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-e 3D tortuosity determined in several brain areas is proposed as a new morphological biomarker (BM) to be considered in early
detection of Alzheimer’s disease (AD). It is measured using the sum of angles method and it has proven to be sensitive to anatomical
changes that appear in gray and white matter and temporal and parietal lobes during mild cognitive impairment (MCI). Statistical
analysis showed significant differences (p< 0.05) between tortuosity indices determined for healthy controls (HC) vs. MCI and HC
vs. AD inmost of the analyzed structures. Other clinically used BMs have also been incorporated in the analysis: beta-amyloid and tau
protein CSF and plasma concentrations, as well as other image-extracted parameters. A classification strategy using random forest
(RF) algorithms was implemented to discriminate between three samples of the studied populations, selected from the ADNI
database. Classification rates considering only image-extracted parameters show an increase of 9.17%, when tortuosity is in-
corporated. An enhancement of 1.67% is obtained when BMs measured from several modalities are combined with tortuosity.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
that leads to irreversible gradual loss of cognitive and in-
tellectual capabilities, thus limiting a subject’s performance
in daily activities. It has been reported that this illness
gradually provokes changes in brain morphology, leading to
loss of cognitive activities such as memory, orientation, and
language. It is related to aging and represents between 50%
and 75% of all cases of dementia in global population [1].-e
clinical criteria of the National Institute on Aging-Alz-
heimer’s Association (NIA-AA) generally recognize three
phases principal of the progression of AD [2]: preclinical
healthy stage, mild cognitive impairment (MCI), and de-
mentia due to AD.

-emain objective of the diagnostic criteria is to support
experts in the early identification and treatment of AD [2]. In

this context, different biomarkers (BM) and surrogate
biomarkers have been considered in the diagnosis:

(i) Cognitive tests, the most clinically used being the
Mini-Mental State Examination (MMSE) and the
Clinical Dementia Rating (CDR). -ese neuro-
psychological parameters, together with other clinical
examinations, are the most frequently used in clinical
practice [2].

(ii) Biochemical markers related to the concentration of
beta-amyloid peptides (Aβ40 and Aβ42) or tau
protein. Some authors have studied the association
between AD and Aβ40 and Aβ42 plasma levels, with
inconclusive result [3] while others have demon-
strated that the Aβ42/Aβ40 ratio can predict the
development of the disease, especially if it is mea-
sured in total blood, not only in plasma [4].
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(iii) Image-extracted biomarkers. Recently, magnetic
resonance imaging (MRI) emerged as a noninvasive
clinical technique to support the medical diagnosis
of AD [2, 5, 6]. Specifically, brain parameters
extracted from MRI, such as volume of different
brain structures, atrophy of the hippocampus, and
cortical thickness, are the most common in clinical
diagnosis. However, clinical evaluation of neuro-
images is mainly based on visual inspection by the
neuroradiologists, who are not always able to detect
early signs of neurodegeneration from a qualitative
observation of brain structures [6].

A recent interest has arisen on the medical and neu-
roimaging communities to incorporate techniques taken
from artificial intelligence and machine learning fields for
AD diagnosis. Also, new image-extracted biomarkers have
appeared for the early detection of brain changes. Many
studies focus on combining BMs of different kinds and
applying pattern recognition techniques to identify early
symptoms of the disease, especially during theMCI stage [6].

Some research studies recently reported on the classi-
fication of patients with AD in its different phases and
described the use of biomarkers and pattern analysis to solve
the problem of early detection of symptoms in subjects with
MCI. Janousova et al. [7] reported the analysis of four
populations: HC; progressive MCI that converts to AD
(MCIc); stable nonconverting MCI (MCInc); and AD. -ey
considered fluorodeoxyglucose (FDG) levels obtained from
PET images and intensities obtained from T1-weighted MRI
as features for classification employing a support vector
machine (SVM). -e authors describe a computationally
efficient procedure, based on a combination of penalized
regression (regression using the elastic net penalty) and a
resampling method, for the identification of localized brain
regions that are highly discriminative between two groups of
MR images. Perez-Gonzalez et al. [8] report the analysis and
SVM classification of HC, MCI, and AD populations. -ey
propose a new feature based on discrete compactness that is
combined with absolute and normalized volumes for WM
and GM (global and by brain lobes).

Gray et al. [9] report a study where four populations (HC,
MCIc, MCInc, and AD) are analyzed. A random forest (RF)
sorter with 5000 trees was fed with a feature vector including
volumetric measures, FDG-PETvoxel intensities of the whole
brain, CSF-derived measures, and genetic information. -e
authors report a classification strategy based on pairwise
similarity measures derived from random forest classifiers.

