, before summing. Thus, the time course of the response to each sample was the same, but the relative magnitude of the foreground response

versus background response varied between the random and repeating segments.

stream (stream independent) or by differentially enhancing responses to
one or the other stream (stream dependent). To test these alternative
predictions, we fit the data using stream-independent and stream-de-
pendent models. In both models, responses were predicted using a
weighted sum of time-varying responses to each noise sample. During
the random segment, the time-varying response was the linear sum of a
response to the foreground stream, response to the background stream,
and spontaneous spike rate, as follows:

rrand(sfaslni) = (Sf7 )+r(sb7 )+T0. (1)
Here, Sy and S, are the identity of samples in the foreground and
background streams, respectively, and r, is the spontaneous rate. 7(S, i)
is the contribution of sample S to the evoked spike count in the ith time
bin following sample onset.
For the stream-independent model, responses during the repeated
segment, 7gp,ing» Were computed as follows:

Teepind (S5 S 1) = [F(Sp. i) F7(Spy i) | exp(Gy) + 1, )

where a global gain term (Gg) scales responses to both streams. For
the stream-dependent model, responses during the repeated segment,
Trepsdep Were computed, as follows:

Trepdep (Sp Sur 1) = T(Sp, 1)exp(Gy) +7(Sy, i)exp(Gy ) +1o, 3)
where the gains for the foreground (Gy) and background (G;) modulate
the respective stream responses separately before they are summed. The
use of an exponent simplifies the interpretation of gain changes such that
values of G > 0 indicate enhancement and values of G <0 indicate sup-
pression. 7(S, i) can be negative, which allows for suppressed responses
relative to the spontaneous rate. In this case, if a unit has both enhanced
and suppressed responses, G will scale both responses equally (e.g., if G >
0, there will be a decrease in spike rate during negative responses and an
increase in spike rate during enhanced responses). The difference
Gy — Gy is the relative enhancement between streams, here referred to as
foreground enhancement. If G > Gy, then the neural response to the
foreground stream is enhanced relative to the background stream.

The repeating segment had many more presentations of the target
sample than the random segment. To minimize potential bias when fit-
ting the data, we randomly discarded target samples from the repeating
segment such that the number of target samples in the repeating seg-
ment matched the number of target samples in the random segment. As
mentioned earlier, the first sample of the random segment (i.e., the very
first sample in the trial) was excluded from analysis to minimize the
effect of onset adaptation in our analysis.

In this model, r(s, 7) can contain negative values because it was added
to the spontaneous rate, ry (Fig. 3). These negative values indicate that
there was suppression of the spontaneous rate. The mechanisms produc-
ing this suppression are not specified (e.g., inhibition, adaptation), but
similar suppression is captured by negative coefficients in a spectro-tem-
poral receptive field (STRF).

Models were fit to maximize Poisson likelihood of free parameters
using Bayesian regression. A normal prior with a mean of 0 and an SD
of 10 was set on both ry and 7. A normal prior with a mean of 0 and an
SD of 1 was set on all Gparameters. The model was fit three times using
a different set of random starting values for each coefficient. Two thou-
sand samples for each fit were acquired with a no-u-turn sampler, an
extension to Hamiltonian Monte Carlo that eliminates the need to set a
number of steps (Hoffman and Gelman, 2014). Gelman-Rubin statistics
were computed for each fit to ensure that all the fits converged to the
same final estimate (7 < 1.1).

The posteriors for Gy, Gy, and G, were extracted from the model,
and the posterior for enhancement, E, was computed by subtracting the
posterior of G, from Gy. Units for which the 95% confidence interval
(CI) for E (as derived from the posterior) was <0 were considered to
have significant suppression, and those with a 95% CI >0 were consid-
ered to have significant enhancement. For data shown in the Results, the
mean of the relevant posterior is plotted.

To validate the stream-dependent model as a means of measuring
stream-specific gain, we simulated the activity of 100 neurons with
stream-dependent gain. For each neuron, we simulated the responses to
20 noise samples by generating a simulated PSTH for each sample from
the sum of one to nine Gaussians (each amplitude, mean, and SD
randomized). Eighty trials for each neuron were simulated by assem-
bling two sequences of noise samples, one for the foreground stream and
one for the background stream, as in the repeated embedded noise task.



3788 - J. Neurosci., May 6, 2020 - 40(19):3783-3798

The sequences were then scaled by randomly chosen Gy (uniform distri-
bution, —0.5 to 1) and G, (uniform distribution, —1 to 1). The resulting
PSTH for the trial provided a time-varying mean to a Poisson spike gen-
erator to produce simulated single-trial spiking responses. The regres-
sion model accurately recovered the responses to the individual samples
(r=0.87, p<<0.0001) and the baseline rate of each unit (r=1.00,
P <0.0001). Predicted values for Gy, Gy, and E were significantly corre-
lated with the simulated values (r=0.65, 0.92, and 0.82, respectively;
p<0.0001 for all). The model tended to underestimate foreground
enhancement, suggesting that the results presented in this manuscript
are a conservative estimate of foreground enhancement.

To validate results of the stream-dependent PSTH model applied to
the data, measurements of prediction accuracy were obtained by 10-fold
cross-validation, in which a separate Bayesian model was fit to 90% of
the data then used to predict the remaining 10%. This procedure was
repeated 10 times with nonoverlapping test sets, so that the final result
was a prediction of the entire time-varying response. Prediction accuracy
was then measured as the correlation coefficient (Pearson’s r) between
the predicted response and the actual response. Mean = SEM correla-
tion coefficients for A1 were 0.165 * 0.01 for the stream-dependent
model and 0.161 = 0.01 for the stream-independent model. Mean corre-
lation coefficients for PEG were 0.125 = 0.01 for the stream-dependent
model and 0.119 = 0.010 for the stream-independent model. For both
Al and PEG, the stream-dependent model had significantly higher cor-
relation coefficients than the stream-independent model (paired-sample
t test; Al: t statistic, 3.27; p=0.0014; PEG: ¢ statistic, 4.88; p < 0.0001).

