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Abstract

For several decades, understanding ageing and the processes that limit lifespan have challenged 

biologists. Thirty years ago, the biology of ageing gained unprecedented scientific credibility 

through the identification of gene variants that extend the lifespan of multicellular model 

organisms. Here we summarize the milestones that mark this scientific triumph, discuss different 

ageing pathways and processes, and suggest that ageing research is entering a new era that has 

unique medical, commercial and societal implications. We argue that this era marks an inflection 

point, not only in ageing research but also for all biological research that affects the human 

healthspan.

A key initial step in the field of ageing research was the observation in 1939 that restriction 

of caloric intake in mice and rats increased lifespan1 (Fig. 1). This discovery, reproduced in 

several species including, most recently, in primates2,3, was the first demonstration of the 

plasticity of the ageing process and a harbinger of the genetic studies that came 50 years 

later. Notably, dietary restriction increased not only the maximum lifespan but also 

suppressed the development of age-associated diseases4. These observations led to the 

concept that lifespan extension was associated with slowed ageing and increased healthspan

—which describes both the length of healthy life and the fraction of total lifespan free from 

disease.

During the mid-1900s, the field began to debate the idea that ageing was the cause of age-

related chronic disease. The use of the word ‘cause’ remains controversial because, although 

ageing is the largest risk factor for a multitude of age-related diseases5, causality has not 

been proven. In support of the idea, some apparently normal ageing phenomena, which 

interact with each other in a complex way, contribute to diseases. There was a realization 

that many of the molecular and biochemical mechanisms that determined the rate of ageing 

were also under investigation in laboratories that solely focused on individual chronic 
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diseases. Increasingly, researchers who study lifespan genetics and work on disease models 

collaborate with scientists who have no expertise in ageing research. To distinguish this new 

field from gerontology, defined as the comprehensive multidisciplinary study of ageing and 

older adults, this interdisciplinary science at the interface of normal ageing and chronic 

disease was termed ‘geroscience’6.

A genetic approach to ageing research

Biologists have long known that lifespan is a heritable trait and thus has a genetic basis, as 

different species have radically different lifespans that range from days to decades. In 1952, 

Peter Medawar proposed that ageing is the result of the decline in the force of natural 

selection after reproduction7. This led some population-genetics and evolutionary biologists 

to culture large fly populations (usually Drosophila species) with high genetic diversity to 

selectively breed for late- and early-reproducing flies and test their genetic makeup. These 

studies showed that the late-reproducing flies lived almost twice as long as early-

reproducing flies, and that these differences were heritable, supporting the model that genes 

determined lifespan8.

Over 30 years after Medawar’s writing on ageing, a landmark study in the nematode 

Caenorhabditis elegans showed that a single gene, age-1, can determine the lifespan of an 

organism9. The lifespan of age-1-mutant worms increased by 40–60% on average9. This 

came as a surprise to many, as researchers assumed that hundreds or thousands of genes 

would be involved and that the effects of any single gene would be very small and even 

undetectable. Currently, over 800 genes have been identified that modulate lifespan in C. 
elegans according to GenAge (http://genomics.senescence.info/genes/search.php?

organism=Caenorhabditis+elegans&show=4). The actual number of genes that modulate 

lifespan is probably higher, as new long-lived mutants continue to be identified and 

additional genes may also affect lifespan under different environmental conditions.

Ageing pathways and processes

The past 30 years of ageing research has transitioned from identifying ageing phenotypes to 

investigating the genetic pathways that underlie these phenotypes. The genetics of ageing 

research has revealed a complex network of interacting intracellular signalling pathways and 

higher-order processes10. Many of the pathways and processes, such as dietary restriction, 

that have been identified are known to be critical in homeostatic responses to environmental 

change.

Below, we selected a few key pathways and processes that have emerged during the past 30 

years.

Insulin-like signalling pathway

In 1993, a C. elegans mutation in daf-2, which is involved in a switch between normal 

developmental progression and an alternate diapause larval stage (the dauer), was shown to 

almost double the adult lifespan11. This finding was followed by the discovery that two of 

the daf genes (daf-2 and daf-16) were located in a single pathway that influenced both the 
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formation of the dauer larval stage and adult lifespan12. These ageing-associated genes were 

the C. elegans orthologues of mammalian genes that encode components of the insulin and 

insulin-like growth factor intracellular signalling pathway (ILS). age-1 turned out to be a 

phosphatidylinositol-3 kinase, daf-2 encodes an insulin-like receptor and daf-16 encodes a 

FOXO-like transcription factor that acts downstream of the insulin signalling pathway in 

mammals. This was supported by findings in yeast13 and flies14,15 that inhibition of 

components of the ILS pathway extended lifespan. This suggested that the earlier 

discoveries in worms were not a ‘private’ mechanism confined to nematodes but a common 

mechanism with the potential to be relevant to humans and human diseases.

