
Research Article
Differential Diagnostic ReasoningMethod for Benign Paroxysmal
Positional Vertigo Based on Dynamic Uncertain Causality Graph

Chunling Dong ,1,2 Yanjun Wang ,3 Jing Zhou,1 Qin Zhang,2 and Ningyu Wang3

1School of Computer Science and Cybersecurity, Communication University of China, Chaoyang District, Beijing 100024, China
2Department of Computer Science and Technology, Tsinghua University, Haidian District, Beijing 100084, China
3Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Captical Medical University,
Beijing 100020, China

Correspondence should be addressed to Chunling Dong; dongcl15@tsinghua.org.cn and Yanjun Wang; docwyjn@163.com

Received 24 June 2019; Revised 8 September 2019; Accepted 11 November 2019; Published 24 January 2020

Academic Editor: Luca Faes

Copyright © 2020 Chunling Dong et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0e accurate differentiation of the subtypes of benign paroxysmal positional vertigo (BPPV) can significantly improve the efficacy of
repositioning maneuver in its treatment and thus reduce unnecessary clinical tests and inappropriate medications. In this study,
attempts have beenmade towards developing approaches of causality modeling and diagnostic reasoning about the uncertainties that
can arise frommedical information. A dynamic uncertain causality graph-based differential diagnosis model for BPPV including 354
variables and 885 causality arcs is constructed. New algorithms are also proposed for differential diagnosis through logical and
probabilistic inference, with an emphasis on solving the problems of intricate and confounding disease factors, incomplete clinical
observations, and insufficient sample data. 0is study further uses vertigo cases to test the performance of the proposed method in
clinical practice.0e results point to high accuracy, a satisfactory discriminatory ability for BPPV, and favorable robustness regarding
incomplete medical information. 0e underlying pathological mechanisms and causality semantics are verified using compact
graphical representation and reasoning process, which enhance the interpretability of the diagnosis conclusions.

1. Introduction

Benign paroxysmal positional vertigo (BPPV) is a major
cause of vertigo and accounts for approximately 17–42% of
the cases. It has a lifetime prevalence of 2.4% in the general
population [1]. BPPV is caused by displaced otoconia in the
semicircular canal, and its clinical characteristics include a
brief, episodic, and position-provoked vertigo. BPPV typi-
cally causes balance disturbance which considerably in-
creases the risk of falls in patients. Furthermore, it causes
malignant secondary damage, especially for elderly people
[2]. 0e commonly used therapy for BPPV is the particle
repositioning maneuver (PRM), also known as the canalith
repositioning procedure. 0eoretically, almost all patients
can be readily treated with accurate diagnosis and patho-
genesis [3, 4]. However, the average resolution rate with one
PRM treatment for posterior semicircular canal BPPV in
many trials was revealed to be only 8.6%. Notably, there are
various treatment options; therefore, the effectiveness of

PRM (such as the Epley and Semont maneuvers) depends on
the accurate classification of BPPV. 0e classification pro-
cess would include determining the underlying pathogeny,
locating the calcium carbonate debris and identifying
whether the material is free-floating or adherent to the
cupula, among others. BPPV can be classified into many
subtypes in clinical practice, such as the idiopathic BPPV
and secondary BPPV, or the typical BPPV and atypical
BPPV. However, distinguishing among several causes of
vertiginous disorders with similar symptoms is quite
complex. 0erefore, clinical subtype differentiation of BPPV
is important for effective repositioning maneuvers in
treatment to reduce inappropriate vestibular suppressant
medications and minimize unnecessary ancillary tests.

In recent years, some automatic multiaxial positioning
devices, electronystagmograms, and videonystagmography
have been applied in the management of BPPV [5]. 0ese
applications have digitized and standardized, laying a foun-
dation for computer-aided intelligent diagnosis and clinical
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decision-making. Medical data typically contain hidden and
complicated patterns and causality semantics; thus, appro-
priate encoding and interpretation of medical data result in
better diagnosis, medicine, and treatment [6, 7]. Numerous
research has been done on this; for instance, in the man-
agement of vertigo, there is a wide spectrum of potential
ailments and intricate confounding factors which complicates
the accuracy of identifying the different types of vertiginous
disorders. Based on this, several otoneurological expert sys-
tems including VERTIGO [8], Carnisel [9], and otoneuro-
logical expert system (ONE) [10, 11] were developed. Notably,
ONE is a mature system that has been validated in practice,
and its inference approach resembles methods of weighted
k-nearest neighbor (k-NN), genetic algorithm (GA), fuzzy
logic, and decision tree.

Previous attempts have been made at exploring methods
for automatic differential diagnosis of diseases. A method for
differentiating pancreatic serous from mucinous cys-
tadenomas based on morphological features extraction was
proposed in [12]; this approach utilized classifiers such as
Bayesian, k-NN, support vector machine (SVM), and artificial
neural network (ANN). Furthermore, a method for inte-
grating Hopfield networks, retrieval networks, and k-NN to
mine the medical data for differential diagnosis was proposed
in [6]. Moreover, Lopes et al. developed a decision-support
system based on the fuzzy cognitive map to discriminate the
diagnoses of alterations in urinary elimination [13]. A su-
pervised machine learning algorithm based on the combi-
nation of principal components analysis and SVM for the
differential diagnosis of Parkinsonian syndrome (PS) was
proposed in [14]. Mudali et al. [15] studied the classification of
PS using decision trees based on the scaled subprofile model
and principal component analysis methods. Ota et al. [16]
proposed a differential diagnosis tool for PS by applying the
discriminant techniques derived by stepwise methods. 0e
SVM and logistic regression-based models were developed in
[17] for the classification and prediction of PS. A method
based on the Bayesian network (BN) was proposed in [18] to
perform classification of early glaucoma and cluster data into
different stages of the disease. Moreover, multidimensional
BN classifiers are proposed to assist the treatment of multiple
sclerosis [19]. A BN-based method was used for classification
of EEG-based multiclass motor imagery BCI [20]. Further-
more, a method was proposed in [21] for individualized
characterization and diagnosis of cognitive impairments.
Melin et al. [22] described a method of competitive neural
networks and the learning vector quantization algorithm for
classification of electrocardiogram signals. Finally, an expert
system was provided in [23] for the differential diagnosis of
strabismus based on the architecture of ANN and the Lev-
enberg–Marquardt back propagation method.