Payan et al. [10] use a 3D convolutional neural classifier
networks to identify HC, MCI, and AD populations. -e
proposed algorithm uses the whole information of MRI
images as input data. -e results are contrasted versus a 2D
neural network classifier, obtaining an increase of 3.94% in
accuracy. Lebedev and colleagues [11] conducted a study
where two populations (AD versus HC) were analyzed, using
a 1000-tree RF classifier. -e used features were noncortical
volumes, cortical thickness, Jacobian maps, and sulcal depth.
In this research, the authors propose an analysis of different
MRI metrics using random forest classifiers in a cohort

study. -e authors state that they obtain better classification
rates than other models such as SVM with linear kernel.

Sivapriya et al. [12] reported a research with three
studied populations (AD, MCI, and HC). -is study pro-
poses an ensemble feature selection approach using different
classifiers with a particle swarm optimization search strategy
and the merit merge technique. -e features considered in
the RF classification process were volumetric measures,
FDG-PET, and neuropsychological scores.

Recently, Dimitriadis et al. [13] explored the efficacy of a
novel scheme that includes multiple feature selections (MRI-
based features) via RF. -is research considered four classes
(HC, MCIc, MCInc, and AD). -is method includes subsets
of the whole set of features per lobules and hemispheres.-e
final decision of the classification uses a fusion approach of
different methods and the ensemble classification via ma-
jority voting. Ramirez et al. [14] proposed a system based on
feature standardization, ANOVA feature selection, partial
least squares feature dimension reduction, and an ensemble
of one vs. rest random forest classifiers. -e system was
trained and evaluated on ADNI datasets that consist of T1-
weighted MRI morphological measurements from HC,
MCInc, MCIc, and AD subjects. In other research, Salvatore
et al. [6] propose a machine learning classifier for the au-
tomatic early diagnosis and prognosis of AD by means of
features extracted, selected, and optimized from structural
MRI brain images. A linear SVM was used to separate
groups of subjects and was designed to perform multilabel
automatic classification into the following four classes: HC,
MCInc, MCIc, and AD.

Other authors have reported cortical thickness as an ef-
fective biomarker to distinguish between control subjects and
patients with AD. Lerch et al. [15] performed a study in which
the cortical thickness of different cerebral structures was
automatically measured, using three classification methods: a
linear discriminant (LDA), a quadratic discriminant (QLA),
and a logistic regression model to discriminate between
populations of healthy controls versus patients with AD. Du
et al. have also reported the use of cortical thickness as a useful
substitute biomarker to distinguish between frontotemporal
dementia and AD. -ey carried out a study where controls,
patients with frontotemporal dementia, and patients with
Alzheimer’s disease were analyzed [16]. A logistic regression
was used as classification model, and cortical thickness and
volume were used as biomarkers.

Considering these previous studies, it can be noticed that
there is an active field of research in the study of different
image biomarkers that can provide complementary in-
formation for support in the early detection of AD. Also, it
has been possible to corroborate that the integration of
multimodal studies can provide a better performance in the
discrimination of the different stages of Alzheimer’s disease.
For these reasons, in this work, the three-dimensional
tortuosity measured in several cortical regions segmented
from T1-weighted MR images is proposed as a novel bio-
marker. It is intended to be used as a complementary pa-
rameter that quantifies structural changes. Although
tortuosity has been proposed as a morphological BM for
different medical applications [17–19], this indicator has not
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yet been evaluated in support of the early diagnosis of AD.
Also, a random forest (RF) classifier is proposed and
designed to perform multilabel automatic classification,
using multimodal features, into the following three subject
classes: HC, MCI, and AD; in this case, the MCI population
corresponds to stable MCInc subjects that did not evolve to
Alzheimer’s dementia.

2. Materials and Methods

In this section, the proposed methodology is presented,
starting with dataset description, as well as the inclusion
criteria of patients with AD,MCI, andHC. Subsequently, the
segmentation process of white matter, gray matter, and
cerebrospinal fluid using Statistical Parametric Mapping is
presented. Also, image-based biomarkers are explained in
detail (absolute and normalized volume, cortical thickness,
discrete compactness, and tortuosity), as well as the statis-
tical tests applied to evaluate their discriminant capability.
Finally, a classification scheme based on random forest is
presented in which image-based, biochemical, and surrogate
cognitive biomarkers are integrated. As described above, the
aim is to discriminate between AD patients, MCI subjects,
and healthy controls, in order to observe the classification
power of the tortuosity index when it is combined with other
biomarkers of different modalities.