Further studies in flies, worms and mice have since proven the conserved effects of 

inhibiting the insulin signalling pathway and extended lifespan16. Some alleles of the daf-16 
orthologue in humans, FOXO3, are also associated with human centenarian populations 

across the globe17, which supports the idea that what we learn from model organisms may 

be relevant to ageing in humans.

Target of rapamycin

Target of rapamycin (TOR) proteins were first identified from rapamycin research. 

Rapamycin was originally discovered for its potent antifungal properties and later shown to 

inhibit the growth of cells and act as an immune modulator18,19. Insights into its mechanism 

of action came from the identification of mutants that suppressed the cell cycle-arrest 

properties of rapamycin in Saccharomyces cerevisiae18. These were later identified to be 

mutations in the genes that encode TOR1 and TOR2. Mammalian TOR genes are known as 

mTOR (mechanistic (or mammalian) target of rapamycin).

Studies have also elucidated the relationship between TOR and dietary restriction. 

Evolutionary hypotheses that explain the protective effects of dietary restriction argue that 

under nutrient restriction, there is a shift in metabolic investment from reproduction and 

growth towards somatic maintenance to extend survival10. The evidence for TOR as a 

conserved nutrient sensor made it an attractive candidate to mediate the switch between 

growth and maintenance and lifespan extension by dietary restriction across species. 

Consistently, flies with reduced activity of various components of the TOR pathway show 

extended lifespan in a manner that mimics dietary restriction20. A large-scale screen for 

long-lived mutants in yeast identified several mutations in the TOR pathway that also 

mimicked the effects of dietary restriction13,21. Notably, double mutants that carry mutations 

in genes of both the TOR and insulin signalling pathways have a nearly fivefold increased 

lifespan in C. elegans22. Both key longevity pathways—that is, TOR and ILS—have 

emerged as key parallel but interacting conserved nutrient-sensing pathways, with TOR 

being important for autonomous and the ILS pathway for non-autonomous growth 

signalling.

TOR is a versatile protein that acts as a major hub that integrates signals from growth 

factors, nutrient availability, energy status and various stressors10. These signals regulate 

several outputs that include mRNA translation, autophagy, transcription and mitochondrial 

function, which have been shown to mediate extended lifespan23.
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Sirtuins and NAD+

In 1995, a genetic screen identified epigenetic ‘silencing’ factors as longevity genes24. Five 

years later, Sir2 was identified as a conserved protein that regulates replicative lifespan in 

yeast25. A key discovery was the demonstration that Sir2 was a protein deacetylase that 

removed acetyl groups from histone proteins in a manner that is dependent on the cellular 

coenzyme nicotinamide adenine dinucleotide (NAD+)26. Another key demonstration was the 

fact that Sir2 was a key protein in the lifespan extension observed under dietary restriction in 

yeast27. Other organisms also express Sir2-related proteins called sirtuins, which generally 

function as protein deacylases that remove acyl groups, including acetyl, succinyl and 

malonyl, from lysine residues on target proteins28. Mice and humans express seven sirtuins 

that are characterized by a conserved catalytic domain and variable N- and C-terminal 

extensions. SIRT1, SIRT2, SIRT3, SIRT6 and SIRT7 are bona fide protein deacetylases, 

whereas SIRT4 and SIRT5 do not exhibit deacetylase activity but remove other acyl groups 

from lysine residues in proteins29. Notably, SIRT1, SIRT2, SIRT6 and SIRT7 appear to 

function as epigenetic regulators, whereas SIRT3, SIRT4 and SIRT5 are located in 

mitochondria29. Sirtuins have emerged as global metabolic regulators that control the 

response to calorie restriction and protecting against age-associated diseases, thus increasing 

healthspan and—in some cases—lifespan30–33.

NAD+ is a critical redox coenzyme found in all living cells. It serves both as a critical 

coenzyme for enzymes that fuel reduction-oxidation reactions by carrying electrons from 

one reaction to another, and as a cosubstrate for other enzymes, such as sirtuins and 

polyadenosine diphosphate-ribose polymerases (PARPs). There is increasing evidence that 

NAD+ levels and the activity of sirtuins decrease with age and during senescence or in 

animals on a high-fat diet. By contrast, NAD+ levels increase in response to fasting, glucose 

deprivation, dietary restriction and exercise, which are all conditions associated with a lower 

energy load34–40. The fact that NAD+ levels increase under conditions that increase lifespan 

and healthspan, such as dietary restriction and exercise, and decrease during ageing or under 

conditions that decrease lifespan and healthspan, such as a high-fat diet, support the working 

model that decreased NAD+ levels might contribute to the ageing process. On the basis of 

this idea, it has been predicted and validated that NAD+ supplementation exerts protective 

effects during ageing41,42.