0ere are several challenges in this field of research. First,
it is difficult to faithfully model the pathogenesis and
pathophysiology characterized by individual differences, and
uncertain factors including intricate and confounding dis-
ease factors, and insufficient sample data, among others. To
address this problem, we believe that medical knowledge and
experience could play an important role. 0e knowledge
derived from clinical data and that specified by the domain

experts should be integrated to provide a basis for practical
decision-making [24, 25]. 0e introduction of expert
knowledge has been further recognized as an effective so-
lution for reducing the inherent uncertainty of the models
based on automatic learning methods [26].

Second, many diagnosis approaches are mostly deficient
in handling incomplete examinations and tests in clinical
practice. 0e dependence of the models on the completeness
of medical data limits some methods’ functions in cases
where the information is incomplete or imperfect. Some
approaches have been proposed to deal with cases of missing
data in the diagnosis of chronic obstructive pulmonary
disease; these include evaluating the similarity of attributes
with unknown values or filling the gaps statistically with
plausible values [27]. Although there has been research on
the plugging missing values by identifying the regularities in
the occurrence model, very few studies have been devoted to
effectively improving the diagnostic reasoning method in
cases where there is incomplete information. Notably, in
disease diagnosis, using incomplete information to accu-
rately diagnose a disease reduces the need for unnecessary
medical examinations.

0ird, although the probability is known to be capable of
providing a sound and flexible procedure for interpreting
uncertain evidence with which the clinical practice is con-
fronted, it is difficult to make a conclusion readily compre-
hensible to the users. It is important to determine the
underlying etiology and pathology for disease occurrences,
the process of systematic diagnosis, and a means of con-
firming that the right conclusion has been reached.0erefore,
an explicable diagnostic reasoning model that matches the
method for drawing conclusions is essential. Furthermore,
undesirable interpretability or explicability is a common
hinderance for the practical application of most methods.

In summary, it is well known that distinguishing the
wide range of vertigo causes is a complicated endeavor, even
for experienced physicians. Even though BPPV is suggested
in the diagnostic reasoning outcome, the subtype cannot be
easily discriminated. In our opinion, an in-depth under-
standing and appropriate representation of the pathogenesis
and pathophysiology characterized by individual differences
contribute to the diagnostic accuracy. 0is study, therefore,
seeks to develop an efficient and easy-to-implement dif-
ferential diagnosis method for BPPV based on the dynamic
uncertain causality graph (DUCG). 0e main focus of the
proposed method is solving the three aforementioned
problems of the knowledge-based modeling, incompleteness
of the medical data, and interpretability of the method.

0e knowledge representation and inference methods of
DUCG are introduced in [28–31]. In recent years, DUCG has
been applied in several medical diagnostic systems involving
multiple diseases such as jaundice, syncope, and sellar region
disease, among others. Our earlier work in [30] presented a
modeling and reasoning methodology for vertigo diagnosis
and developed a decision-support system which covered 22
common vertigo diseases. However, the methods are not
completely applicable to the differential diagnosis problems.
0erefore, this paper proposes new algorithms for reasoning
about BPPV subtype differentiation.
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0e structure of this article is as follows: Section 2 de-
scribes the proposed method based on DUCG, including the
uncertain causality representation, the BPPVmodel, and the
differential diagnostic reasoning algorithms. In Section 3, a
series of verification experiments using clinical cases are
presented, followed by a comparative analysis and an ap-
plication analysis. Finally, Section 4 contains the
conclusions.

2. Methods

2.1. DUCG Causality Representation and Diagnostic
Reasoning Method

2.1.1. Uncertain Causality Representation Scheme. 0e
DUCG graphically and compactly represents the events and
causalities among events. Figure 1 shows an example of
DUCG. An X-type variable (oval-shaped node) represents
an observable effect event, which can include medical in-
formation such as symptoms, signs, and examination
findings. A B-type variable (square-shaped node) denotes a
root cause event or a disease origin. A G-type (logic gate
node) variable represents the combinational logic relations
between its inputs and outputs (e.g., G12 in Figure 1(a) with
its state expression specified in Table 1). A D-type variable
(pentagon node) represents the default or unspecified cause
of an X-type variable. A certain state j of variable Vi (V can
be a B-, X-, G-, or D-type), referred to as Vi,j, represents an
event; state number j� 0 indicates a normal state and j≠ 0
indicates an abnormal state.

0e arc Vi,j⟶ Xn,k represents a virtual functional
event Fn,k;i,j ≡ (rn;i/rn)An,k;i,j that describes the causality
between a child event Xn,k and a parent event Vi,j. An,k;i,j

denotes the independent causality function that Vi,j causes
Xn,k. 0e intensity of causal relationship between Xn and Vi

is defined as rn;i, and rn;i ≥ 0, rn ≡ 􏽐irn;i. As a weighting
factor of An;i, the coefficient (rn;i/rn) balances these inde-
pendent causality functions for all parent events on a same
child event. For A/F/a-type variables, the variable subscripts
are in the format of “child; parent,” and the variable
identifiers in lower case letters denote the probability pa-
rameters of the variables in corresponding upper case letters,
for example, an,k;i,j � Pr An,k;i,j􏽮 􏽯 and bi,j � Pr Bi,j􏽮 􏽯.

0e causality representation mechanism of DUCG is a
weighted logic event expansion, which is denoted below:

Xn,k � 􏽘
i

Fn,k;iVi � 􏽘
i

rn;i

rn

􏽘
j

An,k;i,jVi,j. (1)

A child event Xn,k can be logically expanded into a
weighted sum of independent causality functions from all its
parent events Vi,k. 0us, the multivalued causalities between
child-parent events in each pair are independently repre-
sented, rather than using joint probability distribution as in
the other models such as BN. 0e use of a compact causality
representation accords the intuitive cognition of people to
the real world and is more explicable. For DUCG, it is
convenient to represent the causalities and parameters based
on findings of medical research and clinical knowledge, or
statistical learning from clinical sample data.