2.1. Datasets. Data used in the preparation of this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). -e ADNI
was launched in 2003 as a public-private partnership, led by
Principal InvestigatorMichael W.Weiner, MD.-e primary
goal of the ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

Population assignment was carried out as reported in [20]
by ADNI experts with the following inclusion criteria for HC:
MMSE scores between 24 and 30; CDR of zero; and absence
of depression, MCI, and dementia. Inclusion criteria for MCI
were as follows: MMSE scores between 24 and 30; CDR of 0.5;
objective memory loss, measured by education-adjusted
scores on Wechsler Memory Scale Logical Memory II; ab-
sence of significant levels of impairment in other cognitive
domains; and absence of dementia. Inclusion criteria for AD
were as follows: MMSE scores between 20 and 26 and CDR of
0.5 or 1.0. Detailed description of inclusion/exclusion criteria
can be found in the ADNI protocol (http://www.adni-info.
org/Scientists/ADNIStudyProcedures.aspx).

-e three populations selected for this research were
constituted considering, in addition to the abovementioned
criteria, the completeness of the following information:

(i) Tau protein and Aβ42 levels, measured in cere-
brospinal fluid (for approximately 20% of each
population this information is provided [20])

(ii) Aβ40 and Aβ42 levels obtained from blood plasma

(iii) MR volumes acquired in similar conditions (T1-
weighted, at 1.5T, voxel resolution of
1.2× 0.93× 0.93mm3)

(iv) Cognitive scores evaluated by MMSE and CDR tests
(v) Groups paired by age
(vi) All biomarkers recorded in nearby dates

2.1.1. Training/Validation Dataset. Considering these in-
clusion criteria, the training populations consisted of 40
healthy controls (HC), 40 subjects with stable mild cognitive
impairment (MCI), and 40 patients with Alzheimer’s disease
(AD). -e corresponding demographic and neuro-
psychological scores are shown in Table 1. -is set was used
for statistical analysis and to train and design the classifi-
cation strategy.

2.1.2. Holdout Blind Test Set. -e same inclusion criteria
were considered to constitute a blind dataset composed of 10
HC, 10 MCI, and 10 AD. -e corresponding demographic
information is shown in Table 2. -is dataset was never seen
during training step and was exclusively used for final
testing.

2.2. MR Image Processing. As a first step, global white and
gray matters were segmented from brain MR volumes; the
latter was also subdivided into several substructures, to
separate parietal and temporal lobes, for both hemi-
spheres of the 150 subjects. To this purpose, the “Statis-
tical Parametric Mapping” (SPM) [21] tool was used, with
the following sequence: volume orientation, image re-
alignment and registration, and segmentation. In the first
step, the corpus callosum was used as anatomic reference
for volume orientation; this structure is frequently used
for this purpose because it is easily identified in most
subjects.

In order to obtain parietal and temporal lobes, the In-
dividual Brain Atlas using Statistical Parametric Mapping
(IBASPM) was used [22]; this is an available toolbox for SPM
platform, widely employed in neuroimage processing. Lobe
parcellation is carried out as follows:

(i) Segmentation -is process must be previously
carried out with the SPM platform to separate ce-
rebrospinal fluid (CSF), gray matter (GM), and
white matter (WM) in the native space of the
original images.

(ii) Normalization T1-image is assigned to the stereo-
tactic MNI space, using the ICBM 152 T1mask.-is
step provides a spatial transformation matrix that
will be subsequently used.

(iii) Labelling White matter voxels that were identified
in the segmentation step are mapped to the inverse
transformation matrix produced during normali-
zation. Every voxel is assigned to a unique structure
that is contained in the atlas space. -e final volume
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labels are applied to subcortical structures according
to previous probabilities assigned by the atlas.

(iv) Individual Atlas Deformation fields calculated
during the normalization step are inverted,
remaining holes are filled, and isolated dots are
eliminated to obtain the final structure. With this
last step, an individual atlas parceled by structures is
obtained. From this procedure, six brain structures
were obtained: GM, WM, right and left temporal
lobes (RTL and LTL), and right and left parietal
lobes (RPL and LPL).

2.3. Volume (V) and Normalized Volume (NV). As a first
step, an interpolation of MR volumes using B-spline
functions was applied, in order to have measures with
isometric resolution of 1mm3. After segmentation, the
volume is easily estimated by counting the number of voxels
(n) that belong to regions of interest. Normalization of these
volumes was carried out by dividing the total number of
voxels of a given structure by the intracranial volume, which
is computed by adding those voxels corresponding to GM,
WM, and CSF.

2.4. Cortical 2ickness (CT). Cortical thickness measure-
ments were made using FreeSurfer version 6.0 which is
documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu/). -e technical details
of these procedures are described in previous publications
[23–26]. -is processing includes the following:

(i) Motion correction and averaging of multiple vol-
umetric T1-weighted images [26]

(ii) Removal of non-brain tissue using a hybrid wa-
tershed/surface deformation procedure, automated
Talairach transformation, and segmentation of the
subcortical white matter and deep gray matter
volumetric structures [25]

(iii) Gray matter and white matter boundary and au-
tomated topology correction [24]

(iv) Surface deformation following intensity gradients to
optimally place the gray/white and gray/cerebro-
spinal fluid borders at the location where the

greatest shift in intensity defines the transition to
the other tissue class [23]

Procedures for the measurement of cortical thickness
have been validated against histological analysis [27] and
manual measurements [28].