Lifetime sparseness and target preference

We quantified sparseness (S), a measure of unit selectivity for a given
sample relative to the others in the collection (Vinje and Gallant, 2000),
as follows:

=Ll @)

where r; is the SD of the PSTH (computed using the average of the
response to the noise sample in the random segment of single-stream tri-
als) for the ith sample, and # is the total number of noise samples. We
also quantified target preference (TP), a measure of how well the target
sample modulates the unit’s response, as follows:

TP:L, (5)

where ry,, is the SD of the target PSTH, and the other terms are defined
as for sparseness. The use of SD to measure response magnitude means
that strong suppression or enhancement yields similar response
strength.

To assess whether there was a significant effect of sparseness, target
preference, and/or area on foreground enhancement, E, we used the fol-
lowing general linear mixed model:

E = B,+B,A+B,S+B;AS+ B, T+ B;AT+ B,ST+ B,AST+U;,,
(6)

where sparseness (S), target preference (T), and area (A) are fixed effects.
Since each unit was tested with two target samples and, therefore, pro-
vided two measures of foreground enhancement, unit (U;) was included
as a random effect for the ith unit.

Data from the trained animal represented 40% of all units in A1l and
46% in PEG. To test for potential effects of training on neural coding, we

Saderi etal. e Streaming of Repeated Noise in Auditory Cortex

included training status (i.e., trained vs naive), along with all possible
one-, two-, and three-way interactions to the general linear mixed
model. Results suggested that the effects were weaker in the trained sub-
set (i.e., there was no significant effect of foreground enhancement in
A1). However, since all the “trained” data were from one animal and the
statistical power was weaker overall, we felt there were insufficient data
to draw conclusions about differences between units from naive versus
trained animals. Thus, we combined the data from naive and trained
animals for the results reported in this article.

Spectro-temporal receptive field models

In addition to the PSTH-based models, which fit responses to individual
noise samples, we confirmed that the same streaming effects were cap-
tured by a context-dependent STRF model (David, 2018). The classic lin-
ear-nonlinear (LN) STRF models neural activity as the linear weighted
sum of the preceding stimulus spectrogram, the output of which passes
through a static nonlinearity to predict the time-varying spike rate
response (Aertsen and Johannesma, 1981; deCharms et al., 1998). The
STRE, h(x7 u), is defined as a linear weight matrix that is convolved with
the logarithm of the stimulus spectrogram, s(x, t), to produce a linear
model prediction, r7;y

run(t) = i i h(x,u)s(x, t — u), (7)

where x=1...X are the frequency channels, t=1...T is time, and u is the
time lag of the convolution kernel. Taking the log of the stimulus spec-
trogram accounts for nonlinear gain in the cochlea. Free parameters in
the weight matrix, h, indicate the gain applied to frequency channel x at
time lag u to produce the predicted response. Positive values indicate
components of the stimulus correlated with increased firing, and nega-
tive values indicate components correlated with decreased firing.

The output of the linear STRF is passed through a static nonlinear
sigmoid function to account for spike threshold and saturation
(Thorson et al., 2015), as follows:

r(t) = Flrun (1)) (8)

where
F(x) = ry+Aexp[—exp(k (X — x0))]- 9)

Free parameters of the static nonlinearity are x, the inflection point of
the sigmoid; ry, the spontaneous spike rate; A, the maximum spike rate;
and «, the slope of the sigmoid.

We developed a modified LN STRF to account for stream-dependent
changes in gain. The input spectrogram for each stream was scaled by a
gain term that depended on stream identity (foreground or background)
and trial segment (random or repeating). We refer to this model as the
stream-dependent STRF model. The stimulus was modeled as the sum
of two log spectrograms, computed separately for the foreground and
background streams, s, and s,, respectively. In the random segment, the
total stimulus, s(x, t), was modeled as the linear sum of these two stim-
uli, as follows:

s(x, 1) = s1(x, 1) +s2(x, 1). (10)

In the repeating segment, each stimulus was scaled by the gain, G, for
the respective stream, as follows:

s(x,t) = Gysi(x, t) +Gpsy(x, ). (11)

All model parameters were estimated by gradient descent (Byrd et
al,, 1995; Thorson et al., 2015; David, 2018). STRF parameters were ini-
tialized to have flat tuning (i.e., uniform initial values of h) and were iter-
atively updated using small steps in the direction that optimally reduced
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Table 1. Regression analysis of auditory tuning effects on foreground enhancement
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Area Effect Coef. Coef. SE z p>z (l lower Cl upper
Al Intercept Bo 0.15 0.04 3.57 0.0004 0.07 0.23
S B, —0.42 0.32 —133 0.1835 —1.04 0.20
P B 0.46 0.1 438 0.0000 0.26 0.67
P*S Bo —1.04 0.27 —3.92 0.0001 —1.57 —0.52
PEG Intercept Bo+ B, 0.42 0.04 9.42 0.0000 0.33 0.50
S B+ B3 —0.32 0.32 —0.98 0.3293 —0.95 0.32
P B4t Bs 0.05 0.10 0.50 0.6167 —0.14 0.24
TP *S B¢+ B —0.11 0.35 —0.30 0.7644 —0.80 0.59
PEG-A1 Intercept B 0.27 0.06 4.40 0.0000 0.15 0.39
S B; 0.10 045 0.23 0.8210 —0.79 0.9
TP Bs —0.42 0.15 —2.86 0.0042 —0.70 —0.13
TP*S B 0.94 0.44 2.12 0.0342 0.07 1.80

Results of the linear mixed model for foreground enhancement, with target preference, sparseness, and area as fixed effects. See text in Results and Materials and Methods for details of the model fit. Results presented are a
post hoc test of contrasts. The effect and coefficient (Coef.) columns indicate the predictor/coefficients that were set to 1 for the post hoc test of contrasts. Since each unit contributes two measures of foreground enhancement

(one for each target), the unit was included as a random effect in the model.

the mean squared error between the time-varying spike rate of the unit
and the model prediction. To maximize statistical power with the avail-
able data, the STRF was fit using both single-stream and dual-stream
data. For single-stream trials, the second stimulus spectrogram was fixed
at zero, s;(x,t) = 0, and a separate gain term was fit for those trials to
prevent bias in estimates of Gy and Gj,. Gain parameters and STRF pa-
rameters were fit simultaneously (David, 2018). Measurements of pre-
diction accuracy were obtained by 20-fold cross-validation, in which a
separate model was fit to 95% of the data and then used to predict the
remaining 5%. Fit and test data were taken from interleaved trials. This
procedure was repeated 20 times with nonoverlapping test sets, so that
the final result was a prediction of the entire time-varying response.
Prediction accuracy was then measured as the correlation coefficient
(Pearson’s r) between the predicted response and the actual response.
The SE on prediction correlation was measured by jackknifing (Efron
and Tibshirani, 1986), and only units with prediction error significantly
greater than zero were included in model comparisons (p < 0.05, jack-
knife t test).