Circadian clocks

Research on sirtuins has also helped us to understand the link between circadian clocks and 

ageing. NAD+ levels fluctuate in a circadian manner and link the peripheral clock to the 

transcriptional regulation of metabolism by epigenetic mechanisms through SIRT1. The core 

circadian clock machinery, BMAL1 and CLOCK, directly regulates expression of NAMPT 

in the NAD+ salvage pathway in mice38. The deacetylase activity of SIRT1 depends on the 

presence of NAMPT to generate NAD+. The possibility that NAD+ concentrations are 

regulated semi-independently in different cellular compartments suggests that changes in 

unique local NAD+ concentrations could differentially affect the activity of distinct sirtuins.

Similarly, several other homeostatic responses are regulated by circadian clocks that are vital 

to maintaining health by rhythmic activity of neuronal, physiological and endocrine 
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functions. One of the common hallmarks of ageing is the progressive loss of circadian 

behavioural patterns (sleep-wake cycles) and a dampening of circadian gene expression43. 

Given that the network of circadian clocks modulates various biological processes, it is not 

surprising that disruption of circadian rhythms—genetically or through environmental 

perturbation—is linked with age-related pathologies, including neurodegeneration, obesity 

and type 2 diabetes43.

Dietary restriction is also emerging as an important factor that can influence peripheral 

clocks, as it promotes circadian homeostasis in flies and mice by enhancing the circadian-

regulated amplitude of gene expression44,45. More importantly, circadian clocks are required 

for the protective effects of dietary restriction on lifespan extension in both flies and 

mice44,45. There is an increase in the expression of rhythmic genes in the liver after dietary 

restriction that include targets of SIRT1, NAD+ metabolites and protein acetylation46. Time-

restricted feeding, in which feeding is restricted to shorter periods when an organism is 

active, has emerged as a potential paradigm to improve circadian and metabolic homeostasis, 

resulting in increased healthspan47. These findings suggest that circadian rhythms are more 

than just a biomarker of ageing and may be a driving factor in organismal ageing.

Mitochondria and oxidative stress

In the 1950s, it was theorized that endogenous production of free radical molecules arising 

from oxygen and generated during fundamental metabolic processes, such as respiration, 

represent a key factor that drives ageing48. These theories particularly focused on 

mitochondrial production of superoxide as a key mediator of ageing pathophysiology49. 

Indeed, numerous publications have shown that oxidative damage accumulates in multiple 

tissues and species with age. Although it is indisputable that such damage is one of the most 

consistent consequences of increasing age in cells and tissues, whether such damage is a 

cause or a consequence of ageing has proved to be hard to determine. The free radical theory 

of ageing has proved extremely difficult to test, at least in part because reactive oxygen 

species are also important signalling molecules. Numerous studies have shown that the 

modulation of respiration can extend lifespan in model organisms50–53.

In the 1990s and early 2000s, model organisms were used to overexpress key genes involved 

in detoxifying free radical molecules such as superoxide. There were multiple successes that 

led to lifespan extension54,55, which suggests that oxidative damage arising from 

metabolism was limiting lifespan—at least to some degree. However, this finding was 

challenged by subsequent studies in mice that showed no increase in the lifespan of wild-

type animals56 in which the key mitochondrial antioxidant protein superoxide dismutase 2 

was overexpressed. However, further studies that specifically targeted the hydrogen peroxide 

scavenger protein catalase to the mitochondria resulted in improved healthspan and 

increased lifespan in mice57–59. The contradiction between these two findings in mice 

suggests that simple genetic overexpression in mammalian systems is very context-specific. 

This is not surprising, as free radical production within the mitochondria is complex, with at 

least ten sites of production within the respiratory chain60, and the rate of production under 

diverse physiological states, at various ages and in different cell types remains relatively 

poorly explored and characterized61.
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Although free radicals are generally implicated in cellular damage and inflammation when 

present at high levels, they can also potentially increase cellular defenses through an 

adaptive response (termed ‘mitohormesis’) when present at lower levels62. Mitohormesis 

explains the paradoxical increase in lifespan observed after disruption of mitochondrial 

function in worms, flies and mice63,64. Genome-wide screens for lifespan extension in C. 
elegans revealed that disruption of several genes involved in the electron transport chain 

extended lifespan52,65. Inhibition of genes in the mitochondrial electron transport chain 

triggers the mitochondrial unfolded protein response (UPRmt), which is also required for the 

extended lifespan found in these C. elegans mutants66. Disruption of mitochondrial function 

in neurons activates the UPRmt in distal tissues such as the intestine, which suggests the 

existence of circulating factors that coordinate metabolism between tissues66. Mitochondrial 

perturbation triggered a nuclear transcriptional response that regulates a large set of genes 

involved in protein folding, antioxidant defenses and metabolism. UPRmt is regulated by 

several factors including activating transcription factor associated with stress-1 (ATFS-1), 

the homeobox transcription factor DVE-1, the ubiquitin-like protein UBL-5, the 

mitochondrial protease ClpP and the inner mitochondrial membrane transporter HAF-167.