In this work, we calculated the mean global cortical
thickness and the temporal and superior parietal lobe cor-
tical thicknesses. For all these structures, right and left
hemispheres were analyzed to be included as biomarkers in
the classification process.

2.5. Discrete Compactness (DC). -is metric has been re-
ported as a useful biomarker for the classification of HC,
MCI, and AD [8]. DC is computationally simple to calculate,
and it varies in a range of zero (null compactness) and one
(totally compact voxels). It is also invariant to rotation,
scaling, or translation, qualities that are useful to eliminate
bias in the measurement. It can be expressed for a 3D object
as the ratio between the area of its enclosing surface and its
volume as follows: (area)3/(volume)2 and relates the number
of voxels (n) and the enclosing area (A) by the following
mathematical expression [29]:

DC �
n − (A/6)

n −
�
n3

√
( 􏼁

2. (1)

2.6. Tortuosity (TR). Tortuosity is an intrinsic property
possessed by curved surfaces.-is characteristic is one of the
most important measures of shape used to calculate de-
formations in different objects, which allows to quantify the
degree of turns or detours of a surface [30].

Different diseases such as hypertension and vasculo-
pathies can affect the morphology of blood vessels, so that
tortuosity measures have been proposed in the literature to
quantify the morphological changes associated with these
pathological processes [17, 19]. For these reasons, we con-
sider that tortuosity can be a useful metric to determine the
deformation of brain structures when they are affected by
Alzheimer’s disease.

Normalized tortuosity has been reported by Bullitt et al.
[17] and has been estimated by the sum of angles metric

Table 1: Training/validation dataset: demographic data and MMSE and CDR scores for subjects selected from the ADNI database.

HC (N� 40) MCI (N� 40) AD (N� 40)
Age (years) (μ± σ) 76.2± 4.5 74.9± 7.2 76.9± 5.0
Gender (F/M) 22/18 18/22 21/19
MMSE (rank/μ± σ) 28–30/29.4± 0.74 22–29/26.2± 1.7 12–27/21.1± 3.3
CDR (sum of boxes) (rank/μ± σ) 0 0.5–4 (2.1± 0.3) 2.5–13 (6.4± 2.3)

Table 2: Holdout test dataset: demographic data and MMSE and CDR scores for subjects selected from the ADNI database.

HC (N� 10) MCI (N� 10) AD (N� 10)
Age (years) (μ± σ) 75.2± 3.7 72.1± 4.7 73.6± 8.0
Gender (F/M) 4/6 2/8 5/5
MMSE (rank/μ± σ) 29–30/29.6± 0.5 24–28/26.0± 1.3 15–25/20.1± 4.6
CDR (sum of boxes) (rank/μ± σ) 0 1–3.5 (2.2± 0.8) 5.5–12 (7.1± 2.7)
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(SOAM) method. -e procedure to determine the 3D angle
between consecutive 3D triads is as follows [17]:

(i) A mesh is obtained from the 3D skeletonization
process, constituting a set of N ordered points Pk,
with coordinates (xk, yk, zk)

(ii) Vectors X, Y, and Z are defined, containing, re-
spectively, the set of xk, yk, and zk coordinates of the
array of points

(iii) From these vectors, the following two-column, k-
row arrays are conformed: T1� [Y X], T2� [Z Y],
and T3� [Z X]

(iv) Each array is normalized
(v) -e following elements are computed:

Plane angle: IPk � cos− 1 T1
|T1|

􏼠 􏼡

° T2
|T2|

􏼠 􏼡􏼠 􏼡,

Torsion angle: TPk � cos− 1 T1 × T2
|T1 × T2|

􏼠 􏼡

° T2 × T3
|T2 × T3|

􏼠 􏼡􏼠 􏼡,

Total angle: CPk �

����������������������

IPk × IPk( 􏼁 + TPk × TPk( 􏼁

􏽱

,

SOAM: TR �
􏽐

N− 3
k�1 CPk􏼐 􏼑

􏽐
N− 1
k�1 Pk − Pk− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

.

(2)

In this work, the torsion angle is not considered for
SOAM computation because, as Bullitt reported previously
for vessel shapes measured from angiography images, it does
not contribute for healthy and sick subjects’ comparison and
only adds noise [31].