To quantify the effects of segment-dependent and stream-dependent
gain, we also fit models using the same data and fitting procedure, but
where stream identity (stream-independent STRF model) or both seg-
ment and stream (baseline STRF model) were shuffled in time. An
improvement in prediction accuracy for a model with a nonshuffled
over shuffled variable indicated a beneficial effect of the corresponding
gain parameter on model performance, and thus of a stream-dependent
change in sound encoding. Significant differences in model performance
were assessed by a Wilcoxon rank sum test between prediction correla-
tions for the set of units fit with each model.

Statistical analysis
As described above, the effect of repetition on neural responses to the si-
multaneous streams was quantified using a Bayesian regression model.
Unlike conventional (ie., frequentist) approaches, Bayesian analysis
does not generate standard p values. Instead, Bayesian analysis quantifies
the probability that the true value for a parameter falls between two
points. These distributions can be used to calculate the probability that
there is a true difference between groups, which is typically the informa-
tion that is intended to be reflected in p values (Nuzzo, 2014). In our
analyses, we report the mean and 95% CI for all the gain terms. The CI
should be interpreted as the interval in which we are 95% certain the
true value is contained. Therefore, if the 95% CI does not include the ref-
erence value (e.g, E = 0, which indicates no significant change in
response from the random segment), we treat it as significant. Where
possible, we have translated these determinations into more standard
p value.

To quantify the relationship between neural tuning and the effects of
repetition on stream segregation, we used a linear mixed-effects model
fit with the Python statsmodels toolbox (Seabold and Perktold, 2010),

using algorithms as described by Lindstrom and Bates (1988). Area (Al
vs PEG), target preference and sparseness were treated as fixed effects.
All two-way and three-way interactions between the effects were
included. Random intercepts for each unit were incorporated into the
model. The effect size, z-score, p value, and 95% confidence interval are
reported for all fixed effects and their interactions in Table 1.

In the STRF model analysis, to assess statistical significance of the
prediction correlation and thereby determine which units to include in
the model comparisons, we used the jackknife t test (Efron and
Tibshirani, 1986). The SE was computed by jackknife resampling of the
predicted and actual responses. Significant units had a prediction corre-
lation at least 2 SEs greater than zero (i.e., p < 0.05). Significant differen-
ces in performance by two models on a single neuron were also
determined by a jackknife ¢ test. In this case, the prediction correlation
for the two models had to be separated by at least 2 SEs.

To test for differences between two neural populations (e.g., G in Al
vs PEG), we used a Wilcoxon rank sum test, Student’s t test, or inde-
pendent two-sample t test. The specific test used, along with the test sta-
tistic, df, and p value are reported alongside the relevant result.

Results

Ferrets perceive repeated patterns embedded in noise

To investigate the physiological underpinnings of repetition-
based streaming in an animal model, we first developed a behav-
ioral paradigm to assess the ability of ferrets to detect repetitions
embedded in noise. Repeated embedded noise stimuli were com-
posed of two overlapping continuous streams of brief (250 or
300 ms) broadband noise samples. The noise samples had sec-
ond-order statistics (i.e., spectral and temporal envelope correla-
tions) matched to natural sounds (McDermott et al, 2011).
Consistent with the goal of this study, the only streaming cue
was repetition. These stimuli lacked other conventional stream-
ing cues such as harmonicity and common onset time.

During the initial part of the stimulus, referred to as the
random segment, samples for both streams were drawn ran-
domly from a pool of 20 distinct noise samples (1-2.5 s dura-
tion; Fig. 1B). When all the samples are drawn randomly, they
are perceived by human listeners as a single stream. The ran-
dom segment was followed immediately by the repeating seg-
ment, in which a target noise sample started to repeat in one
sequence but not in the other. In humans, this repetition leads
to perceptual separation of the two sequences into discrete
streams (McDermott et al., 2011). We refer to the sequence
that contains the repeating target sample as the foreground
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stream, and the concurrent sequence with no repetition as the
background stream (Fig. 1B).

Two ferrets (O and H) were trained to detect the repetition of
the target using a go/no-go detection paradigm. Head-fixed ani-
mals were required to withhold from licking a waterspout during
the random segment and to lick after the onset of the repeating
segment (Fig. 14,B). In each behavioral block (~50-100 trials
presented continuously), two noise samples were chosen as tar-
gets, each with a 50% chance of occurring in a trial. Changing the
identity of the targets between blocks avoided overtraining on a
specific target. To measure behavioral performance in a task with
continuous distractors and variable target times, we used a DL
This metric uses hit rate (ferret O: mean = SEM = 0.875 = 0.007,
n=636; ferret H: mean = SEM =0.869 = 0.007, n=504), false
alarm rate (ferret O: mean = SEM =0.522 * 0.007; ferret H: mean
+ SEM =0.516 * 0.010), and reaction time (250 ms noise samples:
ferret O: mean = SEM=0.649 *0.017 s; ferret H: mean =
SEM =0.826 * 0.020 s; 300 ms noise samples: ferret O: mean =
SEM =0.715 = 0.014 s; ferret H: mean = SEM = 1.006 * 0.042) to
compute the area under the ROC curve for target detection (Yin
et al,, 2010; David et al., 2012). Both ferrets were able to learn the
task and perform significantly better than chance computed by
shuffling reaction times across trials before computing the DI (fer-
ret O: mean * SEM=0.603 * 0.005, n=636; ferret H: mean =
SEM =0.634 + 0.007, n=>504; ferret O: mean shuffled DI =
0.541 £0.004; ferret H: mean shuffled DI=0.528 = 0.005,
p <<0.0001, pairwise ¢ test; Fig. 1C). On average, ferrets responded
after 2.9 target presentations (ferret O: mean * SEM =2.490 *
0.041; ferret H: mean = SEM =3.315 =+ 0.071). Thus, the animals
were able to detect the repeating stream, and they responded after
the target began repeating.