Studies that demonstrate the importance of mitohormesis in extending lifespan pose several 

challenges to the field as it is unclear whether using antioxidants would be a good strategy 

for lifespan extension. As a result, there is evidence both for and against lifespan extension 

by increasing oxidative stress63. It is also unclear how the above findings can be reconciled 

with results that show that mitochondrial function is enhanced by dietary restriction in 

multiple species68–70. Further studies are needed to determine how differing states of 

mitochondrial function influence ageing in different contexts.

Senescence

Nearly 60 years ago, the first formal description of the limited ability of human cells to 

divide in culture was published71,72. This phenomenon is now known to be an example of a 

more general phenomenon termed cellular senescence. Senescent cells are characterized by 

three main features: arrested cell proliferation, resistance to apoptosis and a complex 

senescence-associated secretory phenotype73. The senescence that limits cell proliferation is 

caused mostly by the short, dysfunctional telomeres that result from repeated DNA 

replication in the absence of telomerase74. Dysfunctional telomeres trigger a persistent 

DNA-damage response, which in turn induces cell cycle arrest75 and the expression of pro-

inflammatory factors that are associated with the senescence-associated secretory 

phenotype76. Similarly, at least some of the oncogenes that induce senescence do so by 

causing replication stress and subsequent DNA damage77,78. However, other stressors can 

drive cells into senescence without a DNA-damage response, including epigenomic 

perturbations79 and mitochondrial dysfunction80.

Senescent cells are more abundant in aged and diseased tissues in multiple species81. Cell 

culture studies showed that senescent cells can fuel hallmarks of a variety of ageing 

phenotypes and diseases, largely through the cell non-autonomous effects of the senescence-

associated secretory phenotype82. The development of two transgenic mouse models in 

which senescent cells can be selectively eliminated confirmed the idea that senescent cells 
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can have a causal role in many age-related phenotypes and pathologies in vivo83,84. Both 

models have been used to show that senescent cells are drivers of a large number of age-

related pathologies—at least in mice. These pathologies include Alzheimer’s85 and 

Parkinson’s86 disease, atherosclerosis87, cardiovascular dysfunction88 (including 

cardiovascular problems caused by certain genotoxic chemotherapies89), tumour 

progression88,89, loss of haematopoietic and skeletal muscle stem cell functions90, non-

alcoholic fatty liver disease91, pulmonary fibrosis92, osteoarthritis93 and osteoporosis94.

This leads to the question of whether compounds could be identified that can eliminate 

senescent cells, similar to the action of the mouse transgenes, and that are therefore 

potentially translatable to use in humans. This approach led to the identification of a new 

class of drugs, termed senolytics, that is rapidly expanding90,95–99. Many senolytic drugs 

have been tested in mice and human cells or tissues, with promising results. However, 

clinical trials have only recently started and it therefore remains to be determined whether 

these drugs are safe and efficacious in humans.

Chronic inflammation

Senescence of the immune system (known as immunosenescence) is one of the causes of 

‘inflammaging’, a term coined in 2000100 that refers to a phenomenon in which older 

organisms tend to have higher levels of inflammatory markers in their cells and tissues, 

which results in a low-grade, sterile and chronic pro-inflammatory status. In contrast to 

acute, transient inflammation—an evolutionarily conserved mechanism designed to protect 

the host from infections and injuries—inflammaging is linked to a myriad of age-related 

diseases such as cancer, type 2 diabetes, cardiovascular disease, neurodegenerative diseases 

and frailty101–105.

Other factors that contribute to inflammaging include genetic susceptibility, obesity, 

oxidative stress, changes in the permeability of the intestinal barrier associated with 

translocation of bacterial products (‘leaky gut’), chronic infection and defective immune 

cells104 and pro-inflammatory factors that are associated with the senescence-associated 

secretory phenotype of non-immune senescent cells76. In addition, numerous environmental 

factors—such as the chemicals identified by the Tox21 consortium106—can be cytotoxic and 

pro-inflammatory101,102. Finally, longevity-enhancing interventions such as dietary 

restriction reduce inflammatory biomarkers107,108. On the basis of these findings, 

inflammaging is now considered to be a biomarker for accelerated ageing and one of 

hallmarks of ageing biology.