2.7. Statistical Analysis. After calculating the biomarkers
proposed in previous sections, a statistical analysis was
carried out on the training dataset (N� 120) to find between-
classes and between-biomarkers significant differences. We
applied a Kruskal–Wallis test (p≤ 0.05) between the three
classes, since the calculated metrics do not follow a normal
distribution. Afterwards, a Mann–Whitney–Wilcoxon post
hoc analysis was carried out to identify between-class
differences.

2.8. Classification Scheme. To classify the studied pop-
ulations into three groups, a random forest (RF) was used.
Lebedev et al. have reported that RF performance is superior
to SVM’s for this application [11]. It initially received 35
features:

(i) Image-extracted BM: V, NV, DC, CT, and TR for
the six brain structures (GM, WM, RTL, LTL, RPL,
and LPL), totaling 30 features

(ii) Biochemical markers: tau protein and Aβ42 CSF
levels; Aβ40 and Aβ42 obtained from blood
plasma; and Aβ40/Aβ42 ratio (5 features)

(iii) Surrogate cognitive biomarkers: CDR and MMSE.
-ey were considered as the gold standard, against
which the results obtained in the classification
process were compared

Random forests are defined as a collection of classifiers
structured as a tree, denoted by f(x, θk), where x is the
vector of the input class and θk is a vector of random data
independently distributed [11]. For the training feature
vector θk of length n, new subsets are parcelled into m
partitions of length n1 (n1<n) by sampling and replacement.
-e obtained m models are combined for training and
classification of the random forest [14].

Feature selection and importance assignment for each
variable are implicitly done during RF classification with the
Gini impurity index, which is a nonparametric measure of a
feature’s prediction power. For each binary node n in the
decision tree, the Gini index is calculated as follows [32]:

Gini(n) � 1 − 􏽘
2

j�1
p
2
j , (3)

where pj is the relative frequency of class j in the node n. -e
RF was designed with the following parameters: 150 trees in
the forest; maximum depth of the tree of 8; and minimum
number of samples required to divide an internal node of 2.
-e classifier generates three possible outputs: HC, MCI
subjects, and patients with AD.

All RF-based classifiers were designed following a 10-
fold cross-validation, using the training dataset (N� 120, 40
subjects of each population) described in Section 2.1.1, and
therefore, accuracies are reported as central and dispersion
measures obtained during training. Afterwards, for final
validation, the confusion matrix and performance of the
classifier were calculated on the holdout blind dataset
(N� 30, 10 subjects for each class).

To evaluate the contribution of tortuosity as a structural
biomarker of Alzheimer’s disease, several feature combi-
nations were tested, first considering only image-extracted
biomarkers and then incorporating biochemical and cog-
nitive parameters. All combinations were tested with and
without tortuosity.

3. Results

3.1. Segmentation. Figure 1 shows an example of segmen-
tation and labelling of brain structures for three subjects HC,
MCI, and AD, respectively. -e contoured regions corre-
spond to white matter in the left hemisphere.-e decrease in
volume and normalized volume that occurs between healthy
subjects and patients with AD can be observed. Discrete
compactness also decreases for this structure and tortuosity
increases as the pathological process advances. -e metrics
calculated for this structure are indicated in the figure.

3.2. Statistical Analysis. Absolute volume, normalized vol-
ume, discrete compactness, cortical thickness, and tortuosity
were computed for all the segmented brain structures of the
training dataset. As an example, Figure 2 shows the statistical
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analysis carried out in the left parietal lobe for the three
populations; significant differences are highlighted in red,
for p< 0.05.

-e same statistical analysis was applied to all segmented
structures (Table 3), as well as to cognitive and biochemical
biomarkers; as described in Section 2.1 of the latter, only BM
measured in CSF showed significant differences between
classes, and therefore, they were removed from subsequent
analysis. Although the ADNI dataset is classified according
to MMSE [20], this cognitive score is widely used for clinical
diagnosis, and several authors have included it for sub-
sequent assignment in machine learning medical applica-
tions. -us, we have considered the MMSE score as
surrogate biomarker, to be combined with the other image
and biochemical BMs to constitute the multimodal feature
vector.

3.3. Random Forest Classification. As explained in previous
sections, 120 subjects of the three analyzed classes were used
(40 HC, 40 MCI, and 40 AD) to train the RF classifier.
Several BM combinations were tested, in order to determine

the contribution of each modality, as shown in Table 4. -e
corresponding accuracies are reported as central and dis-
persion measures obtained during cross-validation.

Generalization capability for the proposed strategy was
determined as the accuracy measured in the holdout test set
(Table 5), which constituted 30 cases (10 HC, 10MCI, and 10
AD) not previously seen by the classifier.