Because two unique targets were used throughout each exper-
imental block, we considered the possibility that animals learned
the identity of the target samples during the first few trials and
then responded to unique spectro-temporal features of the target
samples rather than the repetition. If this were the case, then we
predicted that animals would be more likely to respond (i.e., false
alarm) to a target sample in the random segment relative to a
nontarget sample. Since the average reaction time was 2.9 sam-
ples and response rates increased over time within a trial, we
could not attribute a response (i.e., lick) to a particular sample in
the random segment. However, if animals did respond to the tar-
get sample, average reaction time measured from the onset of
noise samples in the random phase would be expected to be
shorter for target samples than for nontarget samples. We com-
pared responses following target and nontarget samples and
found no apparent difference in mean reaction time between
them (Fig. 1D). To verify this similarity, we fit the reaction time
data with a linear mixed model using sample duration, sample
identity (i.e., target vs nontarget), time until repetition onset, and
all two-way and three-way interactions as predictors. A post hoc
test of contrasts demonstrated no significant effect of sample
identity (p=0.567), interaction between sample identity and
time until repetition (p=0.998), or interaction among sample
identity, sample duration, and time until repetition (p=0.823).
The similar false alarm behavior for target and nontarget samples
indicates that animals were not relying on spectro-temporal fea-
tures of the target to perform the task.

In humans, repetition-based streaming was found to be a pre-
attentive phenomenon (Masutomi et al., 2015). All electrophysi-
ological data that follow were recorded while animals (trained
and task naive) were passively listening to the stimuli.
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Neuronal responses are suppressed during the repeating
segment

We recorded multiunit and single-unit neural activity in primary
(A1, n=149) and secondary (PEG, n=136) regions of the right
auditory cortex of five ferrets of both sexes passively listening to
the task stimuli. One animal was trained on the repetition-em-
bedded noise task (ferret O), and four animals were naive to the
task. Although all physiological data presented here were
recorded in nonbehaving ferrets, we refer to the same trial struc-
ture terminology as in the previous section for consistency.
During electrophysiological recordings, one of the target samples
was chosen to match the tuning of each unit (eliciting a relatively
strong response) while the other was chosen at random. The two
targets had an equal probability of occurring as the repeating
sample on any given trial.

To investigate the neurophysiological underpinnings of
streaming due to repetition, we first looked at the raw firing rates
of the recorded units in response to the repeated noise samples.
Given the enhanced perception of repeating stimuli observed in
behavioral experiments (Agus et al, 2010; McDermott et al,
2011; Masutomi et al., 2015), we reasoned that evidence for the
selective enhancement of foreground representation should be
observed at the level of the auditory cortex. If this were true, we
would expect the neural response to a target sample to change
between random and repeating segments.

To test this prediction, we computed the average PSTH
response across all occurrences of the target noise samples in the
random segment (excluding any occurrences during the first
250ms of the trial), and compared it to the average PSTH
response to a balanced number of targets in the repeating seg-
ment (Fig. 2A). Since the background sample was randomly
selected for each presentation of the target, responses to the
background sample were averaged out, and the PSTH primarily
reflected responses to the target. To quantify changes in the
response, we computed the observed gain (G,) term that scaled
the PSTH for the random segment to best match the PSTH for
the repeating segment. To allow for a direct comparison between
gains generated by encoding models (see below), the gain was log
transformed. Thus, negative values indicate suppressed responses
during repetition and positive values indicate enhanced responses.
For most units in Al and PEG, log gains were less than zero (Fig.
2B), indicating that the average target response in the repeating
segment was suppressed with respect to the random segment (A1:
mean * SEM G, = —0.634 = 0.038; n=300; one-sample t test,
null hypothesis population mean=0; ¢ statistic = —16.72;
p <0.0001; PEG: mean = SEM G, —0.698 * 0.049; n = 259; one-
sample ¢ test, null hypothesis population mean=0; ¢ statistic =
—14.11; p < 0.0001). Considering previous observations of neural
adaptation to repeated stimuli in auditory cortex (Ulanovsky et al,
2003; Pérez-Gonzélez and Malmierca, 2014), a decreased response
to the target in the repeating segment is not unexpected.

Relative enhancement of responses to the repeating
foreground stream

Simply comparing the average neural response to the target in
the repeating segment to the random segment does not provide
insight into any stream-specific effect that might emerge as a
consequence of the repetition. To test for evidence of streaming
in the neural response, we needed to independently assess the
responses to the two streams. Even if the total response was sup-
pressed, activity in the foreground stream in response to the rep-
etition could be enhanced or suppressed relative to the
background stream.
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Example A1 units showing foreground enhancement of responses to repeating noise. A, Raster plots (top) and PSTH responses (gray shading, bottom) of an A1 unit to the target

sample (T) in the random segment and during the first three repetitions in the repeating segment. Each trace is a response to the target sample and a simultaneous random background sam-
ple. Spontaneous rate (SR) is shown (first column) for reference. Predictions from the stream-dependent model (orange) broken down into the constituent responses to foreground (blue,
dashed) and background (black, dotted) streams. This unit had a smaller overall response to the repeating segment compared with the random segment (G, = —0.330; G; = —0.244), indi-
cating some neural adaptation. Despite this adaptation, this unit had significant foreground enhancement (£ = 1.318) resulting from the suppression of background (Gy= —1.332) but no
change for foreground (Gr= —0.014). B, Same as in A for a second unit in A1. This unit showed some small facilitation of the overall response (G, = —0.080; G, = 0.147). When broken
down by stream, there was significant foreground enhancement (£ =1.566) due to the suppression of background (G,= —1.014) and the enhancement of foreground (G¢= 0.552). Colored

dots near each unit name identify their points in Figure 6.