As discussed for other variables that influence ageing, an extended lifespan and healthspan 

may be a result of a fine balance between pro-inflammatory and anti-inflammatory 

processes109. Consistent with this idea, it has been shown that although centenarians have an 

increased level of pro-inflammatory molecules (for example, interleukin-6, a commonly 

used marker for chronic morbidity105), the adverse consequences associated with these pro-

inflammatory molecules are counterbalanced by high levels of anti-inflammatory 

molecules110.
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Proteostasis

Protein homeostasis (known as proteostasis) is an essential process that maintains protein 

structure and function, a process that degrades during ageing. Proteome stability is 

associated with naturally long lifespan in organisms such as the naked mole-rat, which is 

characterized by high levels of homeostatic proteolytic activity111–113. During normal 

ageing, many hundreds of proteins become insoluble and accumulate in a wide variety of 

tissues. In C. elegans, these insoluble proteins are highly enriched for proteins that determine 

lifespan114,115. It appears that a proteome-wide failure in proteostasis accelerates ageing.

The major pathways that determine lifespan also regulate aspects of proteostatic factors. For 

example, insulin signalling pathways control the expression of molecular chaperones and 

TOR signalling pathways regulate many forms of autophagy including mitoautophagy, 

which is the mechanism by which damaged mitochondria are removed from the cell. Age-

related failure in proteostasis may be mechanistically responsible for the processing and 

folding of neurotoxic peptides associated with Alzheimer’s disease, Parkinson’s disease and 

other proteotoxic diseases116. Indeed, this may be why age is such a high-risk factor for 

neurological diseases that are marked by protein aggregation.

An inflection point in ageing interventions

The rapid increase in our understanding of the molecular mechanisms that underlie ageing 

has created new opportunities to intervene in the ageing process. Two notable findings have 

emerged from these early studies. First, the number of genes that can extend lifespan is 

much larger than expected, which suggests a much higher level of plasticity in the ageing 

process than expected. Second, genes that control ageing—which define cellular pathways 

such as the TOR and insulin signalling pathways—are remarkably conserved in yeast, 

worms, fruit flies and humans. The conservation of these pathways across wide evolutionary 

distances and the fact that targeting these pathways in model organisms increases both 

lifespan and healthspan has brought to the fore the idea of interventions in humans.

Rapidly ageing societies across the world are seeing an increasing healthcare burden 

attributable to both morbidity and cost of age-related diseases, such as heart disease, stroke, 

cancer, neurodegeneration, osteoarthritis and macular degeneration. However, current 

medical care is highly segmented as well as organ- and disease-based, and ignores the fact 

that age and the ageing process are the strongest risk factor for each of these diseases. 

According to the concept of geroscience, targeting conserved ageing pathways is anticipated 

to protect against multiple diseases and represents a different approach to tackling the 

rapidly growing burden of diseases worldwide (Table 1).

Using geroscience to treat age-related disease

The concept of geroscience predicts that conserved ageing pathways are part of the 

pathophysiology of many age-related conditions and diseases (Fig. 2). For example, 

multimorbidity is seen as the multisystem expression of an advanced stage of ageing rather 

than a coincidence of unrelated diseases117. Targeting conserved ageing pathways should, 

therefore, prevent or ameliorate multiple clinical problems. This hypothesis remains to be 
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tested in clinical trials, but is supported by several lines of evidence. A wide range of animal 

models of specific diseases can be affected by manipulating a single ageing mechanism 

(such as NAD+)118 or senescent cells95 in the laboratory. Rates of individual age-related 

diseases and of multimorbidity increase nonlinearly with age, and the rate of acquiring new 

chronic diseases may be higher in people who have an existing chronic disease119.

Certain populations, such as people who live with HIV or are homeless, show an early onset 

of a wide range of age-related chronic diseases and geriatric syndromes that are not 

necessarily related to their specific disease risks120,121. A classic statistical analysis of 

human mortality showed that even curing an entire category of chronic disease, such as all 

types of cancer or cardiovascular diseases, would only modestly increase life expectancy 

owing to the expected mortality from other chronic diseases122. Conversely, humans with 

extreme longevity who presumably have favourable ageing mechanisms show delayed onset 

of most major chronic diseases123.

In clinical care, multimorbidity is increasingly viewed as an entity unto itself that requires a 

specific integrative management plan124, as intensive but uncoordinated treatment of 

individual diseases can give rise to the harmful syndrome of polypharmacy125. Frailty 

measures are the most widely used clinical assessments for quantifying the stage of 

ageing126,127, and these clinical biomarkers of ageing predict mortality while awaiting liver 

transplant128, complications of surgery129 and whether the pathology of Alzheimer’s disease 

manifests as clinical dementia130. Taken together, experimental data from preclinical 

models, epidemiological patterns of age-related conditions and the power of non-disease-

specific clinical ageing assessments such as frailty to predict risk and mortality in diverse 

contexts all suggest that intervening in mechanisms of ageing could have broad clinical 

benefit.

Challenges ahead

However, to move from simple organisms to humans several key difficulties need to be 

overcome, as discussed below. First, it is already clear from the study of model systems that 

interventions that are beneficial in a given genetic environment might not work in another. 