-e first two classifications were carried out including
only image-extracted BMs, to consider the individual effect
of tortuosity (2nd row), compared to previously reported
indices (1st row). CSF BMs were incorporated in the feature
vector, without (3rd row) and with (4th row) tortuosity. All
modalities including MMSE as surrogate biomarker have
been considered in the last two rows, again with (6th row)
and without (5th row) tortuosity.

To identify their contribution, each feature is ranked
according to the relevance measured by the Gini index in the
RF classification. Figure 3 shows the ten most important
features determined in this process. In particular, tortuosity
measured at the parietal lobe together with the average
cortical thickness contributes the most to the final
classification.

V: 159943 mm3

NV: 0.1127
DC: 0.7976
TR: 0.5056

(a)

V: 127428 mm3

NV: 0.0950
DC: 0.7899
TR: 0.5498

(b)

V: 92812 mm3

NV: 0.0657
DC: 0.7428
TR: 0.5585 

(c)

Figure 1: Axial slices of left hemisphere white matter obtained after the segmentation process: (a) healthy control, (b) subject withMCI, and
(c) patient with AD. -e three-dimensional reconstructions for each of the structures are observed, as well as the corresponding metrics of
V, NV, DC, and TR.
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In order to identify the error type introduced by this
process, confusion matrices were obtained for all combi-
nations, which are shown in Table 6.

4. Discussion

4.1. Statistical Analysis. It can be observed in Figures 2(a)
and 2(b) that brain volumes decrease for this structure:

absolute volume showed a statistical significance
p � 4.3374e − 05 between the three classes, while for nor-
malized volume it was p � 0.0015. -ese results concur with
those reported by Karas et al. [33] and are probably due to
morphological changes associated with AD evolution. It can
also be seen that discrete compactness (Figure 2(c)) presents
a similar decreasing behavior because it is related to
structure density that is affected during AD progression; a
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Figure 2: Statistical analysis for volume (a), normalized volume (b), compactness (c), cortical thickness, (d) and tortuosity (e) measured in
left parietal lobe for HC, MCI, and AD populations in that order. Significant differences (p< 0.05) are highlighted in red.

Table 3: Statistical comparison for morphological imaging BMs. Only differences with a significance value p< 0.05 are marked with ∗.

HC vs. MCI HC vs. AD MCI vs. AD
V NV DC CT TR V NV DC CT TR V NV DC CT TR

Global gray matter ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Global white matter ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Right temporal lobe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Left temporal lobe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Right parietal lobe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Left parietal lobe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 4: Performance of the RF classifier on the training/validation dataset, for different combinations of biomarkers used as feature vector.

Biomarker
V, NV DC CT TR Biochemical (CSF) Cognitive (MMSE) Number of features Validation accuracy (N� 120) (μ± σ)

1 ✓ ✓ ✓ 24 67.50± 0.16%
2 ✓ ✓ ✓ ✓ 30 76.67± 0.33%
3 ✓ ✓ ✓ ✓ 26 78.33± 0.23%
4 ✓ ✓ ✓ ✓ ✓ 32 80.83± 0.27%
5 ✓ ✓ ✓ ✓ ✓ 27 88.33± 0.11%
6 ✓ ✓ ✓ ✓ ✓ ✓ 33 90.00± 0.12%
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statistical significance p � 1.9878e − 04 was obtained for the
difference between the three populations.-ese results are in
agreement with those reported in [8], showing that com-
pactness is a helpful index for early screening of changes
associated with MCI and AD. Morphological changes are
associated with structural atrophy in some brain areas,
appearing as a result of neuronal and tissue loss, typical of
neurodegenerative diseases [33].

Figure 2(d) presents the behavior of cortical thickness,
which decreases according to the progression of the disease and
shows statistical differences (p< 0.001) between HC and MCI
populations and between HC subjects versus patients with AD.
Similar results have been reported in [34] between control
subjects and subjects with typical Alzheimer’s disease (tAD)
where it is shown that the cortical thickness is thinner in
subjects with tAD in regions of the temporal and parietal lobes.

In contrast, tortuosity shows a growing tendency
(Figure 2(e)), possibly associated with the erosion of brain
structures and with the curvature increase of cortical circum-
volutions, appearing as AD progresses. Significant differences
are observed between the three classes (p � 6.09e − 04).

Results shown in Table 3 indicate that tortuosity de-
termined for all brain structures is significantly different
between HC vs. MCI (excepting right temporal lobe) and
between HC vs. AD (excepting left temporal lobe). -e
former comparison (HC vs. MCI) must be highlighted
because it has more clinical relevance, when subjects are
beginning to present precocious symptoms of the disease. In
this case, the tortuosity metric is the one that most frequently
appears with statistical differences in all the analyzed brain
structures, except for the right temporal lobe, while cortical

thickness, which is widely used in the literature, showed
differences in four out of six brain structures. In the com-
parison of HC vs. AD, all biomarkers are sensible to atrophic
changes that are already evident at this stage of the disease,
and therefore, they present significant differences for almost
all brain structures. Finally, between the MCI and AD
classes, tortuosity and cortical thickness are the least relevant
biomarkers because the former only presents statistical
differences in the right temporal lobe, while the latter is not
significantly distinguishable in any of the structures. To
separate these classes, other biomarkers such as volume

Table 5: Performance on the holdout test dataset, for different combinations of biomarkers used as feature vector.