2.1.2. DUCG-Based Diagnostic Reasoning Method. 0e
diagnostic inference method includes three steps: (1) sim-
plifying the original causality graph based on observed
evidence; (2) weighted logic event expansion and logical
reasoning for evidential events; and (3) probabilistic rea-
soning. If Hk,j represents a candidate hypothesis, i.e., a
possible root cause (disease origin) of evidence E, then the
state probability of Hk,j, conditioned on E and denoted by
hs

k,j, is calculated as

h
s
k,j � Pr Hk,j | E􏽮 􏽯 �

Pr Hk,jE􏽮 􏽯

Pr E{ }
, (2)

where E is defined by E � 􏽑nXn,k. Every evidence event Xn,k

is independently expanded into logic expressions according
to (1) by tracing their upstream causality chains back to-
wards the root cause event(s), respectively. Such an in-
ference process is called chaining inference. Meanwhile,
some basic logic operations, including OR, AND, NOT,
XOR, absorption, exclusion (events are mutually incom-
patible), and complementation, are performed. 0us, the
candidate hypothesis space SH � Hk,j􏽮 􏽯 can be obtained.
Finally, the posterior probabilities of the hypothesis event
Hk,j can be calculated. In case of more than one candidate
hypotheses in SH, the state probability of Hk,j is modified by
the weight coefficient defined on the prior probability of
evidence (referred to as ζk, ζk ≡ Pr E{ }) in the causality
context of each hypothesis Hk,j:

h
s
k,j � h

s
k,j

ζk

􏽐kζk

. (3)

0e probabilistic normalization of weighted logic event
expanding expressions, i.e., 􏽐kPr Xn,k􏽮 􏽯 � 􏽐k􏽐i(rn;i/rn)

􏽐jan,k;i,jvi,j � 1, holds automatically because 􏽐i(rn;i/rn) � 1,
􏽐kan,k;i,j � 1, and 􏽐jvi,j � 1. By virtue of such an automatic
normalization feature, the chaining inference can be proven
as self-reliant such that Pr Xn,k􏽮 􏽯 is calculated without the use
of Pr Xn,k′􏽮 􏽯(k′ ≠ k), and the irrelevant parameters (e.g.,
an,k′;i,j) can be absent without affecting the inference ac-
curacy. Moreover, the variation of parameter values in the
numerator of (2) corresponds to the variation in the pa-
rameter values in the denominator. It is thus the ratio of the
parameter values in the event expanding expressions of
Pr Hk,jE􏽮 􏽯, to that of Pr E{ } that has an actual effect on the
final result. Based on the aforementioned features, the exact
inference can be used in case of incomplete and inaccurate
parameters and clinical data.

0e causality graph in Figure 1 can be used as a cal-
culation case to clarify the details of the diagnostic inference
algorithm. Let us suppose that the parameter matrices are
given as follows (for the sake of simplicity, the weighting
factors rn;i are all set to 1). For a matrix element an,k;i,j (e.g.,
a3,1;7,1, a5,1;2,2, and a6,2;8,1), k and j correspond to the row
number and column number of the matrix, respectively. 0e
symbol “− ” indicates unknown, unavailable, or irrelevant
parameters:
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b1 �
−

0.02
􏼠 􏼡,

b2 �

−

0.02
0.04

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

a3;7 �
− − −

− 0 0.5
􏼠 􏼡,

a4;8 �
− −

− 0.6
􏼠 􏼡,

a5;2 �
− − −

− 0.2 0
􏼠 􏼡,

a5;4 �
− −

− 0.8
􏼠 􏼡,

a6;8 �

− −

− 0.6
− 0

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

a7;8 �

− −

− 0
− 0.9

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

a8;1 �
− −

− 0.9
􏼠 􏼡,

a8;2 �
− − −

− 0.6 0
􏼠 􏼡,

a9;6 �
− − −

− 0.6 0
􏼠 􏼡,

a10;10D �

−

0.2
0.8

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

a11;12 �

− −

− 0
− 0.9

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

(4)

Besides the normal or unknown variables, suppose that
the evidence for the DUCG example in Figure 1(a) is
obtained as E � 􏽑iEi

′ � X3,1X5,1X7,2X8,1X9,1X10,2X11,2. By
applying the simplification rules of DUCG [28, 30], all the
irrelevant, incorrect, and meaningless causalities and
events can be eliminated from the graph based on the
medical evidence. 0us, the simplified graph is obtained as
shown in Figure 1(b). DUCG uses different colored nodes
to distinguish the X-type variables’ states: green indicates a
normal state indexed by 0, sky blue and blue indicate state
1 and state 3, respectively, yellow and brown indicate state
2 and state 4, respectively, and colorless indicates an
unknown state, implying an unconfirmed/unidentifiable
pathological feature or an unexamined item.

Based on (1) and Figure 1(b), the expanding expressions
of evidence X3,1, X5,1, and X11,2 in the causality context of
B2,1, respectively, are shown below:

E1′ � X3,1 � A3,1;7,2A7,2;8,1A8,1;2,1B2,1,

E2′ � X5,1 �
1
2

􏼒 􏼓A5,1;2,1B2,1 +
1
2

􏼒 􏼓A5,1;4,1A4,1;8,1A8,1;2,1B2,1,

E7′ � X11,2 � A11,2;12,1A10,2;10DA9,1;6,1A6,1;8,1A8,1;2,1B2,1.

(5)

Likewise, other abnormal evidence is expanded, and the
expanding expression for E is obtained as

B13

B14

B15

B16

X17

X9

X6

X3X7

B2

B1

X4

X5

X10X8

G12 X11

D10

Other variables
Group 2 

Other variables
Group 1

X18

(a)

X6
X4

B1

B2

G12

D10

X11,2

X10,2

X7,2

X8,1

X5,1

X9,1

X3,1

(b)

Figure 1: Example of DUCG diagnostic causality graph: (a) original causality graph and (b) simplified causality graph.

Table 1: Logic gate specification of G12.

Logic gate State State expression

G12
0 Remnant state
1 X9,1X10,2 +X10,1
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E � A3,1;7,2A7,2;8,1A11,2;12,1A10,2;10DA9,1;6,1A6,1;8,1A8,1;2,1B2,1

·
1
2

􏼒 􏼓A5,1;2,1B2,1 +
1
2

􏼒 􏼓A5,1;4,1A4,1;8,1A8,1;2,1B2,1􏼒 􏼓

�
1
2

􏼒 􏼓A3,1;7,2A7,2;8,1A11,2;12,1A10,2;10DA9,1;6,1A6,1;8,1A8,1;2,1

· A5,1;2,1B2,1 +
1
2

􏼒 􏼓A3,1;7,2A7,2;8,1A11,2;12,1A10,2;10DA9,1;6,1

· A6,1;8,1A5,1;4,1A4,1;8,1A8,1;2,1B2,1.

(6)

Similarly, the expanding expression of E in the causality
context of B1,1 is

E � A3,1;7,2A7,2;8,1A11,2;12,1A10,2;10DA9,1;6,1A6,1;8,1A5,1;4,1

· A4,1;8,1A8,1;1,1B1,1.

(7)

Finally, hypothesis space SH under evidence E is ob-
tained as follows: SH � H1,1, H2,1􏽮 􏽯, where H1,1 ≡ B1,1 and
H2,1 ≡ B2,1. 0erefore, the two hypotheses are determined as
the probable causes of the observed evidence, as both can
independently interpret all the symptoms. 0e probabilistic
calculation results are hs

1,1 � 0.679 and hs
2,1 � 0.321. 0e

inference results can be explained using the graphical
causality semantics as shown in Figure 1(b). Based on these
semantics, users can not only deduce the results but also
understand their logic.