For example, analyses of dietary restriction in multiple recombinant inbred mice strains 

found both an increase and a decrease in lifespan, which was dependent on the strain131. 

Similar results have been obtained using more than 150 strains of flies132. The molecular 

basis for these differences in response to what had been assumed to be a universally 

beneficial intervention has not been established. Future studies in invertebrates such as yeast, 

worms and flies hold promise for systematically explaining the genetic basis of lifespan 

extension by dietary restriction.

The human population is also characterized by a large genetic heterogeneity that has a 

critical role in disease susceptibility, lifespan and the response to drugs of an individual. This 

heterogeneity is the basis for the current field of precision medicine, which aims to identify 

critical genetic determinants of disease and to customize interventions and treatments to 

unique genetic variants. In the future, the field of precision medicine and geroscience will 

have to interact closely. As discussed above, FOXO3 is related to the DAF–insulin pathway, 

and unique polymorphisms in FOXO3 are found in centenarians around the world17. 
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Furthermore, the APOE gene is involved in cholesterol metabolism, and unique alleles are 

associated with longevity and a lower risk of developing Alzheimer’s disease133,134. Many 

additional genes135, such as SIRT6136, are now known to be associated with human 

longevity.

Just as several animal studies have challenged the universality of the benefits of dietary 

restriction137–139, it is likely that pharmacological interventions will work with different 

success in distinct humans, owing to the natural genetic variation in the population138. As in 

mice, it has been hypothesized that selective pressures on the response to nutrient 

availability may vary across different human populations, resulting in genetic differences 

that may influence diabetes and obesity140. Furthermore, most of the interventions have 

arisen from research to show protection against ageing in animals. Thus, it is possible that 

humans that have optimized their nutrition and exercise are unlikely to derive much benefit 

from these interventions. Future studies on tailoring interventions based on personalized 

medicine approaches are likely to be most successful in deriving the most benefit from these 

interventions.

Additionally, it is clear that studies in mice are not always predictive for humans. Many 

important discoveries in mice have been translated successfully in humans, but many others 

have not. This can be due to intrinsic biological differences between mice and humans. In 

addition, the complexity of biology and the multiplicity of recognized and unrecognized 

variables that affect biological phenotypes have caused reproducibility problems between 

different laboratories that study the same organisms, not only in studies of mice but also 

other model systems141.

Although there are many examples of a connection between long lifespan and increased 

healthspan, more-recent studies in mice142,143, flies132 and worms144–146 have questioned 

the assumption that lifespan extension is always accompanied by an increase in healthspan. 

Future studies will need to address the effects of interventions on both of these aspects 

before attempting to translate these interventions into the treatment of human patients.

Drugs undergoing clinical trials

Both drugs that are being developed to target ageing and some drugs that are commonly 

used behave as geroprotectors in animal models. The multicentre Intervention Testing 

Program (ITP), which is supported by the National Institute for Ageing, has identified five 

drugs that reproducibly increase lifespan in genetically heterogenous mice147, including 

rapamycin, acarbose, nordihydroguaiaretic acid, 17-α-oestradiol and aspirin147. Some of 

these drugs also improve healthspan measures in some tissues of animal models148–150. 

Drugs found in other studies to extend rodent lifespan include metformin151 (although it did 

not repeat in the ITP at the same dose), drugs targeting the angiotensin-converting enzyme 

and the aldosterone receptor, and the sirtuin activators SRT2104152 and SRT1720153. Further 

work will be necessary to validate that these drugs act as true geroprotectors in model 

organisms.

A key question is how these interventions will be tested and eventually used clinically in 

humans. Geroscience predicts that ageing therapies will ameliorate or prevent several age-
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related diseases and conditions simultaneously. Clinical trials to test this hypothesis should 

therefore use clinical outcomes that inherently depend on multiple age-related diseases or 

conditions. Examples include multimorbidity, or the combination of several age-related 

chronic diseases; the multifactorial geriatric syndromes such as frailty or delirium; or 

resilience to health stressors such as surgery or infection154. Multimorbidity and frailty are 

also widely incorporated into measures of age-related risk that inform clinical decision-

making155. Other examples of such measures that could be useful trial outcomes include 

grip strength, gait speed156, timed-up-and-go and activities of daily living.

These clinical measures of ageing could be useful for selecting patients at higher age-related 

risk to receive interventions. For example, the risk of multimorbidity increases steeply with 

age119; however, developing one chronic disease increases the risk of developing another by 

several fold157. How early or late in the ageing process interventions can be effective 

remains to be seen, although animal studies of drugs and human studies of exercise provide 

some reassurance that the window of opportunity extends quite late in life. At least five 

major classes of drugs are currently being tested in humans for their geroprotective potential.