To test this prediction, we developed an encoding model in
which the neural response was computed as the sum of responses
to samples in each stream (stream-dependent model; Fig. 3).
Using regression analysis, the relative contribution of each noise
sample to the PSTH response was computed from the response
to the noise samples. In the random segment, the response was
modeled as the sum of responses to each of the two concurrent
samples and a baseline firing rate (Eq. 1). In the repeating seg-
ment, the response to each sample was scaled according to
whether it occurred in the foreground or background stream
before summing (respectively, gain terms Gy and Gy; Eq. 3). We
compared this model to a stream-independent model, in which
responses to samples in both streams were scaled equally by a
single gain term in the repeating segment (G, Eq. 2). The gain
terms were exponentiated before scaling the response. Thus, pos-
itive gain indicates stronger modulation of the response of the
unit (i.e., greater excitation and/or inhibition relative to the
spontaneous firing rate), and negative gain indicates weaker
modulation.

Figures 4 and 5 show the average response to the target sam-
ples and predictions by the stream-dependent model for example
units in Al and PEG, respectively. For some units in both areas,
the gain during the repeating segment was unchanged for the
foreground but negative for the background stream (Fig. 4A,
G = —0.014, G, = —1.332; Fig. 54, Gf = —0.009, G;, = —1.316).
In others, the change was negative for the background stream
but positive for the foreground stream (Fig. 4B, Gr = 0.552, G =
—1.014; Fig. 5B, Gy = 0.612, Gy, = —1.551). In all of these cases,
however, foreground gain was greater than background gain
during the repeating segment. Thus, even if the overall gain was

negative, there could be a relative enhancement of response to
the foreground stream over the response to the background.
Across the population, gain was negative for both foreground
and background streams in the majority of unit-target pairs (Fig.
6A; Al: mean = SEM G, = —0.609 £ 0.041, mean = SEM Gf =
—0.485 = 0.035, n=304 unit-target pairs; PEG: mean = SEM
Gp = —0.935 £ 0.038, mean = SEM Gy= —0.518 £ 0.040; n =276
unit-target pairs). Consistent with this result, the stream-inde-
pendent model also showed a decrease in gain during the repeat-
ing segment (Al: mean * SEM G, = —0.498 + 0.038, n =304
unit-target pairs; PEG: mean * SEM G, = —0.740 = 0.042,
n =276 unit-target pairs). This overall suppression was also con-
sistent with the decrease measured directly from the average tar-
get response (Fig. 2B; r=0.626 between G, and G,; p < 0.0001).
To test for the relative enhancement of responses to the
repeated foreground, we measured foreground enhancement, the
difference between Gy and Gy, for each unit-target pair (Fig. 6B).
Foreground enhancement was considered significant if the 95%
CI for the fitted parameter did not bracket 0 (see Materials and
Methods). A subset of unit-target pairs displayed significant
foreground enhancement (41 of 304 in Al; 58 of 276 in PEG),
meaning that, during the repeating segment, responses to the
foreground stream were less suppressed than responses to the
background stream. This could be due to a large suppression of
responses to the background stream with no change in responses
to the foreground stream (Figs. 44, 5A) or to the enhancement
of responses to the foreground stream combined with a moder-
ate suppression of responses to the background stream (Figs. 4B,
5B). In contrast, fewer units showed foreground suppression in
either area (26 of 304 in A1; 12 of 276 in PEG). Across the set of
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Example PEG units showing foreground enhancement of responses to repeating noise. A, Raster and PSTH data for a unit from PEG, plotted as in Figure 4. This unit had a smaller

overall response to the repeating segment compared with the random segment (G, = —0.493; G;= —0.250), indicating some neural adaptation. Despite this adaptation, this unit had a sig-
nificant foreground enhancement (£ = 1.308) due to the suppression of background (Gy= —1.316) but no change of foreground (Gr = —0.009). B, Same as in A for a second unit in PEG. This
unit showed facilitation of the overall response (G, = 0.425; G, = 0.104). When broken down by stream, a second PEG unit underwent foreground enhancement (£ = 2.163) due to the sup-
pression of background (G, = —1.551) and the enhancement of foreground (Gs= 0.612). Colored dots near each unit name identify their points in Figure 6.

unit-target pairs, mean foreground enhancement was signifi-
cantly greater than zero in Al (mean = SEM, 0.124 * 0.040;
n =304 unit-target pairs; p=0.004, Wilcoxon signed-rank test;
sum of ranks=18,778; Fig. 6A) and PEG (mean * SEM,
0.416 = 0.042; n=276 unit-target pairs; p < 0.0001, Wilcoxon
signed-rank test; sum of ranks = 7610; Fig. 6B). Mean foreground
enhancement was greater in PEG than in Al (p < 0.0001, inde-
pendent two-sample ¢ test; ¢ statistic = —5.025).

Despite the overall suppression of activity during the repeat-
ing segment, these results support a model of selective enhance-
ment of responses to the repeated foreground stream, consistent
with the enhanced perception of the repeated stream relative to
the random background (McDermott et al., 2011).

Auditory tuning properties predict the degree of foreground

enhancement

Next, we wondered whether the units showing significant fore-
ground enhancement had distinct sensory-encoding properties.
For each unit, we quantified lifetime sparseness, a measure of se-
lectivity for any one sample relative to the others (see Materials
and Methods; Eq. 4; Vinje and Gallant, 2000). This metric is
bounded between 0 and 1, where 0 indicates low sparseness (unit
responds equally to all stimuli) and 1 indicates high sparseness
(unit responds well to only one stimulus). Many units were
sparse, responding strongly to only a few noise samples (Fig. 7A4,
example). For each unit-target pair, we also computed target
preference, the ratio of evoked response to the target versus the
average response to all samples (see Materials and Methods;
Eq. 5). A target preference of 1 indicates that the modulation of
the unit firing rate by the target (increased or decreased spike
rate) is equivalent to the average modulation across all samples
for all samples.