Biomarker
V, NV DC CT TR Biochemical (CSF) Cognitive (MMSE) Number of features Accuracy test set (N� 30) (%)

1 ✓ ✓ ✓ 24 60.0
2 ✓ ✓ ✓ ✓ 30 66.66
3 ✓ ✓ ✓ ✓ 26 63.33
4 ✓ ✓ ✓ ✓ ✓ 32 70.0
5 ✓ ✓ ✓ ✓ ✓ 27 83.33
6 ✓ ✓ ✓ ✓ ✓ ✓ 33 86.66
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Figure 3: Feature relevance during RF classifier training and
design.

Table 6: Confusion matrices for different biomarkers’ combinations.

BM: V, NV, DC, CT
Accuracy: 60%

HC MCI AD
HC 8 2 0
MCI 0 4 6
AD 0 4 6

BM: V, NV, DC, CT, TR
Accuracy: 66.66%

HC MCI AD
HC 9 1 0
MCI 0 4 6
AD 0 3 7

BM: V, NV, DC, CT, CSF
Accuracy: 63.33%

HC MCI AD
HC 7 3 0
MCI 1 5 4
AD 1 2 7

BM: V, NV, DC, CT, CSF, TR
Accuracy: 70%

HC MCI AD
HC 7 3 0
MCI 1 7 2
AD 1 2 7

BM: V, NV, DC, CT, CSF, MMSE
Accuracy: 83.33%

HC MCI AD
HC 10 0 0
MCI 1 7 2
AD 0 2 8

BM: V, NV, DC, CT, CSF, MMSE, TR
Accuracy: 86.66%

HC MCI AD
HC 10 0 0
MCI 0 8 2
AD 0 2 8

8 Computational Intelligence and Neuroscience



and discrete compactness can be used. With these com-
parisons, it can be corroborated that the combination of
several image biomarkers in the multivariate analysis can
provide additional complementary information, in contrast
to the use of biomarkers individually.

Statistical analyses applied to cognitive and biochemical
parameters indicate that those indices presenting significant
differences are cognitive tests (MMSE and CDR) and CSF
proteins (tau and beta-amyloid); these results are coincident
with those reported in [20] for populations extracted from
the same ADNI database. In any case, there were no sig-
nificant differences for indices obtained from blood plasma,
probably due to a weak association between these param-
eters and the disease, as reported in [35].-e authors suggest
that plasma Aβ increase is not necessarily associated with an
overproduction of amyloid on the brain, but with renal
excretion reduction or peripheral vessel disorders, and
therefore presents a weak association with AD [35]. For this
reason, biochemical markers considered for classification
include only CSF levels.

4.2. Random Forest Classification. It can be observed in
Table 4 that TR contributes by itself to increase accuracy
more than 9% considering only image BMs (rows 1 and 2).
Combining image with biochemical BMs, a 2.5% increase
can be seen in rows 3 and 4, when adding TR in the clas-
sification. Finally, when incorporating all image, bio-
chemical, and cognitive indicators, it can be seen that TR
contributes by 1.67% to accuracy (rows 5 and 6). -ese
results reflect that TR contributes to the classification in the
three scenarios: using only image BMs, image plus bio-
chemical, and in the incorporation of all features, in which a
90% of accuracy was obtained with the training dataset (6th
row last column).

Results obtained with the test dataset (Table 5) show that
tortuosity contributed with an increase of up to 6.66% when
using only image-extracted BMS, of 6.67% when adding CSF
levels, and of 3.33% when considering all biomarkers.

-ese results are comparable with those obtained by
Sivapriya et al. [12] that report an accuracy of 96.3% during
5-fold cross-validation of an RF, but considering parameters
extracted from PET images. Our results can also be con-
trasted with performances reported by Salvatore et al. [6]
that show classification rates of 59% (HC vs. MCI), 90%
(MCI vs. AD), and 96% (HC vs. AD), considering image-
extracted BM as well as cognitive scores. It must be noted
that in, all these studies, the incorporation of neuro-
psychological tests considerably increases classification rates
because cognitive changes are a clear expression of AD
progression and are therefore employed as a primary clinical
criterion for its diagnosis.