Metformin.—Metformin is a widely prescribed antidiabetic drug that has been found to 

target several molecular mechanisms of ageing158. A retrospective analysis of patients with 

diabetes who received metformin showed increased lifespan in comparison to individuals 

without diabetes159. In randomized trials, metformin prevented the onset of diabetes, 

improved cardiovascular risk factors and reduced mortality160,161. Epidemiological studies 

have suggested that metformin use might also reduce the incidence of cancer and 

neurodegenerative disease158. These data underpin the proposed Targeting Aging with 

MEtformin (TAME) study, a large randomized controlled trial of metformin given to 65- to 

80-year-old individuals without diabetes who are at high risk for the development of chronic 

diseases of ageing. The primary outcome of TAME is a composite of death or new major 

age-related chronic diseases, including cardiovascular disease, cancer and dementia. Other 

outcomes include geriatric measures such as mobility, independence in activities of daily 

living and cognitive function162.

Rapamycin analogues.—The compound identified by the ITP that has perhaps the most 

reproducible effects on lifespan is rapamycin. Rapamycin inhibits the TOR pathway, extends 

the lifespan of yeast and flies and increases mean and maximum lifespan in mice from 

multiple genetic backgrounds163–165. These basic research data led to a unique clinical trial 

that studied the effects of rapamycin on heart function, cognition, cancer and lifespan in 

household companion dogs as a preclinical model166. Rapamycin (also known as sirolimus) 

and its analogue everolimus are approved for clinical use as immunosuppressants in solid 

organ transplantation. Healthy older adults given a non-immunosuppressive dose of 

everolimus for six weeks showed an improved immunological response to influenza 

vaccination19. A subsequent clinical trial found that six weeks of low-dose everolimus plus a 

second TOR inhibitor improved vaccine response and, provocatively, reduced infection rates 

by over a third during the subsequent nine months167. These were two of the first examples 

of clinical trials that target a syndrome of ageing—immunosenescence—with a drug that 

targets the mechanisms of ageing.
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Senolytics.—As discussed above, senolytic drugs—drugs that selectively target and 

eliminate senescent cells—have showed great geroprotective potential in animal models95. 

Some of these drugs are natural products96,97, whereas others are synthetic small 

molecules90,98,99. A growing number of biotechnology companies and research laboratories 

are developing new or repurposed senolytics that have just begun to be tested for safety in 

humans, with no results—thus far—regarding efficacy.

Sirtuin activators.—Sirtuin-activating compounds (STACs) enhance sirtuin activity and 

increase healthspan in mice and non-human primates168. However, mixed conclusions have 

been observed in clinical trials. Resveratrol (a natural STAC) and SRT1720 (an early 

synthetic STAC) have shown promising results in preclinical trials but failed in clinical 

trials, owing to low bioavailability, potency and limited target specificity169. The most 

promising synthetic STAC so far is SRT2104, a highly specific SIRT1 activator; the 

compound has completed several small clinical studies of effects on cardiovascular and 

metabolic markers, including in type 2 diabetes, cigarette smokers and the elderly, with 

larger trials underway118.

NAD+precursors.—NAD+ precursors such as nicotinamide riboside and nicotinamide 

mononucleotide aim to supplement the age-associated decrease in cellular NAD levels69. In 

animal models, both precursors have shown geroprotective activity against a number of 

ageing-associated diseases. Several companies are currently selling nicotinamide riboside 

and nicotinamide mononucleotide as supplements online. Although these supplements 

increase NAD levels in humans170, no efficacy or geroprotective effects for humans have 

been demonstrated thus far.

Exercise improves healthspan

Although much hope and investment are currently focused on drug development, it is 

important to note that exercise behaves as a true and effective geroprotector. In the absence 

of suitable treatments for age-related dysfunction, exercise is currently the only intervention 

that has shown a remarkable efficacy for reducing the incidence of age-related 

disease171,172, improving the quality of life173 and even increasing mean and maximum 

lifespan in humans174,175. Its benefits can be seen even with modest implementation173. 

Although the key molecular players that mediate the protective effects of exercise against 

age-related disease are unknown, efforts are underway to identify the molecular players and 

whether we can harness such knowledge to improve the health of the ageing population.

Nutrition and ageing

Diet is probably one of the most important influences on health and ageing. However, it is an 

enormously complicated topic and beyond the scope of this Review (extensive discussion on 

this topic has previously been published176). The field of ageing has focused almost 

exclusively on the lifespan and healthspan effects of dietary restriction but, at the other end 

of the spectrum, overeating and the accompanying obesity shortens lifespan and decreases 

healthspan. In between these two extremes, there is strong evidence that optimal eating is 

associated with increased life expectancy and a reduction in the risk of all types of chronic 

disease. Many claims have been made for the competitive merits of different diets relative to 
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one another. However, it is very difficult to conduct rigorous, long-term studies that compare 

different diets for their lifespan and healthspan effects using methodology that is devoid of 

bias and confounding variables. Without such direct comparisons, no specific diet can claim 

superiority over any others. However, a number of themes have emerged from studies that 

compare different diets and from the study of populations that are geographically associated 

with increased longevity (so-called ‘blue zones’). Diets that favour longevity and healthspan 

are generally characterized by minimally processed foods, being predominantly plant-based, 

low alcohol consumption and a lack of overeating.