Based on the self-reliant chaining inference, the missing
parameters, such as a3,1;7,2, a7,2;8,1, a11,2;12,1, a10,2;10D, a9,1;6,1,
and a6,1;8,1, do not have an impact on the reasoning result.
Moreover, the most probable hypotheses could be typically
determined uniquely, just within the logical reasoning
process (before the probabilistic reasoning is performed).
0us the causality structure that accurately represents the
disease pathogenesis is what really matters. It is evident that
DUCG does not impose stringent requirements for com-
pleteness of the parameters and clinical examination data.
0us, it can be used to facilitate modeling through medical
knowledge and experience.

2.2. Construction of Differential Diagnosis Model for BPPV

2.2.1. BPPV Characteristics

(1) Pathophysiology of BPPV.0e vestibular receptor consists
of two otolith organs (the utricle and saccule), which oversee
linear acceleration and gravity, as well as three semicircular
canals (SCCs) that sense angular acceleration. 0e SCCs
include anterior SCCs (ASCCs), posterior SCCs (PSCCs),
and lateral SCCs (LSCCs). 0e afferent nerves from otolith
organs and SCCs project symmetrical activities to the central
vestibular system to maintain the balance and spatial ori-
entation. BPPV results from misplaced calcium carbonate
crystals (otoconia) that are detached from utricle macula and
collected within the SCCs due to trauma, infection, or even

aging. 0ese crystals either remain free-floating in the SCCs
or become attached to the cupula. Normally, as the motion
sensor of SCCs that are filled with endolymph, cupula is a
gelatinous mass with the same density as endolymph. Since
the calcium particles are denser than the endolymph and
cupula, the SCCs become pathologically sensitive to linear
acceleration and gravity; the afferent nerves from SCCs thus
fire asymmetrically, leading to vertigo and nystagmus.When
moving into the SCC, the calcium carbonate crystal debris
may cause endolymph movement, which consequently
stimulates the cupula of the affected canal during head
movement or while stationary (this is called canalithiasis).
Similarly, if adherent to the cupula, the particles may also
activate it (this is called cupulolithiasis) [32].

(2) Clinical Characteristics of BPPV. BPPV is characterized
by brief attacks of vertigo after lying down in bed, looking up
or bending down, among others. 0e vertigo attacks in most
cases last less than 1∼2 minutes and mostly occur at night or
upon awakening [1]. 0e diagnosis rests on the observation
of characteristic nystagmus accompanying symptoms of
vertigo when a patient’s head is moved into a specific ori-
entation with respect to gravity. 0is is due to shred calcium
crystals from macula, which may cause age-related changes
in the protein and gelatinous matrix of the otolithic
membrane. Although most of BPPV cases are idiopathic, a
significant proportion can be associated with preceding
traumatic events including head trauma, dental treatment,
and ear surgery. Other conditions, such as viral vestibular
neuritis, otitis media, Ménière’s disease, idiopathic sudden
sensorineural hearing loss, posterior circulation ischemia,
and migraine, can also trigger cases of BPPV.

BPPV may affect each of the three SCCs. Alternatively, it
can affect more than one canal simultaneously, resulting in
varying nystagmus patterns [33]. Notably, due to its gravity-
dependent position, the most commonly affected semicir-
cular canal is the posterior canal. 0e positional and posi-
tioning tests (e.g., Dix–Hallpike diagnostic maneuver and
supine roll test) can provide an accurate diagnosis for this
condition. Furthermore, the features of nystagmus, in-
cluding latency, direction, duration, reversal, and fatiga-
bility, are significant during diagnosis.

(3) Subtype Differentiation of BPPV. Based on the epide-
miology, causes of disease, pathophysiology, anatomy pa-
thology, clinical features, and treatment outcomes, a BPPV
disease may be classified into distinct categories along four
dimensions: (1) depending on the localization of the par-
ticles and the involved semicircular canals, there are four
subtypes (PSCC, ASCC, LSCC, and multiple-SCC (MSCC));
(2) BPPV is subdivided into idiopathic BPPV and secondary
BPPV, as it may occur as a primary disease or secondary to
other otology disorders or systemic conditions [4]; (3) BPPV
can be divided into canalithiasis and cupulolithiasis,
depending on the nystagmus provoked characteristics from
the positioning test based on the pathophysiology mecha-
nism [32]; and (4) based on the clinical features and
treatment outcomes, BPPV falls into two categories: typical
and atypical. 0e atypical BPPV can be further identified as
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subjective BPPV, persistent BPPV, and recurrent BPPV.
Subjective BPPV refers to the cases associated with a positive
history of BPPV and Dix–Hallpike; or supine roll tests which
are positive for vertigo, but negative for nystagmus [34]. A
persistent BPPV refers to cases lasting for more than two
weeks, while a recurrent BPPV indicates recurrence of BPPV
in the same canal after a symptom-free interval of at least
two weeks from a previously successful treatment [35].

2.2.2. Constructed Model for Differential Diagnosis of BPPV.
As a causality representation to the aforementioned path-
ogenesis and pathophysiology of BPPV, a new DUCG-based
causality graph was constructed based on the vertigo model
presented in [30]. 0e BPPV differential diagnosis model is
shown in Figure 2; it includes 125 variables (X-type: 85, D-
type: 8, G-type: 21, and B-type: 11) and 286 arcs.

(1) Modularized Modeling Scheme. A modularized modeling
scheme is applied in the construction of the causality graph
shown in Figure 2. All BPPV subtypes are handled as in-
dividual sub-DUCGs. For example, the three sub-DUCGs
representing the idiopathic, PSCC, LSCC, and cupuloli-
thiasis BPPV are demonstrated in Figures 3–5, respectively.
When the sub-DUCGs are merged, solutions are proposed
for addressing the ambiguous, contradictory, and incom-
plete information to ensure global coherence [30]. Such a
modularized modeling scheme reduces the difficulty in
model construction using a divide-and-conquer approach.

(2) Definition of Variables. Based on the characteristics of
BPPV and the international diagnostic criteria [36], the
medical information of patients, including symptoms, signs,
findings of examinations, medical histories, etiology and
pathogenesis, pathophysiology, and socio-psychological and
environmental factors is incorporated into the model. Table 2
lists some of the variables of the model shown in Figure 2.