Lerch et al. [15] report a study where several brain
structures are analyzed, incorporating the average cortical
thickness of the entire cortex to discriminate groups of
patients and controls. -eir results show a precision of 75%,
a sensitivity of 79%, and a specificity of 71%, using quadratic
discriminant analysis. -e authors report the highest ac-
curacy (94%) when parahippocampal gyration is included.

However, it should be noted that these results only consider
two populations (healthy controls versus AD patients) with
only 17 and 19 subjects, respectively [15].

-e results reported in [16] suggest that the cortex’
thickness in patients with Alzheimer’s disease was thinner
(p< 0.001) in the bilateral parietal region, compared to
patients with frontotemporal dementia. Compared to nor-
mal subjects, patients with Alzheimer’s disease had a thinner
cortex mainly in the bilateral, frontal, parietal, temporal, and
occipital lobes (p< 0.001). -e analyzed population was 23
control subjects, 22 patients diagnosed with AD, and 19
patients with frontotemporal dementia. Classification ac-
curacy for this study was 96%± 3% using cross-validation for
differences between control subjects versus AD patients. To
differentiate patients with frontotemporal dementia, the best
result taking into account cortical thickness was 85%± 6%.
To differentiate between the two types of dementia, the result
was 82%± 1% [16].

Nanni et al. [36] report classification rates between
85.5% and 92.4%, when comparing pairs of groups (MCI vs.
HC and AD vs. HC), but employing a large number of image
features (2000) selected with several methods. Perez-Gon-
zalez et al. [8] also test the efficiency of discrete compactness
for the classification of populations’ pairs obtaining accu-
racies going from 85% (MCI vs. HC) to 98.3% (AD vs. HC).
In contrast, Dimitriadis et al. [13] report a 61.9% accuracy in
the classification of four groups (HC, MCIc, MCInc, and
AD), but it must be noted that discriminating betweenMCIc
and MCInc classes can cause the apparently low perfor-
mance of their methods. Payan et al. [10] also carry out a
multigroup classification (HC, MCI, and AD) leading to a
89.5% accuracy, but through the use of a complex method
based on 3D convolutional neural networks.

Results displayed in Table 6 show that the greater errors
appear in the MCI group assignment that our method
erroneously classifies as AD and in some cases to the HC
class. -is contrasts with results reported by Dimitriadis
et al. [13] and by Ramirez et al. [14] that misclassify a 35%
and 40%, respectively, of MCI cases to the HC class, which
can lead to an incorrect clinical management of those
subjects. On the other hand, the combination (V, NV, DC,
CT, TR, CSF, and MMSE) tested in this research attains a
90% classification of HC and AD populations and 80%
classification of HC and MCI populations, in contrast to
60% and 62.5% for the HC class and to 95% and 92.5% for
the AD class, respectively, obtained by the same cited
authors [13, 14]. It is necessary to mention that they include
the MCIc class that can cause a decrease in the overall
performance of their methods.

-e previous results suggest that tortuosity is a metric
that can provide relevant information in the early diagnosis
of AD. -is is based on two fundamental arguments. -e
first is the statistical results shown in Table 3, where the
contribution of this biomarker to discriminate between the
classes of control subjects versus subjects with MCI (stage
prior to the AD) is appreciated. -e second argument is
related to the classification process shown in Table 5, where
it can be observed that in all cases when tortuosity was
included as a feature, the classification accuracy increased.
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For these reasons, we think that this indicator has an ex-
cellent potential to become an effective image biomarker in
the early diagnosis of AD.

5. Conclusions

In this work, a classification strategy that combines bio-
markers obtained from several modalities for early AD
detection was presented. -e main contribution is the in-
troduction of tortuosity measures, computed through
SOAM, as a promising morphological parameter to be
considered in early stages of the disease. Results show that
tortuosity is sensitive to morphology changes appearing in
several brain structures, whose atrophic deterioration can be
detected as early as the MCI stage using the combination of
biomarkers proposed in this paper.

Results obtained in this study show significant dif-
ferences of tortuosity indices for most of the analyzed
structures, allowing the discrimination between HC vs.
MCIs and HC vs. AD; these findings have special clinical
relevance for the detection of AD’s early symptoms.
Nevertheless, although tortuosity presented a better dis-
crimination capability than other image-extracted pa-
rameters (volume, discrete compactness, and cortical
thickness) to separate HC from the other two groups, it did
not show the same performance to distinguish between
MCI and AD subjects. In this case, other features were
more efficient than tortuosity, which corroborates that the
integration and adequate selection of different types of
BMs provide higher accuracies.

-e proposed classification strategy incorporates mul-
timodal information and allows attaining an accuracy of
86.66% during the test stage with previously unseen data.
-ese findings suggest that tortuosity can be considered as
an image-extracted BM, helpful in the detection of early
stages of AD when subjects present the first clinical
symptoms of the disease.
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