Exciting recent developments are emerging in the nutrition field, such as intermittent 

fasting177, diets that mimic fasting178 and time-restricted feeding179. Recently, interest has 

grown in a ketogenic diet that is characterized by the endogenous production of high levels 

of the ketone body β-hydroxybutyrate. This diet has long been used as a treatment for 

childhood epilepsy and was recently shown to increase healthspan in two separate studies in 

mice180–182. The studies are supported by recent findings that β-hydroxybutyrate modulates 

the enzymatic activity of the epigenetic regulators, histone deacetylases, and thereby 

activates the expression of FOXO3183. Future research will focus on the healthspan and 

possible lifespan of these dietary interventions and the identification of their interactions 

with pathways that regulate ageing.

The need for biomarkers of ageing

The field of geroscience needs biomarkers to assess the ageing process and the efficacy of 

interventions to bypass the need for large-scale longitudinal studies. Medicine has 

undergone a progressive transformation during the past 40 years, changing from ‘sick care’

—that is, care primarily focused on treating diseases after they occurred—to ‘healthcare,’ in 

which unique risk factors for disease development are recognized and suppressed before 

disease onset. For example, neither high plasma cholesterol nor high blood pressure is a 

disease by itself but both are important risk factors for the development of myocardial 

infarction and strokes.

Similarly, ageing is not a disease but a notably strong risk factor for multiple diseases that 

include myocardial infarction, stroke, some ageing-associated cancers, macular 

degeneration, osteoarthritis, neurodegeneration and many other diseases. For example, 

cardiovascular risk doubles every 10 years past the age of 40, even after adjustment for other 

risk factors—the rough equivalent of adding a major new risk factor (smoking, hypertension 

and so on) every decade184. Decades of cardiovascular studies identified risk factors and 

showed that treating risk factors even when patients are asymptomatic prevented harm. 

Treatment guided by these cardiovascular biomarkers now extends earlier and earlier in life. 

The availability of true biomarkers of ageing, and associated clinical health outcomes and 

malleability to interventions162, would allow geroprotectors to be tested on an accelerated 

time scale. They would further allow for early identification of patients at high age-related 

risk throughout life and in various clinical contexts to target geroprotective treatments.

Early efforts to identify such markers have been unsuccessful, but recent developments using 

newer technologies such as high-throughput proteomics, transcriptomics and epigenomics 

indicate that such biomarkers do exist and could be of high clinical importance185. One 
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possible biomarker, the epigenetic clock, is based on the measurement of DNA methylation 

at multiple sites and appears to correlate with biological age and age-related risk more than 

chronological age186–188. Advanced glycation end products represent another potential 

biomarker that accumulates with age and in several age-related diseases189. Furthermore, 

increased levels of some advanced glycation end products are also associated with increased 

mortality in humans190. There already is evidence that ageing biomarkers can be modified 

by interventions that target ageing, such as in the CALERIE study of calorie restriction in 

humans191. The identification of further biomarkers that predict biological age and disease 

risk will represent a huge stride forward in the efforts to combat age-related disease and 

dysfunction in humans.

We are now entering an exciting era for research on ageing. This era holds unprecedented 

promise for increasing human healthspan: preventing, delaying or—in some cases—

reversing many of the pathologies of ageing based on new scientific discoveries. Whether 

this era promises to increase the maximum life span of humans remains an open question192. 

What is clear is that, 30 years after the fundamental discoveries that link unique genes to 

ageing, a solid foundation has been built and clinical trials that directly target the ageing 

process are being initiated. Although considerable difficulties can be expected as we 

translate this research to humans, the potential rewards in terms of healthy ageing far 

outweigh the risks.
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Fig. 1 |. Timeline of ageing research.
Key discoveries in the ageing field are highlighted, starting with the discovery of the effect 

of calorie restriction on ageing in 1930.
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Fig. 2 |. The concept of geroscience and its approach to age-related disease.
Environmental and genetic factors exert influences on a number of key cellular processes 

and pathways, which have recently been defined as the hallmarks of ageing193. Many of 

these pathways contribute to the creation of a chronic inflammatory stage and to ageing. 

These in turn increase the risk for chronic diseases of ageing together with disease-specific 

risk factors (for example, cholesterol level and high-blood pressure can lead to 

cardiovascular diseases such as stroke and myocardial infarction).
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