The relationship among the sparseness, target preference, and
auditory area (Al or PEG) of each unit and the foreground
enhancement of the unit was quantified by a general linear mixed
model with area, target preference, and sparseness as fixed effects
and unit as a random effect (Eq. 6, Fig. 7B,C). All two-way and
three-way interactions among the fixed parameters were included,
and results, including significance tests, are shown in Table 1.
This model identified a significant relationship between target
preference and foreground enhancement in Al (e.g., for every
increase in target preference of 1.0, foreground enhancement
increased by 0.46). The effect of target preference was significantly
modulated by sparseness. That is, foreground enhancement was
stronger in units with high target preference, but this effect
decreased with increasing sparseness (e.g., for a unit with a sparse-
ness of 0.05, the effect of target preference on foreground
enhancement would be 0.41, whereas for a unit with a sparseness
of 0.4, the effect of target preference on foreground enhancement
would be 0.04). In contrast, in PEG there was no significant rela-
tionship between oreground enhancement and sparseness, target
preference, or the interaction of target preference and sparseness
(Table 1).

Thus, in A1, units that responded to many stimuli (low sparse-
ness) but had a relatively strong response to a target (high target
preference) tended to show the most foreground enhancement. In
PEG, enhancement was stronger overall and affected responses
more uniformly, regardless of auditory selectivity. These differen-
ces between PEG and Al suggest a gradual emergence of repeti-
tion-related streaming along the cortical auditory pathway.

Foreground enhancement increases accuracy of
spectro-temporal receptive field models

To validate the gain changes observed in the PSTH-based model
and to quantify their effect on sound-evoked activity, we
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Selective foreground enhancement in A1 and PEG. A, Scatter plots of Gy versus G, gain during the repeating segment of each trial. Gain parameters are plotted for the stream-de-

pendent model fit to each unit—target pair in A1 (left) and PEG (right). Distributions for G¢ and G are shown in the margins of each plot. Colored circles indicate significant foreground
enhancement (dark purple) or suppression (light purple) as assessed by the 95% confidence interval not overlapping with 0. Gray indicates no significant difference. Orange and blue circles
refer to AT example units (Fig. 4), and green and yellow to PEG example units (Fig. 5). B, Foreground enhancement (£ = G — Gp, stream-dependent model) plotted against global gain
change (Gy, stream-independent model) in AT (left) and PEG (right). Colors are as in A. Legend shows n. Mean foreground enhancement was significantly greater than zero in both areas (A1:
mean = SEM 0.124 == 0.040; n = 304 unit—target pairs; p = 0.004, Wilcoxon signed-rank; sum of ranks = 18,778; PEG: mean = SEM 0.416 == 0.042; n = 276 unit—target pairs; p << 0.0001,

Wilcoxon signed-rank; sum of ranks = 7610).

modeled the same data with an STRF. In the classic LN STRF
(see Materials and Methods; Egs. 7-9), the time-varying neural
response is modeled as a linear weighted sum of the stimulus
spectrogram, followed by a static nonlinearity to account for
spike threshold (Depireux et al., 2001; Thorson et al., 2015). We
developed a context-dependent model, in which spectrograms
for each stream were scaled separately by a gain term before pro-
viding input to a traditional LN STRF (Fig. 8A,B, orange arrows;
Egs. 10, 11). This scaling followed the same logic as the stream-
dependent PSTH-based model described above. That is, a sepa-
rate spectrogram for each stream was scaled by free parameters
that depended on segment (random or repeating) and, during
the repeating segment, stream identity (foreground or back-
ground). If neural responses were enhanced selectively for one
stream, then the gain applied to that spectrogram was greater
than the gain for the other spectrogram. We refer to this model
as the stream-dependent STRF.

We compared prediction accuracy of the stream-dependent
STRF to two control models: a stream-independent STRF, in
which stream identity was shuffled in time before fitting (Fig.
8A,B, blue path), and a baseline STRF, in which both segment
and stream identity were shuffled. By separately shuffling state
variables related to repetition and stream identity, we controlled
for the influence of each variable on response gain while keeping
the number of free parameters in each model constant. We used
a cross-validation procedure to prevent the possibility of overfit-
ting to the model estimation data, testing the models on a com-
mon dataset that was not used for fitting.

The stream-dependent STRF predicted time-varying responses
more accurately than the stream-independent STRF in both Al
(mean prediction correlation = SEM, 0.277 * 0.013 and 0.267 =
0.013, respectively; p <0.0001, Wilcoxon signed-rank test; Fig.
8D) and PEG (mean prediction correlation * SEM, 0.260 = 0.015
and 0.250 = 0.015, respectively; p <<0.0001). Thus, the STRF-
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Relationship between target preference and sparseness in A1 and PEG units. 4, lllustration of responses to individual noise samples for a unit with moderate sparseness (S = 0.13)

that responded strongly to only a few samples. Each row of the heatmap represents the PSTH response of the unit to one of the noise samples. Rows are ordered according to the sample pref-
erence, as shown in the right panel (Eq. 5). B, Scatter plot of target versus lifetime sparseness for each unit recorded from A1 and PEG. Target preference quantifies the response of a given
unit to a target sample compared with all 20 noise samples. Lifetime sparseness measures selectivity for the noise samples. Values of sparseness near 0 indicate units that responded similarly
to all noise samples, and values near 1 indicate units that responded preferentially to a small number of samples. Units with high sparseness had a greater variability in target preference. (,
Scatter plots of foreground enhancement as a function of target preference and sparseness in A1 (left) and PEG (right). Because sparseness and target preference are correlated, possible rela-
tionships with foreground enhancement were tested using a regression model, which is detailed in Table 1. Briefly, the regression identifies no significant relationship between sparseness and
foreground enhancement in either area (p > 0.05). However, units in A1 with strong target preference tended to show stronger foreground enhancement (A1, p << 0.0001).

based models confirm a significant influence of stream identity on
relative gain.

While incorporating stream-dependent gain improved pre-
diction accuracy in both areas, predictions were generally more
accurate in Al than in PEG for both models. This difference is
likely due to a greater prevalence of nonlinear encoding proper-
ties and nonauditory activity in PEG, compared with A1 (Atiani
et al, 2014). The same pattern of enhanced prediction accuracy
was observed for stream-dependent PSTH-based models, when
compared with fits with stream identity shuftled (Fig. 8C).