(3) Representation of Causal Relationships. In this repre-
sentation, arcs are established to represent and quantify
causal correlations among related symptoms and disease
origins; complex causalities are denoted by a combination of
causal functions via logic gates. All causalities and param-
eters in Figure 2 are determined by otoneurologists, based on
their knowledge, experience, epidemiology statistics, and
research achievements. As stated before, both the incom-
pleteness of knowledge and imprecision of parameters have
little impact on the reasoning accuracy; thus, DUCG is more
flexible for the model construction.

2.3. ;e Algorithm of Differential Diagnostic Reasoning.
Differential diagnosis aims at narrowing down the diseases to
the most probable one from a list of candidate diseases that
show similar symptoms. 0e differential diagnostic reasoning
algorithm is presented as Algorithm 1, which implements a
hypothesis-driven process. 0e posterior probability of the
hypothesis event Hk,j is used to quantify Hk,j’s ability to
interpret the medical evidence, E. Notably, a rare disease does
not necessarily respond to a weak causality. If a rare disease

(with a low prior probability) better explains a patient’s
symptoms and medical evidence, then the strength of the
causality functions can be high; thus, the disease will get a
higher ranked probability as a hypothesis event.

2.3.1. New Causality Simplification Mechanisms. Based on
the collected medical evidence E for a patient, the process of
causality simplifications is performed to the BPPV causality
graph. Causality simplification aims to eliminate the irrel-
evant, meaningless, and impossible events and relations
from a causality graph. 0erefore, the model scale and
complexity are both significantly decreased, and the disease
hypothesis space converges.0e root cause event can even be
preliminarily determined based on the simplified causality
graph.

As a complement to the original simplification rules of
DUCG [28, 30], several new causality simplification
mechanisms, including a pruning strategy and causality
tracking process, are presented.

Definition 1 (Pruning Strategy). 0e meaningless disease
hypothesis and its corresponding causalities are identified
and pruned from the causality graph using a scheme of
causality tracking for all the abnormal evidences.

Definition 2 (Causality Tracking Process). 0e causality
tracking process starts from an observed event and traces its
upstream causality chains and ancestors back towards the B-
type event(s). For any Bi, only if all the abnormal evidence is
reachable to it via a causality tracking process, can it be
identified as a candidate hypothesis; otherwise, Bi should be
eliminated from the hypothesis space, and its corresponding
causalities should be pruned from the graph.

2.3.2. Weighted Logic Inference Rules of Differential Diag-
nosis for BPPV. Based on the simplified causality graph and
medical evidence, the process of logical inference is per-
formed to obtain the hypothesis space according to (1)∼(3).
Our earlier study showed that by applying event expanding
and logical operations, the logical inference can effectively
decrease the complexity of probabilistic reasoning [28].
However, in response to BPPV differential diagnosis, the
weighted logic inference algorithm requires major
modifications.

Some BPPV subtypes can be present in a patient si-
multaneously. For instance, a diagnosis can be termed as an
ASCC-idiopathic-canalithiasis BPPV. Such a case is known
as concurrency of subtypes. Meanwhile, the subtypes be-
longing to the same category are mutually exclusive when a
diagnostic conclusion is drawn. Some examples of this are
PSCC-BPPV (B23,1), LSCC-BPPV (B24,1), ASCC-BPPV
(B25,1), and MSCC-BPPV (B26,1). 0erefore, to deal with
these cases, new weighted logic inference rules for exclusion
and concurrency, among others, are developed as shown
below.

Rule 1. Suppose that the basic events (namely, root cause
events) in a BPPV differential diagnosis model are
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represented in terms of category sets as C1 � {B23,1, B24,1,
B25,1, B26,1}, C2 � {B27,1, B28,1}, C3 � {B29,1, B30,1}, and
C4 � {B31,1, B32,1, B33,1}. State 1 of a B-type event indicates
that the root cause event has occurred; on the contrary, state
0 of a B-type event indicates that the root cause event has not
occurred. 0e mutual exclusion rules for basic events in
BPPV differential diagnosis can thus be defined as
Bi,1Bi′ ,1 � 0, where Bi,1, Bi′ ,1 ∈ Cm(i≠ i′, m ∈ 1, 2, 3{ }).

Proof. From the definition, the category sets C1, C2, and C3
indicate different classification perspectives of BPPV.
0erefore, all basic events within the same category set are
exclusive and exhaustive. Specifically, there is B23,1B24,1 � 0,

B23,1B25,1 � 0, B23,1B26,1 � 0, B24,1B25,1 � 0, B24,1B26,1 � 0,
B25,1B26,1 � 0, B27,1B28,1 � 0, and B29,1B30,1 � 0. □

Rule 2. Bi,1Bi′ ,1 ≠ 0 for Bi, Bi′ ∈ C4 (i≠ i′) and Bi,1Bi′ ,1 ≠ 0 for
Bi,1 ∈ Cm, Bi′,1 ∈ Cn(i≠ i′, m≠ n).

Proof. 0e events in C4 describe the respective different
types of atypical BPPV, in an overlapping manner. Namely,
all the basic events in {B31,1, B32,1, B33,1} are likely to be
concurrent. 0is sets the basis for Rule 2. □

Definition 3 (Maximizing Concurrent Basic Event Set
Strategy). To obtain an ultimate disease hypothesis Hk,j, if
the events that constitute Hk,j are concurrent and consistent
with each other, the maximum number of basic events
within the hypothesis space SH should be incorporated.

It is essential to explore every possible outcome before
ruling out any basic event. For example, as SH � {B24,1, B28,1,
B30,1} is obtained for a case, we should get only the correct
hypothesis H1,1 � B24,1B28,1B30,1 ≠ 0, in which the three
events together interpret the observed symptoms, rather
than B24,1B28,1, B28,1B30,1, or so on.

Rule 3. Given V ∈ B, X, G, D{ }, j≠ j′, and integer y≥ 2,
then, (Vij)

y � Vij and VijVij � 0.

Figure 2: 0e DUCG-based differential diagnostic causality graph for BPPV.

Figure 3: Sub-DUCG for LSCC-idiopathic-recurrent BPPV.

Figure 4: Sub-DUCG for PSCC-idiopathic-recurrent BPPV.

Figure 5: 0e sub-DUCG for cupulolithiasis BPPV.
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Rule 4. Given integer y≥ 2, k≠ k′, and j≠ j′, then,
(Fnk;ij)

y � (rn;i/rn)yAnk;ij, Fnk;ijFnk′;ij � 0, Fnk;ijFnk;ij′� 0, and
Fnk;ijFnk′;ij′� 0; if Bi,1Bi′ ,1 � 0 is given, Bi,1, Bi′ ,1 ∈ Cm,

i≠ i′, m ∈ 1, 2, 3{ }, then it follows that, Fnk;i′,1Bi,1 � 0, Fnk;
i,1Bi′,1 � 0, and Fnk;i,1Fnk;i′,1 � 0.

Proof. 0e latter part of Rule 4 is based on Rule 1, and the
other part has been proven in [28]. From Rule 1, Bi,1Bi′ ,1 � 0
which implies that the basic events Bi,1 and Bi′,1 cannot be
concurrent and consequently brings about the mutual ex-
clusions among the function events related to Bi,1 and Bi′,1.
0erefore, Ank;i,1Ank;i′,1 � 0 and Fnk;i,1Fnk;i′,1 � 0, as Ank;i,1
cannot be present in combination with Ank;i’,1; similarly
then, Fnk;i′,1Bi,1 � 0 and Fnk;i,1Bi′,1 � 0. Notably, Fnk;i,1Fnk;
i′,0≠ 0 is true because Ank;i,1 and Ank;i′,0 are independent of
each other (since they are given independently). □

Rule 5. 􏽐
M
m�1􏽑i∈Sm

Fnk;iji
Viji

� (􏽐
M
m�1􏽑i∈Sm

(rn;i/rn))􏽑

i∈S1Ank;iji
Viji

, where Sm denotes the set of variable number in
a product item, m ∈ {1,2, . . ., M} and S1 ⊆ S2 ⊆ · · · ⊆ SM.

Rule 6. Suppose that no mutually exclusive basic events
coexist in the candidate hypothesis space, then,
Fnk;ijVij(􏽐i′Fnk;i′j

i′
Vi′j

i′
) � Fnk;ijVij, if j� ji is given.

Proof. To complement the ordinary conditions of Rule 14
discussed in [28], consider a situation related to mutually
exclusive basic events, Vij �Bi,1 and Vij′�Bi′,1,
Bi,1, Bi′ ,1 ∈ Cm(i≠ i′, m ∈ 1, 2, 3{ }) as proposed in Rule 1.0e
proposition of Rule 6 can thus be represented as

Fnk;ijVij 􏽘

i′

Fnk;i′j
i′
Vi′j

i′
⎛⎝ ⎞⎠ � Fnk;ijVij · Fnk;ijVij

+ Fnk;ijVij · 􏽘

i′ ≠ i

Fnk;i′j
i′
Vi′j

i′

� rn;i/rn􏼐 􏼑
2
Ank;ijVij

≠Fnk;ijVij.

(8)

0e inclusion of mutually exclusive events leads to the
aforementioned outcomes (i.e., the inconsistence between
Rule 1 and Rule 6), and the autonormalization feature no
longer holds. 0erefore, a solution for BPPV subtype dif-
ferentiation known as a scheme of dummy basic variable
(DBV) is proposed. □

2.3.3. Scheme of Dummy Basic Variable

Definition 4 (DBV). If mutually exclusive candidate hy-
potheses coexist in the candidate hypothesis space, i.e.,
Bi,1Bi′ ,1 � 0, Bi,1, Bi′,1 ∈ Cm(i≠ i′, m ∈ 1, 2, 3{ }), Bi,1 andBi′,1
are converted into different states of a DBV; each state of the
DBV elicits an individual pathogenesis causality graph
according to the hypothesis related to that state; the specific
causalities of different diseases can be distinguished by the
A-parameter values of DBV, which can either be zero or not.
0e exclusive rules among basic events are thus transformed
into an inherent exclusive law among the states of an event.

Table 2: Definition of variables for differential diagnosis of BPPV.

Variables Descriptions

X1–3,201–206,

210–217

Pathophysiology of BPPV: the lesion of the
otolithic membrane of utricle macula, the
degenerated otolith broken off from utricle
macula, misplaced calcium carbonate crystals
debris, calcium free-floating particles entering
the SCCs, calcium particles adherent to the

cupula of SCC, the endolymph movement with
free-floating particles that pathologically
stimulates the ampulla of canal, and the

sensitivity to linear acceleration and gravity
induced by the abnormal deflection of cupula

X4,8–11

0e description of vertigo: an illusion of
movement, the sensation that objects in the

environment is moving when the eyes are open,
and the sensation that a patient feels as if he or

she is moving when the eyes are closed

X11,42,45,46,82

0e main accompanying symptoms:
spontaneous nystagmus and autonomic nerve

symptoms

X20-25

0e detailed description of the features of
vertigo attacks: attack characteristics, the onset
and duration of an attack, causes of disease,

frequency, and severity

X26–28,209

Changes in head position relative to gravity:
rotation of the head relative to the body while in

an upright position

X83–87,130
0e feature of spontaneous nystagmus and the

Romberg test for vestibular function

X52,49,161,163,238

Other accompanying symptoms: cochlear
symptoms, hearing loss, tinnitus, the symptoms

of central nervous system, and the
manifestations of the primary and underlying

disorders
X184,185 Patient’s gender and age

X186,189,198,234

0e typical and characteristic medical history: a
migraine, hypertension, head trauma, and inner

ear pathology

X207–208

More than one semicircular canal is affected
simultaneously (obtained statistically during
the pretreatment process of medical data)

X218–221,227,228
Positioning test vertigo and nystagmus when

the head is moving or rotating

X222–226

Dix–Hallpike test: the feature of evoked
nystagmus (latency, duration, direction,
amplitude, frequency, fatigability, and

reversibility)

X229–233

Supine roll test: the feature of evoked
nystagmus (latency, duration, direction,
amplitude, frequency, fatigability, and

reversibility)
X236 0e outcomes of the maneuver treatment

B23–33

PSCC-BPPV (B23); LSCC-BPPV (B24); ASCC-
BPPV (B25); MSCC-BPPV (B26); secondary

BPPV (B27); idiopathic BPPV (B28);
canalithiasis BPPV (B29); cupulolithiasis BPPV
(B30); subjective BPPV (B31); persistent BPPV

(B32); and recurrent BPPV (B33)
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0e problem of disobeying the autonormalization fea-
ture can thus be addressed. 0is method is illustrated via an
example in Figure 6(a). Suppose that B1,1 and B2,1 are
mutually exclusive events. 0ey are then combined into a
DBV-Bv during the reasoning process, corresponding to Bv,1
and Bv,2, respectively. From the definition of DBV,
a3,1;v,1 ≡ a3,1;1,1, a4,1;v,2 ≡ a4,1;2,1, a5,1;v,2 ≡ a5,1;2,1, and rn;v ≡ rn;i,
where i ∈ 1, 2{ } and n ∈ 3, 4, 5{ }. Figure 6(b) shows an ex-
ample where an event (e.g., X3) is connected to more than
one basic event. In this case, rn;v is defined as rn;v ≡ 􏽐irn;i, if
Fn;i≠ 0.0us, r3;v � r3;1 + r3;2 for the case in Figure 6(b) which
points out to a combination of basic events.