The comparison of stream-independent and baseline STRFs
measured the effect of repetition alone on evoked activity (inde-
pendent of stream identity). On average, the stream-independent
STREF had greater prediction accuracy than the baseline STRF in
both areas (baseline STRF mean * SEM prediction correlation:
Al: 0.261 £0.013, p=0.0007; PEG: 0.247 £ 0.015, p=0.014,
Wilcoxon signed-rank test; Fig. 8D). Moreover, overall gain was
suppressed during the repeating segment (mean * SEM: Al,
—0.098 £ 0.009; PEG: —0.047 £0.010), as observed in the
PSTH-based models above (Fig. 6). Thus, the STRF-based mod-
els provide additional evidence for a streaming mechanism in
which repetition leads to overall suppression of the neural

responses, but with less prominent suppression of the fore-
ground stream relative to the background.

To measure the relative enhancement between the two
streams, we compared the stream-specific gain terms from the
model fits, equivalent to Gy and G, in the stream-dependent
PSTH model. We observed a significant foreground enhance-
ment in both Al (mean *= SEM, 0.180 * 0.024; p < 0.0001) and
PEG (mean 0.298 * 0.024; p <0.0001, Wilcoxon signed-rank
test; Fig. 8E). These changes in gain followed the same pattern as
in the PSTH-based model above (correlation between fore-
ground enhancement for PSTH-based and STRF-based models,
as follows: A1, r=0.39, p <0.0001; PEG, r=0.22, p=0.0005).

Since only some units in Al or PEG showed foreground
enhancement, we also expected that the performance of the
stream-dependent STRF should vary and that the benefit of a
stream-dependent model should be greatest for units showing the
strongest foreground enhancement. We compared the difference
in prediction accuracy between stream-dependent and stream-in-
dependent STRFs with foreground enhancement measured in the
stream-dependent STRF (Fig. 9). In both Al and PEG, these val-
ues were positively correlated (Al: r=0.261, p<0.0001; PEG:
r=0.335, p<0.0001). Thus, in units showing enhanced gain for
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model prediction (orange). Prediction correlation (Pearson’s r) between predicted and actual time-varying neural responses is reported for the two models. €, Mean prediction correlation coeffi-
cient (Pearson’s r) between the predicted and actual time-varying neural responses for AT and PEG units, plotted for the stream-independent (gray) and stream-dependent (black) PSTH-based
models (Fig. 6, scatter plots). D, Mean prediction correlation (Pearson’s r) between the predicted and actual time-varying neural responses for STRF-based models across A1 and PEG units.
Asterisks indicate significant differences for p values associated with Wilcoxon signed-rank test within-area model comparisons [baseline vs stream-independent for A1 (n =141, p < 0.0001)
and for PEG (n =106, p << 0.0001); stream-dependent vs stream-independent for A1 (p=0.0007) and PEG (p = 0.0139, Wilcoxon signed-rank test)]. E, Mean foreground enhancement for
STRF-based models (A1, 0.180 == 0.024; PEG, 0.298 == 0.024) and PSTH-based models (A1, 0.124 = 0.040; PEG, 0.416 == 0.042). Asterisks indicate p values associated with an independent

two-sample ¢ test between values of foreground enhancement in A1 and PEG.

the repeating stream, models incorporating stream-dependent
gain show the greatest improvement in prediction accuracy.

Discussion

Temporally covarying sound features tend to be perceptually
grouped into a single object (Bizley and Cohen, 2013). Consistent
with this observation, subjects are able to identify novel noise
samples when they are repeated simultaneously in a mixture with
nonrepeating samples (McDermott et al., 2011). The goal of this
study was to investigate the neural underpinnings of auditory
streaming cued by repetition. We developed an animal model for
repetition detection and found evidence for enhanced representa-
tion of a repeating foreground stream in single-unit activity in au-
ditory cortex. This representation emerges hierarchically, as

streaming effects are stronger in PEG than in A1 auditory cortical
fields.

Mechanisms of repetition-induced stream segregation

Studies of streaming at the single-unit level have primarily
used alternating sequences of pure tones (Fishman et al.,
2001; Micheyl et al., 2005). Relevant to the current study,
Micheyl et al. (2005) presented sequences of “ABA_” tone

triplets to awake macaques and examined the activity evoked
in Al. Tone A was chosen to be on the best frequency of the
recorded unit, while tone B differed by 1-9 semitones from
tone A. The authors found that, even if responses to both
tones decreased relative to their presentation in isolation,
responses to the nonpreferred B tones decreased more. We
observed a similar effect, that relative enhancement of the
foreground stream was more pronounced in units well tuned
to the repeated noise sample. Thus, this study provides evi-
dence that the same principles generalize to the streaming of
simultaneous, naturalistic sounds.

Sound features that belong to the same source tend to occur
at the same time. This phenomenon has been formalized in the
temporal coherence model (Elhilali et al., 2009; Shamma et al,,
2011). Teki et al. (2016) demonstrated that human listeners are
sensitive to the repetition of sounds presented in the context of a
random mixture of chords. Similar to our findings, the authors
observed that repeating sounds tend to fuse together into a fore-
ground that emerges from a randomly changing background
(Teki et al,, 2011, 2013). Here, we propose that the enhancement
of neural responses to the foreground contributes to the stream-
ing of repeating sounds. Streaming effects were heterogeneous
across neurons, with the substantial variability in foreground
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enhancement explained by neural tuning (ie.,
sparsity and target preference). This observation
emphasizes that, for complex naturalistic stimuli,
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evoke enhanced neural responses. For example,
Bar-Yosef et al. (2002) and Bar-Yosef and
Nelken (2007) investigated cat Al activity during
the presentation of bird chirps in background
noise, simulating a natural auditory scene. To
their surprise, neural responses were dominated
by the background noise. The authors inter-
preted this finding in an evolutionary context, in
which it is advantageous for prey to detect subtle
changes in the background, thereby preventing
predators from masking their approach behind
foreground sounds. Thus, it may be important to
consider the behavioral context of the animal model. More
experiments testing streaming in natural conditions will eluci-
date how behavioral relevance influences the streaming of
repeated sound features.

Figure 9.

ing p value.