In the context of differential diagnosis, and upon the
completion of causality simplifications, the obtained can-
didate hypotheses of C1 � {B23,1, B24,1, B25,1, B26,1} (there are
more than one basic event in the set), should be combined
into a DBV-Bm, with Bm,k denoting Bi,1, where k� 1, 2, 3, 4
and i� 23, 24, 25, 26; Pr{Bm,k} refers to the prior probability
of Bi,1, and Pr Bm,0􏽮 􏽯 � 1 − 􏽐k≠0Pr Bm,k􏽮 􏽯.

Definition 5 (Ranked Independent Probability). 0e ranked
independent probability represents a new metric proposed
for quantifying the degree of confidence in whether a BPPV
subtype (e.g., Bi,1 as a part of the hypothesis Hk,j) can in-
dependently interpret all the medical evidence, in com-
parison with the other subtypes coexisting in Hk,j. 0e
ranked independent probability of Bi,1 is calculated as fol-
lows: (1) get hs

i,1 of Bi,1 according to (2) and (3), in which ζi is
based on the individual causality tracking graph of Bi,1; and
(2) for all the Bi,1 within the set of Hk,j, hs

i,1 is ranked by
hs

i,1/􏽐ih
s
i,1.

2.4. ;eoretical Analysis of the Reasoning Complexity. 0e
inference algorithm for the proposed method reduces the
reasoning complexity in two ways. First, the causality graph
simplification and pruning strategy significantly decreases the
model scale. 0e variables that are irrelevant or inconsistent
with the medical evidence are excluded from the reasoning

calculation. 0is significantly reduces the computational
complexity. Moreover, the diagnostic reasoning conclusion
can even be accurately drawn solely via the causality sim-
plification. Second, prior to probabilistic reasoning, weighted
logic inference is performed based on the simplified causality
graph. 0us, the multiple connected causalities can be
decomposed independently, leading the chaining inference to
exhibit high efficiency. Furthermore, the proposed logical
inference rules and logical operations can decrease the
complexity and scale of logical event expressions.

0e actual efficiency tests for the DUCG inference al-
gorithm have been performed using online fault diagnosis
data from several large-scale industrial systems (e.g., nuclear
power plants), in which thousands of variables and causality
arcs are involved [28, 31]. 0e diagnostic reasoning can
typically be finished within 0.5–1 s (on a personal computer).
Moreover, the inference efficiency has been verified from our
past clinical diagnosis applications that involved dozens of
diseases, such as jaundice and sellar region disease.

3. Experiments and Analyses

3.1. Clinical Validation of the BPPV Differential Diagnosis
Method

3.1.1. Differential Diagnosis for BPPV—Case 1. Suppose that
the medical evidence of a patient was observed in part as
{X4,1, X21,2, X24,3, X184,4, X185,2, X209,4, X229,2, X230,2, X207,0,
X208,0, X236,0} in Figure 2 and other X-type variables are
normal or unknown (incomplete medical information). 0e
medical information in this experiment is from a 65-year-old
female patient who suffered from brief episodes of vertigo
when rolling over in bed for two weeks and was suspected to
be a BPPV case according to the supine roll test.

Based on the evidence, in this case, Figure 2 can be
simplified into the graph shown in Figure 7, by applying the
causality simplification rules and pruning strategy. Many
meaningless relationships and events under current situa-
tion are eliminated accordingly, with SH � {B24,1, B28,1, B30,1}

Begin
For a BPPV patient
Collect medical evidence, E, including symptoms, signs, examination findings, laboratory tests, and medical histories
Perform causality simplification to the BPPV causality graph based on the evidence E
Apply the causality simplification mechanisms including the pruning strategy and causality tracking process
Obtain the simplified diagnostic causality graph

Perform the algorithms of weighted logic inference based on the simplified causality graph
Perform the weighted logic event expansion to the evidence according to (1)
Perform logic inference according to (2)

Apply the weighted logic inference rules 1∼6 of differential diagnosis for BPPV
Apply the scheme of dummy basic variable
Perform the basic logic operations

Obtain the hypothesis event space, SH � Hk,j􏽮 􏽯

Perform the probabilistic reasonings to obtain the posterior probability of Hk,j conditioned on E, hs
k,j

Calculate the ranked independent probability of a BPPV subtype
End

ALGORITHM 1: Differential diagnostic reasoning method for BPPV.
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being inferred as the possible root causes. 0e resulting
hypothesis space, SH, is concise with all unlikely hypotheses
being excluded from concern. Moreover, the individual
causality tracking graphs for the three root cause events B24,
B28, and B30 in Figure 7 are shown in Figure 8, whereby each
subgraph independently covers all evidence.0e graphs thus
intuitively and faithfully represent the causalities underlying
the pathogenesis of Case 1.

By applying the algorithm of differential diagnostic
reasoning for Case 1, the state probability of
H1,1 �B24,1B28,1B30,1 can be obtained as hs

1,1 �

Pr H1,1 | E􏽮 􏽯 � 1. 0e obtained “ranked independent prob-
abilities” of B24,1, B28,1, and B30,1 are listed in Table 3. 0e
LSCC-idiopathic-cupulolithiasis BPPV is therefore deter-
mined as the diagnostic result of Case 1; this result is
consistent with the clinical conclusions confirmed by
otoneurologists.

3.1.2. Differential Diagnosis for BPPV—Case 2. A 72-year-
old female patient complained about paroxysmal positional
vertigo for a month; the attacks of vertigo were brief, lasting
for one minute; the vertigo frequently occurred while
looking up or down.0us, the medical evidence for this case
is {X4,1, X21,2, X24,3, X184,4, X185,2, X207,0, X208,0, X209,3, X222,3,
X223,1, X224,1, X225,1, X226,1, X236,0}; the other X-type variables
are normal or unknown (incomplete medical information).

By applying the algorithm of differential diagnostic
reasoning, the hypothesis event H1,1 �B23,1B28,1B29,1B32,1 is
uniquely determined as the origin of the disease, which
indicates a PSCC-idiopathic-cupulolithiasis-persistent
BPPV. 0e diagnostic causality graph is shown in Figure 9
which is based on the causality simplification of Figure 2.
0e resulting ranked independent probabilities of B23,1,
B28,1, B29,1, and B32,1 are listed in Table 4. By explicitly
representing the disease causes, symptoms, pathogenesis,
and the latent correlations among medical information,
Figure 9 offers intuitive insights into the underlying path-
ological mechanisms.

3.1.3. Other Validated BPPV Subtype Cases. A verification
experiment on some other clinical cases was performed to
evaluate the effectiveness of the proposed method. 0e
correctness was based on the otoneurologists’ judgement on
the diagnostic outcomes in contrast to the practical con-
clusions. In the clinical center for vertigo in Beijing
Chaoyang Hospital, BPPV cases are common; however,
there are multiple repetitions in the meaningful information
for the BPPV patients on their medical histories and physical
examinations regarding subtype differentiation. Based on

this, 75 typical BPPV cases were selected from the thousands
of cases containing medical records, interviews, and physical
assessments in the verification experiments. 0e BPPV
subtypes involved are outlined in Table 5. 0e selection
principle of BPPV cases was based on the international
diagnostic criteria for BPPV [36] and the typicality and
representativeness of BPPV subtype diseases. Notably, since
the nystagmus cannot be observed for a subjective BPPV
case, it is difficult to classify the case either as canalithiasis
BPPV or cupulolithiasis BPPV.

0e diagnostic outcomes of the DUCG-based model
agreed with the otoneurologists’ conclusions with a cor-
rectness index of 100%. Based on the available published
literature, no other research has reported a model-based
automatic subtype differentiation of BPPV in the past.

3.2. Comparative Analysis of DUCG and BN. 0e main
difference between DUCG and BN in terms of the theoretical
framework is that the model structure and parameters of
DUCG are decoupled. By virtue of such a feature, the in-
dependent causality representation by the weighted causality
function event An,k;i,j in DUCG makes it possible to simplify
the original causality graph based on the collected medical
evidence. 0e irrelevant and meaningless events and rela-
tions are thus eliminated from the model. Taking the sim-
plified causality graph as the basis of diagnostic reasoning
reduces the computational scale and complexity to a large
extent. In contrast, BN cannot be easily simplified owing to
the structural coupling feature among the variables: the
causalities among the child-parent events in BN are typically
represented through a joint probability distribution (e.g., a
conditional probabilistic table, CPT); in case any variables
and relations are removed from a BN, the remaining pa-
rameters in the CPTs may need major adjustments; more-
over, the number of parameters specified in a CPTfor a BN is
exponential to the number of the parent variables and states
involved, while the parameters needed in the DUCG are less
than the parameters in a BN.

Others

B1
X3

X4

X5

Others

X3

X4

X5

B2

BV

(a)

Others

X3

X4

Others

X3

X4

BV

B1

B2

(b)

Figure 6: Example of DBV. (a) Example 1. (b) Example 2.

Figure 7: Diagnostic causality graph for Case 1.
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Furthermore, by the independence representation and
automatic normalization feature for the weighted logic event
expansion, the “self-reliant” chaining inference and logic
operations can be performed in DUCG. 0e parameters and
information that are eliminated during the causality simpli-
fication and those that are not involved in the chaining in-
ference can all be missing (or some parameters which are not
of concern are thus not provided) during this reasoning
process and do not affect the diagnostic accuracy. 0e diag-
nostic inference method under incomplete information in-
dicates that some unnecessary clinical tests and inappropriate
medications can be omitted, thereby decreasing the patients’

medical costs. For a BN, the reasoning accuracy depends on
the completeness of the parameters in the CPTs.

3.3. Application Analysis. 0e proposed method can be de-
veloped as an automatic diagnostic system for clinicians. Based
on the compact, independent, and graphical causality repre-
sentation using DUCG, the model construction and diagnosis

(a) (b)

(c)

Figure 8: Individual causality tracking graphs of the hypotheses for Case 1. (a) LSCC-BPPV (B24). (b) Idiopathic BPPV (B28). (c)
Cupulolithiasis BPPV (B30).

Table 3: Diagnostic reasoning results of Case 1.

BPPV
subtype Description Ranked independent

probability
B24,1 LSCC-BPPV 0.0388
B28,1 Idiopathic BPPV 0.9542

B30,1
Cupulolithiasis

BPPV 0.007

H1,1 B24,1B28,1B30,1 1

Figure 9: Diagnostic causality graph for Case 2.

Table 4: Diagnostic reasoning results of Case 2.

BPPV
subtype Description Ranked independent

probability
B23,1 PSCC-BPPV 0.1435
B28,1 Idiopathic BPPV 0.7653

B29,1
Canalithiasis

BPPV 0.0091

B32,1 Persistent BPPV 0.0821
H1,1 B23,1B28,1B29,1B32,1 1

Table 5: BPPV subtypes involved in the validated cases.

BPPV subtype No. of cases
PSCC 53
ASCC 1
LSCC 16
MSCC 5
Idiopathic 55
Secondary 16
Canalithiasis 61
Cupulolithiasis 8
Subjective 4
Persistent 4
Recurrent 8
Typical 59
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application are both easy to implement. For a patient, the
clinical data through can be obtained through inquiry, physical
examination, and auxiliary examination, among others. Next,
the clinical data, including symptoms, signs, examination, and
test data, are input into the diagnostic reasoning interface of
the system, and the diagnosis results can be obtained through
reasoning calculation. 0e clinical application of this method
is thus very convenient. 0rough incorporation into the au-
tomatic medical devices, this method could improve the ef-
ficiency of BPPV diagnosis and therapy, especially for general
practitioners in primary health care institutions. In addition,
the system can also be used inmobile and Internet terminals as
a secondary tool for telemedicine; finally, it can serve as a
teaching tool for doctor training in related disciplines.

4. Summary

0is study proposes a DUCG method for differential di-
agnosis of BPPV. To distinguish among various causes of
vertiginous disorders with similar symptoms, the proposed
method involves a graphical and compact representation, in
addition to logical reasoning algorithms for pathological
mechanisms and related uncertain causalities. New algo-
rithms of differential diagnostic reasoning are proposed by
integrating a pruning strategy in the causality simplification
process, a maximizing concurrent basic event set strategy in
the formulation of hypothesis space, and the weighted logic
inference rules for subtype differentiation of BPPV. Fur-
thermore, a scheme of dummy basic variable is introduced to
settle the problems related to mutually exclusive root cause
events. 0e model manifests higher correctness, favorable
robustness to incomplete evidence, and satisfactory dis-
criminatory power for BPPV subtypes. Furthermore, using
the diagnostic reasoning method and graphical represen-
tation mechanism not only provides a diagnostic result, but
also explains the rationale for suggesting the diseases, which
justifies the probability results.

In light of these encouraging preliminary results, more
clinical studies will be performed. Furthermore, a new
method of probabilistic prediction for the vestibular dys-
function-induced fall risk will be the subject of our future
research endeavors.
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