Streaming analysis

Since the neural response measured in this study is the sum of
responses to two simultaneous stimuli, the component responses
cannot be separated in the raw neural firing rate. Therefore, we
constructed encoding models to computationally tease apart
stream-dependent activity. We found that, although most neural
responses were suppressed by repetition (likely due to adapta-
tion; Ulanovsky et al., 2004; Grill-Spector et al., 2006; Pérez-
Gonzilez and Malmierca, 2014), responses to the foreground
stream were less suppressed than the background stream, or
even were enhanced. The same methodology could be applied to
other datasets where there is a need to separate neural responses
to simultaneous inputs.

The challenge of separating responses to simultaneous sounds
has been addressed in some human studies using a similar
approach (Ding and Simon, 2012). Ding and Simon (2012)
recorded human brain activity via magnetoencephalography
(MEG) while subjects attended to one of two simultaneous
speech samples. They fit a separate STRF [or more precisely a
“TRF” (temporal receptive field) since MEG did not resolve spec-
tral tuning] for each speech stream. Neural activity preferentially
synchronized to the speech envelope of the attended speaker.
Furthermore, the source location of the attended versus nonat-
tended signals suggested a hierarchy of auditory processing in
which representation of the attended object emerges in posterior
auditory cortex (Ding and Simon, 2012). These results are con-
sistent with the foreground enhancement observed in the current
study, suggesting that top-down attention and bottom-up pop-
out effects could be mediated by common mechanisms.

A related approach used to investigate the neural signature of
streaming is stimulus decoding (Mesgarani et al., 2009; Ding and
Simon, 2012; Mesgarani and Chang, 2012). A decoding model is
effectively an inverse of the STRF, using neural population activ-
ity to reconstruct the sound stimulus. Using human MEG and
electrocorticography recordings, attended stimuli can be recon-
structed more accurately than simultaneous nonattended stimuli,

-.025 0
Difference in prediction correlation (STRF Stream-dependent — Stream-independent)

.025 .050 .07 0 0.05 0.10

Improved performance by the stream-dependent model predicts foreground enhancement. Scatter
plot compares foreground enhancement against the difference in prediction correlation coefficient between
stream-dependent and segment-only models in A1 (left) and PEG (right). Each circle represents a unit—target
pair. Dashed line indicates a linear fit to the data. Units showing significant enhancement for the stream-depend-
ent model are indicated in purple. Headings indicate the mean prediction correlation (Pearson’s r) and correspond-

indicating enhanced coding of the attended stream (Ding and
Simon, 2012; Mesgarani and Chang, 2012). In the current study,
stimuli were not fixed across experiments. Thus, the data do not
support straightforward population decoding. However, with
appropriate changes to experimental design, we predict that
reconstruction should be more accurate for the foreground
stream than the background stream.

Relation of repetition enhancement to stimulus-specific
adaptation

The ability of the brain to detect regularities is not only crucial
for identifying an auditory object embedded in a noisy scene, but
also for making predictions about the environment, thereby
making the system sensitive to deviance (Winkler et al., 2009;
Bendixen et al., 2010). Substantial effort has been devoted to
understanding the mechanisms of deviance detection, with a
focus on the MMN in humans (Niitinen, 2001) and on SSA in
animals (Ulanovsky et al., 2003; May and Tiitinen, 2010; Pérez-
Gonzilez and Malmierca, 2014). Evidence for SSA has been
found in the nonlemniscal inferior colliculus and thalamus
(Anderson et al., 2009; Malmierca et al., 2009; Antunes et al.,
2010), but the first primary region in which SSA has been shown
to be prominent is A1 (Nelken and Ulanovsky, 2007; Malmierca
etal., 2015).

Selective enhancement of the neural response to a repeating
sound might seem like an intuitive prediction, based on behav-
ioral studies (Agus et al., 2010; McDermott et al, 2011).
However, it may be surprising when viewed in the context of
SSA (Ulanovsky et al., 2003; Taaseh et al., 2011). If SSA affects
responses to simultaneous stimuli the same way as responses to
sequential stimuli, one would expect a relative suppression of
responses to the foreground stream. However, our results show
the opposite effect (i.e., relative suppression of the simultaneous
background). We propose that while SSA can account for the
overall decreased response to both streams (Grill-Spector et al.,
2006; Pérez-Gonzalez and Malmierca, 2014), a separate mecha-
nism must further suppress responses to sounds that occur
simultaneously in the background. Furthermore, the fact that
foreground enhancement is more prominent in PEG than in Al,
suggests a hierarchical process by which the enhancement
emerges.
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Feedback from local inhibitory networks and short-term syn-
aptic plasticity are both believed to play a role in contextual mod-
ulation of sensory coding. Inhibitory interneurons contribute to
SSA (Natan et al, 2015), contrast gain control (Isaacson and
Scanziani, 2011), and top-down effects of behavior (Kvitsiani et
al., 2013). Short-term plasticity may play a role in robust encod-
ing of noisy natural sounds (Mesgarani et al., 2014) and temporal
integration of sound information (David and Shamma, 2013).
The most prominent effect of repetition in the current study may
be broad inhibition of neural responses to both streams.
However, disinhibition or adaptation of inhibitory feedback
along specific pathways could mediate the relative enhancement
of the foreground stream.

Animal models for streaming

Most behavioral studies of auditory streaming have been per-
formed in humans (Bregman, 1990; Darwin and Carlyon, 1995;
Darwin, 1997; Carlyon, 2004; Yost et al., 2007). This is not sur-
prising, as perceptual measurement of streaming in nonhuman
species is challenging (Bee and Micheyl, 2008; Fay, 2008). Within
a small number of animal studies, however, the ferret has been
identified as a model for streaming of alternating tone sequences
and tone clouds (Micheyl et al., 2007; Ma et al., 2010) and has
been used to study its neurophysiological basis (Elhilali et al.,
2009).

Here, we developed the ferret as a model for streaming com-
plex, repeating sounds. Ferrets were able to report the occurrence
of a repetition amid random overlapping noise samples. Since
the identity of the repeated sample was changed across behav-
ioral blocks, we excluded the possibility that they used specific
spectro-temporal features of the target sample to perform the
task. While the ability to report the occurrence of repetitions in
one stream is not direct proof that ferrets perceived two separate
streams in the same way as humans, it confirms that they did
detect the repetitions.
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